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Abstract: This paper considers a laser-powered unmanned aerial vehicle (UAV)-enabled wireless
power transfer (WPT) system. In the system, a UAV is dispatched as an energy transmitter to replenish
energy for battery-limited sensors in a wireless rechargeable sensor network (WRSN) by transferring
radio frequency (RF) signals, and a mobile unmanned vehicle (MUV)-loaded laser transmitter travels
on a fixed path to charge the on-board energy-limited UAV when it arrives just below the UAV. Based
on the system, we investigate the trajectory optimization of laser-charged UAVs for charging WRSNs
(TOLC problem), which aims to optimize the flight trajectories of a UAV and the travel plans of an
MUV cooperatively to minimize the total working time of the UAV so that the energy of every sensor
is greater than or equal to the threshold. Then, we prove that the problem is NP-hard. To solve the
TOLC problem, we first propose the weighted centered minimum coverage (WCMC) algorithm to
cluster the sensors and compute the weighted center of each cluster. Based on the WCMC algorithm,
we propose the TOLC algorithm (TOLCA) to design the detailed flight trajectory of a UAV and the
travel plans of an MUV, which consists of the flight trajectory of a UAV, the hovering points of a
UAV with the corresponding hovering times used for the charging sensors, the hovering points of a
UAV with the corresponding hovering times used for replenishing energy itself, and the hovering
times of a UAV waiting for an MUV. Numerical results are provided to verify that the suggested
strategy provides an effective method for supplying wireless rechargeable sensor networks with
sustainable energy.

Keywords: laser-charged UAV; wireless power transfer; mobile unmanned vehicle; wireless rechargeable
sensor network; trajectory optimization

1. Introduction

Wireless sensor networks (WSNs) are widely employed in a variety of application
scenarios, including environmental monitoring, forest fire prevention, traffic control, and
so on [1]. In these networks, sensors can gather data about the environment and perform
functions such as processing, storing, and communicating. However, the available energy
of the sensors is quite constrained, and replacing or recharging the batteries for them
is often difficult, particularly in complex terrain areas. To guarantee their sustainable
operation, radio frequency (RF)-based wireless power transfer (WPT) has emerged as
a possible solution for a sustainable energy source for sensors. These WSNs are called
wireless rechargeable sensor networks (WRSNs).

Traditional energy-supplying methods for WRSNs such as solar or wind are expensive
and difficult to maintain and are unreliable. Meanwhile, it is inefficient to install the energy
transmitter in a fixed position to charge the sensors since the energy transmitter is too far
away from the sensors or the equipment can be easily damaged. UAVs can be used as
mobile chargers to replenish the energy for sensors in WRSNs when they are installed in
the energy transmitter due to their high maneuverability, deployment flexibility, etc. UAVs
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can be equipped with RF transmission equipment to charge sensors through line-of-sight
(LoS) energy transmission links [2].

Although UAVs have many advantages that can be used for charging the sensors in
WRSNs, they cannot work continuously because of the limited airborne energy capability,
especially for long-duration and energy-intensive flight missions. With the development
of laser-charging technologies, a UAV can have its energy replenished by laser beams
transmitted by laser-emitting devices. This is because the laser beams have a high energy
density and low beam divergence. However, this will increase the energy consumption
and task completion times of a UAV when laser-emitting devices are deployed in fixed
locations. To overcome the above problems, an MUV equipped with laser transmitters can
be used to charge a UAV due to its mobility and good speed.

In this paper, we consider a novel wireless network architecture, which consists of
rechargeable sensors, a UAV, and an MUV. In the architecture, a UAV loaded with a wireless
transmitter is used to charge the sensors and an MUV carrying a laser transmitter is applied
to replenish the energy of the UAV by transmitting laser beams.

In the architecture, we study the trajectory optimization of laser-charged UAVs for
charging WRSNs (TOLC problem), whose objective is to minimize the total working time
of a UAV by optimizing the flight trajectory of a UAV and the travel plans of an MUV
cooperatively. In the problem, it is simultaneously satisfied that the energy of each sensor
in a WRSN is greater than or equal to the threshold and that the remaining energy of a UAV
can support it to fly at any instant. The contributions of this paper are summarized below.

(1) We propose a new WRSN assisted by an MUV and a laser-charged UAV. In the
network, a UAV is used as a mobile charger to supplement the energy for sensors and an
MUV is used to charge a UAV. To the best of our knowledge, this is the first work to study
an MUV-assisted laser-charged UAV for charging sensors in a WRSN from the perspective
of the combined flight trajectory of a UAV and travel plans of an MUV.

(2) We propose the trajectory optimization of laser-charged UAVs for charging WRSNs
(TOLC problem) in an MUV-assisted laser-powered UAV-enabled WRSN. This problem
needs to design the detailed flight trajectory of a UAV and the travel plans of an MUV
cooperatively, which consist of the flight trajectory of the UAV, the hovering points of the
UAV with the corresponding hovering times used for charging the sensors, the hovering
points of the UAV with the corresponding hovering times used for replenishing the energy
itself, and the hovering times of the UAV when waiting for an MUV. Then, we prove that
the problem is NP-hard.

(3) To solve the TOLC problem, we first propose a clustering algorithm WCMC to
cluster the sensors and compute the weighted center of each cluster. As far as we know,
this is the first method to cluster sensors using a weighted center and minimum covering
circle. Based on the WCMC algorithm, we propose the TOLCA algorithm to solve the
TOLC problem.

(4) We conduct extensive simulations to illustrate the effectiveness of the proposed
algorithm for the TOLC problem.

The remainder of this paper is organized as follows. Section 2 introduces the related
works. In Section 3, we introduce some models and definitions of the studied problem.
In Section 4, we propose the TOLCA for solving the TOLC problem. The simulations are
shown in Section 5. Section 6 concludes this paper.

2. Related Works

In this section, we briefly review the related works about the research problem on
the following two topics: charging sensors with UAVs and energy-replenishing methods
of UAVs.
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2.1. Charging Sensors with UAVs

Recently, many research problems of UAV-assisted wireless power transmission have
been studied, such as [3–11], where UAVs were loaded energy transmitters applied to the
supply of energy to ground devices.

In [3,4], a simple two-user scenario was taken into account, which maximizes the
received energy of two receivers. The findings in [3] demonstrated that if the distance
between the two receivers is less than a certain threshold, the UAV must hover at the
set position between the two receivers during the entire charging procedure; otherwise,
it must hover and fly between the two above the connecting line. The authors in [4]
optimized the UAV’s trajectory using Q-learning reinforcement learning to maximize the
least acquired energy of the two energy receivers. In [5], a two-user UAV-based WPT
system was investigated, in which a heuristic hover-flight trajectory based on symmetric
position hovering was proposed to maximize the total received energy of two receivers
under the restrictions of the maximum UAV velocity, maximum/minimum altitude, and
beam width. In [6], Hu et.al introduced a 1D UAV trajectory design problem, in which a
UAV was used to charge a set of ground nodes with a linear topology. The objective of
the problem was to maximize the minimal received energy among all the ground nodes.
In [7], Yang et al. proposed a genetic algorithm based on successive hover and fly motions
to design the trajectory of a UAV for charging users in the charging area. The goal of the
problem was to maximize the least received energy for all users under the UAV speed
constraint. In [8], Yuan et al. investigated a UAV-assisted WPT network that considered
the nonlinear energy-harvesting process. The objective of the problem was to maximize
the minimum harvested energy among ground devices with a maximum flight speed
restriction. In [9], Yuan et al. introduced a UAV-enabled multi-user WPT network in
which both the nonlinear energy-harvesting model and the uniform linear array directional
antenna structure were considered to concurrently optimize the UAV trajectory and the
orientation of the directional antenna on the UAV to maximize the minimum harvested
energy among all users. In [10], Feng et al. investigated an energy-harvesting optimization
problem for a UAV-aided WPT system in which the UAV’s three-dimensional position,
beam pattern, charging period, and trajectory optimization were considered to maximize
the energy gathered by all energy receivers. In [11], Yan et al. studied the use of a UAV as a
charger, which considered the power consumption of a UAV during hovering and flying,
the link loss during charging from the base station, and the conversion loss of the energy
received by the sensors. The objective of this study was to maximize the total obtained
energy of all sensors by optimizing the UAV’s deployment.

2.2. Energy-Replenishing Methods for UAVs

Due to the limitations of UAV’s airborne energy, UAVs need to have their energy
replenished when they perform tasks. Many researchers are devoted to energy-harvesting
methods for UAVs, where they are used as mobile data collectors or mobile edge computing
servers, such as [12–17].

In [12], Suzuki et al. investigated an automated battery replacement system for UAVs,
which included a ground station with replaceable batteries to supply UAVs. In [13], Li et al.
introduced an energy-efficient cooperative strategy with multiple rechargeable UAVs for
supporting seamless information services of ground devices, and the cooperation of multi-
ple UAVs could formulate a closed chain. The goal was to maximize the energy efficiency
of the system through joint node assignments and UAV configuration optimization. In [14],
Fu et al. proposed a reinforcement learning method to design the path for UAVs to collect
sensor data and use fixed charging piles to supplement energy. They divided the physical
environment into numerous grids and each grid had a wireless charger in the center for
charging the UAV. In [15], Hu et al. studied a wireless-powered UAV-assisted mobile
edge computing architecture, in which the UAV was used as the mobile edge computing
server and for the energy and information relay of users. In this architecture, a fixed
access point was used to charge the UAV through the laser beam transmitters. In [16],
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Wang et al. considered a laser-powered aerial mobile edge computing system in which the
high-altitude-platform UAV transferred laser energy to charge aerial users, and the users
offloaded their computation tasks to the high-altitude-platform UAV. In [17], Zhu et al.
investigated the UAV-aided data collection problem in a large-scale WSN in which a truck
carrying backup batteries moved together with a UAV and the UAV could fly back to the
truck for battery replenishment. The goal of the problem was to minimize the total mission
time for gathering data from all sensors.

In previous research on charging sensors with UAVs, the UAV was not considered as
the replenished energy. In the above research on the energy-replenishing methods of UAVs,
the methods of changing batteries using a truck or stations have the disadvantages of high
costs and poor flexibility. This is because a truck moving with a UAV may not be able
to reach areas with complex terrains, and UAVs traveling to and from stations to change
batteries increases the working time. Using fixed access points to charge UAVs increases
the working time and reduces the flexibility of UAVs.

To overcome the above disadvantages, we study the trajectory optimization of laser-
charged UAVs for charging WRSNs (TOLC problem) in a new MUV-assisted laser-powered
UAV-enabled WRSN. In the problem, a UAV is used as a mobile charger to supplement the
energy for sensors and an MUV is used to charge the UAV.

3. Model and Problem Definition
3.1. Network Model

As shown in Figure 1, we consider a wireless sensor network (WSN), which consists
of a base station, an MUV, a rotary-wing UAV f , and n sensors, that is deployed in a two-
dimensional space. Let S = {s1, s2, ..., sn} denote the set of n sensors, where the coordinates
of each sensor si ∈ S are denoted by (xi, yi). We use Ei

s to denote the initial energy of each
sensor si ∈ S and Ei

s < E0, where E0 is the threshold of the sensors’ energy.

(a) (b)

Figure 1. Energy harvesting of a WSN in a field environment.(a) System model of a MUV-assisted
laser-charged UAV-based WSN; (b) Illustration of the path planning of the UAV and MUV in the sys-
tem.

We use a rotary-wing UAV as the air-mobile charger for replenishing the energy of the
sensors. The UAV, which has an initial energy (capacity) Ev and a constant speed v f , flies at
a fixed altitude H. Only when Ei

s < E0 does the sensor si need to be charged by the UAV.
The UAV charges the sensors by transmitting RF signals with power PR when it is hovering.
Let R (R > H) be the transmitting range of the RF signals of the UAV. Therefore, we can
obtain the radius of the coverage disk of the UAV r =

√
R2 − H2 when it hovers at altitude
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H. The UAV contains n0 antennas and it can charge at most, n0 sensors simultaneously, i.e.,
one antenna can be only used for charging one sensor.

An MUV is used to charge a UAV, which departs from the base station s0(x0, y0) at
the same time as the UAV and travels along a fixed path L. Let vmax be the maximum
velocity of the MUV. The MUV can transmit laser radio energy to the UAV when the UAV is
hovering over it. Assume the MUV carries enough energy for traveling and for transferring
the laser radio. We use PL to denote the laser transmission power of the MUV.

3.2. RF Power Transmission Model

In this paper, we use the model of the RF power transmission from the UAV to the
sensors proposed in [18], where the wireless channel between the UAV and each sensor is
modeled as a Los ground-space channel. Therefore, the channel power gain from the UAV
to the sensor sj at hover point qi is modeled as

hi
j =

γ0

d2(qi, sj)
=

γ0

(xi
q − xj)2 + (yi

q − yj)2 + H2 , (1)

where γ0 stands for the channel power gain at d = 1 m and its value depends on the antenna
gain and carrier frequency, and d(qi, sj) is the Euler distance between sj and qi.

Based on Equation (1), the received power of sj from the UAV is expressed as

PT
qi ,sj

= ζ ∗ hi
j ∗ PR, (2)

where ζ ∈ (0, 1) is the RF-to-DC energy conversion efficiency [19] of sensor sj.

3.3. Laser Charging Model

In this paper, an MUV equipped with a laser transmitter is used to recharge the UAV.
We used the linear energy-harvesting model proposed in [20]. Therefore, the received
power of the UAV from the MUV when the UAV is hovering at point gi can be expressed as

Pi
L = η ∗ e−`∗d( f ,gi) ∗ PL, (3)

where η ∈ (0, 1) represents the conversion efficiency of laser to electricity, ` denotes the
laser attenuation coefficient, and d( f , gi) is the distance between f and gi. ` =

ϑ0
µ ( ∂

ϑ1
)−ς,

where ϑ0 and ϑ1 are two constants, µ represents the visibility of the environment, ∂ is the
wavelength, and ς denotes the size distribution of the scattered particles.

3.4. Power Consumption Model

In addition to charging the sensors, the UAV also needs energy for operations such
as flying and hovering. In this paper, we use the rotary-wing UAV propulsive power
consumption model proposed in [11]. Therefore, the consumed power for the UAV flying
at the speed v can be described as

Pf = P0

(
1 +

3v2

U2
tip

)
+ P1

(√
1 +

v4

4v4
0
− v2

2v2
0

) 1
2

+
d0ρsv3 A

2
, (4)

where P0 and P1 are two constants linked to the physical parameters of the UAV and
flight environment, Utip represents the tip speed of the rotor blade, v0 denotes the average
rotor-induced velocity while hovering, d0 is the fuselage drag ratio, s denotes the rotor
stiffness, ρ is the air density, and A represents the rotor disk area.

Since v = 0 when the UAV is hovering, we bring v = 0 into Equation (4) and the
power consumption of the UAV can be expressed as

Ph = P0 + P1. (5)
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3.5. Definition of the Problem

Suppose F(U, Q, TQ, G, TG, TW) denotes a feasible flight trajectory of a UAV and travel
plans of an MUV such that all the sensors of the network can be charged by a UAV, where U
is a closed continuous flight trajectory of a UAV that starts and ends at s0, Q denotes a set of
hovering points of a UAV on U charging the sensors, G represents a set of hovering points
of a UAV on U recharged by an MUV, TQ and TG are the sets of hovering times for the
points in Q and G, respectively, TW represents the set of hovering times of a UAV waiting
for an MUV arriving at the points in G. For any hovering point qi ∈ Q of a UAV, there exists
a corresponding hovering time ti

q ∈ TQ, which is used to charge the sensors. In addition,

for any gj ∈ G, there exists a corresponding hovering time tj
g ∈ TG to replenish the energy

of a UAV. Each tj
w ∈ TW denotes the waiting time of a UAV for an MUV hovering at gj.

In this paper, our goal is to find the optimal flight trajectory of a UAV and travel plans
of an MUV F(U, Q, TQ, G, TG, TW) cooperatively so that the time consumption T = L(U)

v f
+

∑ti
q∈TQ

ti
q + ∑tj

g∈TG
tj
g + ∑tj

w∈TW
tj
w is minimized. More formally, we define the research

problem as the trajectory optimization of laser-charged UAVs for charging WRSNs (TOLC),
as shown in Definition 1.

Definition 1 (TOLC). Given a set S = {s1, s2, ..., sn} of n sensors in which each si stores Ei
s

energy, a UAV with n0 antennas, flight speed v f , flight height H, initial energy Ev and initial
location s0, an MUV traveling at a defined route L with maximum speed vmax, the aim of the
trajectory optimization of laser-charged UAVs for charging WRSNs (TOLC) is to find the flight
trajectory of a UAV and the travel plans of an MUV F(U, Q, TQ, G, TG, TW) such that

(1) the tour U starts from and ends at s0,
(2) the UAV can simultaneously charge at most n0 sensors when it hovers at any point qi ∈ Q

with ti
q ∈ TQ time,

(3) the energy of the UAV is always greater than or equal to zero and less than or equal to Ev,
(4) the time that the UAV charges the sensors at qi ∈ Q is ti

q ∈ TQ, the time that the MUV
recharges the UAV at gi ∈ G is ti

g ∈ TG, and the time for the UAV to wait for the MUV at gj ∈ G

is tj
w ∈ TW ,

(5) the time consumption of the UAV, T = L(U)
v f

+ ∑ti
q∈TQ

ti
q + ∑tj

g∈TG
tj
g + ∑tj

w∈TW
tj
w,

is minimized.

Theorem 1. The TOLC problem is NP-hard.

Proof of Theorem 1. We consider a special case of the TOLC problem where we set Ei
s = E0

for each sensor si ∈ S, Ev = +∞, H = 0, n0 = 1 and then the TOLC problem can be reduced
to the well-known traveling salesman problem (TSP), where the UAV only needs to visit all
sensors located in the detection area. Since the TSP problem is proved NP-hard and it is a
special case of the TOLC problem, the TOLC problem is NP-hard.

4. Algorithm for the TOLC Problem

In this section, we propose an approximate algorithm to solve the TOLC problem,
which is called the TOLCA. The algorithm consists of two steps. The first step is to find
the hovering point set Q and corresponding time set TQ of the UAV using the proposed
clustering algorithm WCMC so that the UAV can be used to charge all sensors when it is
hovering at the points in Q. In the second step, we design the flight path of the UAV using
the proposed TOLCA algorithm based on Q obtained in the first step, which consists of the
flight path U, charging point set G with corresponding time set TG, and the waiting time
set TW of the MUV.

Therefore, we propose the following WCMC and TOLCA algorithms that correspond
to the above steps.
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4.1. Algorithm Description for WCMC

In this subsection, we propose the weighted centered minimum coverage (WCMC)
algorithm to compute the hover positions of the UAV for charging sensors. For simplicity,
we use m to record the number of clusters and we initially set m = 0.

In the first step, we model the WRSN to be an undirected complete graph G′ = (V′, E′),
where V′ = {s1, s2, ..., sn} and E′ = {(si, sj)|1 ≤ i < j ≤ n}. The algorithm repeats the
following steps until E′ = ∅.

• Select the shortest edge ei,j in the graph G such that d(si, sj) = min{d(su, sv)|eu,v ∈ E′}.
If d(si, sj) > r, then E′ = ∅.;

• Calculate the pseudo-center qm of the points si,sj using the algorithm proposed in [21]
and let Rm

ij = max{d(si, qm), d(sj, qm)}.
• Initialize Qc by comparing Rm

ij and r. If Rm
ij ≤ r, then qm is added to Qc and m = m + 1.

The vertices si, sj are removed from V′ and all edges adjacent to si, sj are also deleted
from E′.

In the second step, we set Qo
c = ∅, which is a parameter for recording the change in

Qc. The algorithm repeats the following three steps until Qc 6= Qo
c .

• For any 1 ≤ j ≤ n, each sensor sj selects the nearest cluster ω(qi) such that d(sj, qi) =
min{d(su, qv)|qv ∈ Qc},ω(qi) = ω(qi) ∪ {sj}.

• For 1 ≤ i ≤ m, 1 ≤ j ≤ m, if d(qi, qj) ≤ 2r and Num(ω(qi) ∪ ω(qj)) ≤ n0, then we
calculate the weighted center qk of the points in ω(qi) ∪ ω(qj) using the algorithm
proposed in [22], where Num({∗}) denotes the number of sensors in {∗}. Afterward,
we calculate the disk that is centered at qk and whose radius is Rm

k = max{d(qk, s)|s ∈
{ω(qi), ω(qj)}} . If Rm

k ≤ r, then we merge ω(qi) and ω(qj) since they are located on
the disk.

• For any 1 ≤ i ≤ m, we calculate the disk that is centered at qi and whose radius is
Rm

i = max{d(qi, sj)|sn ∈ {ω(qi)}}. If Rm
i > r or Num(ω(qi)) > n0, then we split ω(qi)

since it exceeds the radius of the coverage disk of the UAV or exceeds the maximum
number of sensors that the UAV can charge simultaneously. We first calculate the
centers ci1, ci2 as ci1 = (xmin, ymax+ymin

2 ), and ci2 = (xmax, ymax+ymin
2 ), where xmin, ymin

and xmax, ymax represent the minimum and maximum values of all sensor coordinates
xi and yi in the cluster ω(qi), respectively. Then, for any 1 ≤ j ≤ Num(ω(qi)), if
d(sj, ci1) > d(sj, ci2), we assign the sensor sj to the new cluster ω(qm+1). Afterward,
we recalculate the weighted center qi and qm+1 of the points in ω(qi) and ω(qm+1),
respectively, using the algorithm proposed in [22].

Finally, for any 1 ≤ i ≤ m, we calculate the time consumption ti
q and energy consump-

tion ER
qi

of the UAV charging the sensors in the cluster Q = {ω(q1), ω(q2), . . . , ω(qm)} at
Qc = {q1, q2, ..., qm}.

The pseudo-code of the WCMC algorithm is given in Algorithm 1.

4.2. Algorithm Description for TOLCA

In this subsection, we propose an approximation algorithm for solving the TOLC
problem, which is called the TOLCA. The objective of the algorithm is to optimize the flight
trajectory of a UAV and the travel plans of an MUV F(U, Q, TQ, G, TG, TW) cooperatively
such that the total time consumption of a UAV

T =
L(U)

v f
+ ∑ti

q∈TQ
ti
q + ∑tj

g∈TG
tj
g + ∑tj

w∈TW
tj
w

is minimized.
The TOLCA algorithm consists of four steps as follows.
In the first step, we divide the WRSN into m clusters Q = {ω(q1), ω(q2), . . . , ω(qm)}

using Algorithm 1, whereQc = {q1, q2, . . . , qm} are the hovering centers of the UAV in
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cluster set Q, and we compute the time consumption TQ = {t1
q, t2

q, . . . , tm
q } and the energy

consumption EQ = {ER
qi

, ER
qi

, . . . , ER
qi
} for transmitting energy to the sensors of the UAV in

each cluster.

Algorithm 1: WCMC
Input: S = {s1, s2, ..., sn}, Ei

s for each si ∈ S, n, E0, H, r, n0, PR, β0, ζ;
Output: m, Qc = {q1, q2, ..., qm}, Q = {ω(q1), ω(q2), . . . , ω(qm)}, TQ = {t1

q , t2
q , . . . , tm

q },
EQ = {ER

qi
, ER

qi
, . . . , ER

qi
};

1 Initialize a complete graph G(V
′
, E
′
), m = 0;

2 while E′ 6= ∅ do
3 ei,j ← min{d(si , sj)|ei,j ∈ E′};
4 if d(si , sj) > r then
5 E′ = ∅;

6 qm ←
si∗(E0−Ei

s)+sj∗(E0−Ej
s)

(E0−Ei
s)+(E0−Ej

s)
;

7 Rm
ij ← max{d(si , qm), d(sj, qm)};

8 if Rm
ij ≤ r then

9 Qc = Qc ∪ {qm}, m = m + 1;
10 E

′
= E

′ − {eiu|eiu ∈ E
′ ∧ u ∈ V′ ∧ u 6= i} − {ejv|ejv ∈ E

′ ∧ v ∈ V′ ∧ v 6= j};
11 V′ = V′ − {si , sj};

12 Qo
c = ∅;

13 while Qc 6= Qo
c do

14 Qo
c = Qc;

15 for j = 1 to n do
16 sj, qi ← min{d(sj, qi)|qi ∈ Qc};
17 ω(qi) = ω(qi) ∪ {sj};
18 for i = 1 to m do
19 for j = 1 to m do
20 if d(qi , qj) ≤ 2r & Num(ω(qi) ∪ω(qj)) ≤ n0 then
21 Compute the weighted center qk of the points in ω(qi) and ω(qj) using the algorithm

in [22];
22 Rm

k ← max{d(qk , s)|s ∈ {ω(qi) ∪ω(qj)}};
23 if Rm

k ≤ r then
24 ω(qk) ← ω(qi) ∪ω(qj);
25 Q ← Q \ {ω(qi) ∪ω(qj)}, Qc ← Qc \ {qi , qj};
26 Q ← Q ∪ {ω(qk)},Qc ← Qc ∪ {qk},m = m-1;

27 for i = 1 to m do
28 Rm

i ← max{d(qi , sj)|sj ∈ ω(qi)} ;
29 if Rm

i > r or Num(ω(qi)) > n0 then
30 xmin←min{xj|sj ∈ ω(qi)},ymin←min{yj|sj ∈ ω(qi)};
31 xmax←max{xj|sj ∈ ω(qi)},ymax←max{yj|sj ∈ ω(qi)};
32 ci1 = (xmin, ymax+ymin

2 ), ci2 = (xmax , ymax+ymin
2 );

33 for j = 1 to Num(ω(qi)) do
34 if d(sj, ci1) > d(sj, ci2) then
35 ω(qm+1)←ω(qm+1) ∪ {sj};

36 Compute the weighted centers qi , qm+1 of the points in ω(qi),ω(qm+1), respectively, using
the algorithm in [22];

37 for i = 1 to m do
38 while sj ∈ ω(qi) do

39 tqi ,sj =
E0−Ei

s
PT

qi ,sj
;

40 ER
qi

← ER
qi
+ hi

j ∗ PR ∗ tqi ,sj ;

41 ti
q ← max

{
tqi ,sj

∣∣∣sj ∈ ω(qi)
}

;
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In the second step, we use the genetic algorithm for the TSP problem proposed in [23]
to compute a tour σf for Qc ∪ s0, and obtain the order of points in Qc of the UAV, which is
denoted as qρ0 , qρ1 , qρ2 , ..., qρm , where qρ0 = s0, and qρi is the i-th visited by the UAV.

In the third step, for any i from 1 to m, we calculate the set C = {c1, c2, . . . , cm} of
points nearest to the hovering points in Qc of the UAV on the L.

In the fourth step, we first calculate the remaining energy E of the UAV from qρ0

to qρ1 as E = E−
d(Uk, qρ1)

v f
∗ Pf . Then, for any i from 1 to m, we calculate the waiting

time tci
w of the UAV for the MUV to arrive at ci after charging the sensors at qρi as tci

w =
L(gk−1,ci)

vmax
− d(gk−1,ρi ,ci)

v f
− ti

ρ, and the waiting time tρi+1,ci+1
w of the UAV for the MUV to arrive

at ci+1 after charging the sensors at qρi and qρi+1 as tρi+1,ci+1
w =

L(gk−1,ci+1)
vmax

− ti
ρ − ti+1

ρ −
d(gk−1,ρi ,ρi+1,ci+1)

v f
; if ti

w ≤ 0 or tρi+1,ci+1
w < 0, it means that the MUV can reach ci or ci+1

when the UAV arrives, then let ti
w = 0 or tρi+1,ci+1

w = 0 and the corresponding energy

consumption Eci , Eci+1 can be represented as Eci = ER
qρi

+ ti
q ∗ Ph +

d(qρi , ci)

v
∗ Pf + tci

w ∗ Ph,

Eci+1 =
d(qρi , qρi+1 , ci+1)

v f
∗ Pf + ER

qρi
+ ER

qρi+1
+ (ti

q + ti+1
q + tρi+1,ci+1

w ) ∗ Ph. Then, we select

the flight trajectory of the UAV from the following three cases by comparing Eci and Eci+1

with the current remaining energy E of the UAV.

1. E ≤ Eci . The remaining energy E of the UAV arriving at qρi is not enough to charge
the sensors at qρi and fly to ci for waiting for the MUV to replenish energy. There-
fore, the UAV needs to fly to ci to replenish energy and returns to ω(qρi ) to com-

plete the remaining tasks. Then, we compute T = T + 2 ∗
d(qρi , qci )

v f
+ Eu

Pi
L
+ ti

q and

E = E + Eu −
d(qρi , qci )

v f
∗ Pf − Eci and let gk = ci.

2. Eci ≤ E < Eci+1 . The remaining energy E of the UAV arriving at qρi is enough to
charge the sensors at qρi and fly to ci to replenish energy but is not enough to reach
qρi+1 for charging the sensors at qρi , qρi+1 and fly to ci+1 for waiting for the MUV
to arrive.

• Compute whether to have bi ∈ B on the route L, which is the closest point to
the UAV path qρi to qρi+1 .

• Calculate the time tbi
w for the UAV to wait for the MUV to arrive as tbi

w =
L(gk−1,bi)

vmax
− d(gk−1,qρi )+d(qρi ,bi)

v f
− ti

ρ, if tbi
w < 0, let tbi

w = 0, then compute the

required energy Ebi
for UAV from qρi to bi as Ebi

= ER
qρi

+ ti
q ∗ Ph +

d(qρi , bi)

v f
∗

Pf + tbi
w ∗ Ph, if E ≥ Ebi

, calculate the time tbi
for the UAV to fly to bi and then

to qρi+1 as tbi
=

Eu−(E−ER
qρi
−(ti

q+t
bi
w )∗Ph−

d(qρi ,bi)
v f

∗Pf )

Pi
L

+
d(qρi ,ci+1,qρi+1 )

v f
.

• Calculate the time tci+1
w for the UAV to wait for the MUV to arrive as tci+1

w =
L(gk−1,ci+1)

vmax
− d(gk−1,qρi )+d(qρi ,ci+1)

v f
− ti

ρ, if tci+1
w < 0, let tci+1

w = 0, then compute

the required energy Eci+1 for the UAV from qρi to ci+1 as Eci+1 = ER
qρi

+ ti
q ∗ Ph +

d(qρi , ci+1)

v f
∗ Pf + tci+1

w ∗ Ph. If E ≥ Eci+1 , calculate the time tci+1 of the UAV to

fly to ci+1 and then to qρi+1 as tci+1 =
Eu−(E−ER

qρi
−(ti

q+t
ci+1
w )∗Ph−

d(qρi ,ci+1)
v f

∗Pf )

Pi
L

.
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• Calculate the time tci for the UAV to fly to ci and then to qρi+1 as tci =
d(qρi ,ci ,qρi+1 )

v f
+

Eu−(E−ER
qρi
−(ti

q+t
ci
w )∗Ph−

d(qρi ,ci)
v f

∗Pf )

Pi
L

. Then, compare the time consumptions tci , tbi
,

tci+1 of the UAV and select the point gk with the shortest time tgk = min{tci , tbi
,

tci+1} among the points ci, bi, ci+1 , and gk as the point where the MUV supple-
ments the power of the UAV. Compute the total time T and remaining energy
E of the UAV to reach qρi+1 , which are expressed as T = T + tgk + ti

q + tw,

E = Eu −
d(gk ,qρi+1 )

v f
∗ Pf .

3. E ≥ Eci+1 . The residual energy E of the UAV arriving at qρi is sufficient for the UAV to
fly from qρi to qρi+1 and charge the sensors at qρi and qρi+1 and fly to ci+1 to wait for
the MUV to arrive so the UAV can fly directly from qρi to qρi+1 . Then, we compute

the total time T and remaining energy E to reach qρi+1 as T = T + ti
ρ +

d(qρi ,qρi+1 )

v f
,

E = E− ER
qi
− d(qρi ,qρi+1 )

v f
∗ Pf .

Consequently, we can obtain the flight trajectory of the UAV and the travel plans of the
MUV F(U, Q, TQ, G, TG, TW) and the total time consumption T of the UAV; the pseudo-code
of the TOLCA algorithm is given in Algorithm 2.
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Algorithm 2: TOLCA
Input: S = {s1, s2, ..., sn}, Ei

s for each si ∈ S, n, E0, H, r, n0, PR, β0, ζ,L;
Output: F(U, Q, TQ, G, TG , TW),T;

1 Compute m, Qc = {q1, q2, ..., qm}, Q = {ω(q1), ω(q2), . . . , ω(qm)}, TQ = {t1
q , t2

q , . . . , tm
q },

EQ = {ER
qi

, ER
qi

, . . . , ER
qi
} for the UAV by executing Algorithm 1;

2 Using the genetic algorithm for the TSP problem to compute a tour σf for Qc ∪ s0[23], and the order of
the sensor charging areas visited by the UAV, which is denoted as qρ0 , qρ1 , qρ2 , ..., qρm ;

3 Calculate the set C = {c1, c2, ..., cm} of points on L that are closest to the points in
Qc = {qρ1 , qρ2 , ..., qρm};

4 U = U ∪ s0, E = Ev,g0 = s0; E = E−
d(Uk , qρ1 )

v f
∗ Pf ;

5 for i from 1 to m do
6 tci

w =
L(gk−1 ,ci)

vmax
− d(gk−1 ,ρi ,ci)

v f
− ti

ρ;

7 tρi+1 ,ci+1
w =

L(gk−1 ,ci+1)
vmax

− ti
ρ − ti+1

ρ − d(gk−1 ,ρi ,ρi+1 ,ci+1)
v f

;

8 Eci = ER
qρi

+ ti
q ∗ Ph +

d(qρi , ci)

v
∗ Pf + tci

w ∗ Ph;

9 Eci+1 =
d(qρi , qρi+1 , ci+1)

v f
∗ Pf + ER

qρi
+ ER

qρi+1
+ (ti

q + ti+1
q + tρi+1 ,ci+1

w ) ∗ Ph;

10 if E ≤ Eci then

11 T = T + 2 ∗
d(qρi , qci )

v f
+ Eu

Pi
L
+ ti

q, E = E + Eu −
d(qρi , qci )

v f
∗ Pf − Eci ;

12 U = U ∪ {qi} ∪ {ci}, gk = ci , TG = TG ∪ {gk};
13 else if Eci ≤ E < Eci+1 then
14 Calculate bi on L, which is the closest point to the UAV path qρi to qρi+1 ;

15 tbi
w =

L(gk−1 ,bi)
vmax

− d(gk−1 ,qρi ,bi)

v f
− ti

ρ;

16 Ebi = ER
qρi

+ ti
q ∗ Ph +

d(qρi , bi)

v f
∗ Pf + tbi

w ∗ Ph ;

17 if E ≥ Ebi then

18 tbi =
Eu−(E−ER

qρi
−(ti

q+t
bi
w )∗Ph−

d(qρi ,bi )
v f

∗Pf )

Pi
L

+
d(qρi ,ci+1 ,qρi+1 )

v f
;

19 tci+1
w =

L(gk−1 ,ci+1)
vmax

− d(gk−1 ,qρi ,ci+1)

v f
− ti

ρ;

20 Eci+1 = ER
qρi

+ ti
q ∗ Ph +

d(qρi , ci+1)

v f
∗ Pf + tci+1

w ∗ Ph;

21 if E ≥ Eci+1 then

22 tci+1 =
Eu−(E−ER

qρi
−(ti

q+t
ci+1
w )∗Ph−

d(qρi ,ci+1)
v f

∗Pf )

Pi
L

;

23 tci =
d(qρi ,ci ,qρi+1 )

v f
+

Eu−(E−ER
qρi
−(ti

q+t
ci
w )∗Ph−

d(qρi ,ci )
v f

∗Pf )

Pi
L

;

24 tgk = min{tci , tbi , tci+1};

25 T = T + tgk + ti
q + tgk

w , E = Eu −
d(gk ,qρi+1 )

v f
∗ Pf ;

26 U = U ∪ {qi} ∪ {gk};
27 else if E ≥ Eci+1 then

28 T = T + ti
ρ +

d(qρi ,qρi+1 )

v f
, E = E− ER

qi
− d(qρi ,qρi+1 )

v f
∗ Pf ;

29 U = U ∪ {qi};

5. Simulation Results

In this section, we use MATLAB 2021 to program and evaluate the average perfor-
mance of the approximation algorithm TOLCA by simulating several key indicators under
different settings. Note that in reality, the road of the MUV is very tortuous and irregular,
which brings difficulties to modeling and measurement, so we set the trajectory of the MUV

L as an elliptical (x−1000)2

10002 + (y−1000)2

7002 = 1 to verify the experiment. In the simulation, the
sensors are randomly deployed in a 2000 m × 2000 m detection area. Some of the basic
experimental parameters are summarized in Table 1, and the average of multiple results is
used in the experiments.
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Table 1. Experimental parameters.

Notation Physical Meaning Value

γ0 The channel power gain at d = 1 m 30
ζ The RF-to-DC energy conversion efficiency 0.6
H Flight altitude of the UAV 5
η The conversion efficiency of laser to electricity 0.15
` Laser attenuation coefficient 10−6

P0 Blade power 14.7517
P1 Induced power 41.5409

Utip Tip speed of the rotor blade 80
v0 The average rotor-induced velocity 5.0463
d0 The fuselage drag ratio 0.5009
ρ Air density in kg/m3 1.225
s Rotor solidity 0.1248
A Rotor disc area in m2 0.1256

Figure 2 shows the simulation results obtained using the WCMC and TOLCA al-
gorithms when we set n0 = 10, v f = 20 m/s, vmax = 10 m/s, PR = 200 W, PL = 300 W,
Ev = 10,000 J, r = 300 m, and E0 = 20 J. Figure 2a,b show that clustering results were
obtained using the WCMC algorithm when the number of sensors was 100 and 300, re-
spectively. Figure 2c,d show that the flight trajectories of the UAV were obtained using the
TOLCA algorithm when the number of sensors was 100 and 300, respectively.

5.1. Comparison Results

In order to prove the effectiveness of the TOLCA algorithm, we propose to combine the
clustering algorithm ISODATA and the Greedy algorithm to calculate the total time for the
UAV to charge the sensors in the WRSN, as shown in Figure 3. In the greedy algorithm, we
first cluster the WRSN using the ISODATA algorithm. Then, we use the genetic algorithm
for the TSP problem proposed in [23] to compute the order of the UAV visiting the hovering
positions in the clusters. Next, the set of points on the route L of the MUV closest to the
hovering position of the UAV in the cluster is found. Finally, the remaining energy of the
UAV to the hovering point of each cluster is judged; if the remaining energy of the UAV is
enough to complete the task in the current cluster and the next cluster and fly to the nearest
charging point of the next cluster, it flies directly to the next cluster; otherwise, it needs to
replenish the power at the nearest charging point to the current cluster.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Simulation results for the network. (a) The clustering results for the WCMC algorithm
when n = 100; (b) The clustering results for the WCMC algorithm when n = 300; (c) The planning
results for the TOLCA algorithm when n = 100; (d) The planning results for the TOLCA algorithm
when n = 300. In Figures (a–d), the different colored dots represent sensors, the red circles denote
the cluster centers, the red diamonds denotes the base station, the red five-points stars represent the
hovering positions of UAV, the red numbers represent the order of hovering points visited by UAV,
the orange ellipses and blue broken lines denote the trajectories of the MUV and the UAV, respectively.

Figure 3a shows the total time consumed by the UAV of the two algorithms when
we set n0 = 10, v f = 20 m/s, vmax = 10 m/s, Ev = 10, 000 J, r = 300 m, E0 = 20 J,
PR = 200 W, PL = 300 W, and n = 50, 100, 150, 200, 250, 300. We can see that the total time
cost of the UAV is approximately proportional to the number of sensors since the time
spent charging the sensors increases with the number of sensors. We can also see that our
proposal consumes less time than the ISODATA–Greedy algorithm.

Figure 3b shows the simulation results of the two algorithms when we set n = 100,
n0 = 10, v f = 20 m/s, vmax = 10 m/s, r = 300 m, E0 = 20 J, PR = 200 W, and PL = 300 W
and vary the UAV’s initial energy Ev from 5000 J to 10, 000 and J increases by 1000. We
can see that the total time of the UAV decreases as Ev grows, and we can also see that the
time consumption of the UAV is shorter with the TOLCA algorithm, which validates the
TOLCA algorithm.

Figure 3c shows the simulation results of the two algorithms when we set n = 100,
n0 = 10, vmax = 10 m/s, Ev = 10, 000 J, r = 300 m, E0 = 20 J, PR = 200 W, and PL = 300 W
and change the UAV’s speed v f from 10 m/s to 20 m/s. We can see that the total time of
the UAV decreases with the increase in v f because the time consumed by the UAV during
the flight becomes shorter. We can also see that the time consumed by the UAV with the
TOLCA algorithm decreases as the speed of the UAV increases, proving that our proposed
algorithm produced better results.

Figure 3d gives the simulation results of these two algorithms when we set n = 100,
n0 = 10, v f = 20 m/s, Ev = 10, 000 J, r = 300 m, E0 = 20 J, PR = 200 W, and PL = 300
and vary vmax from 6 m/s to 16 m/s. We can see that the total time of the UAV decreases
with the increase in vmax. This is because as the speed of the MUV increases, the time that
the UAV waits for the MUV to arrive becomes shorter. We can also see that the total time
spent by the UAV with the TOLCA algorithm is shorter.

Figure 3e gives the simulation results of the two algorithms when we set n = 100,
n0 = 10, v f = 20 m/s, vmax = 10 m/s, Ev = 10, 000 J, r = 300 m, E0 = 20 J, and
PL = 300 W and change PR from 100 W to 600 W. The results show that the TOLCA
algorithm outperforms the combined ISODATA–Greedy algorithms. We can also see that
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the time cost of the UAV obtained using the two algorithms decreases monotonically with
an increasing PR since the time for the UAV to charge the sensors decreases as PR increases.

Figure 3f gives the simulation results of the two algorithms when we set n = 100,
n0 = 10, v f = 20 m/s, vmax = 10 m/s, Ev = 10, 000 J, r = 300 m, E0 = 20 J, and
PR = 200 W and vary PL from 100 W to 600 W. The results show that the TOLCA algorithm
outperforms the combined ISODATA–Greedy algorithms. We can also see that the time
cost of the UAV obtained by the two algorithms decreases with an increasing PL since the
time for the MUV to charge the UAV decreases with an increasing PL.

(a) (b)

(c) (d)

Figure 3. Cont.



Sensors 2022, 22, 9215 15 of 18

(e) (f)

Figure 3. The comparison results between the TOLCA and ISODATA–Greedy algorithms. (a) Increas-
ing n from 50 to 300; (b) Increasing Ev from 5000 to 10, 000 J; (c) Increasing v f from 10 to 20 m/s;
(d) Increasing vmax from 6 to 16 m/s; (e) Increasing PR from 100 to 600 W; (f) Increasing PL from 100
to 600 W.

5.2. Impact of Network Configurations with TOLCA

In the following, we evaluate the impact of the different parameter settings on the
total time cost of the UAV.

Figure 4a illustrates the performance of TOLCA when we set n = 100, n0 = 10,
v f = 20 m/s, vmax = 10 m/s , Ev = 10, 000 J, r = 300 m, E0 = 20 J, and PR =
100, 200, 300, 400, 500, 600 and change PL from 100 W to 600 W. We can see that the to-
tal time of the UAV decreases as the laser transmission power PL increases. This is because
when PL increases, the hovering time of the UAV to replenish energy from the MUV de-
creases. In addition, we can see that the total time of the UAV decreases with an increasing
PR since the hovering time of the UAV for charging the sensors decreases as PR increases.

Figure 4b gives the simulation results when we set n0 = 10, v f = 20 m/s, vmax =
10 m/s, PR = 200 W, PL = 300 W, r = 300 m, E0 = 20 J, and Ev = 5000, 6000, 7000, 8000,
9000, 10,000 and vary the number of sensors n from 50 to 300, increased by 50. We can see
that the total time of the UAV grows as n increases since the time to charge the sensors, the
number of times to replenish energy, and the flying distance increase with an increasing n.
We can also see that the total time of the UAV decreases as Ev increases. This is because the
number of times for replenishing energy is reduced.

Figure 4c shows the simulation results when we set v f = 20 m/s, vmax = 10 m/s, PR =
200 W, PL = 300 W, Ev = 10, 000 J, r = 300 m, E0 = 20 J, and n = 100, 150, 200, 250, 300, 350
and change n0 from 5 to 30, increased by 5. We can see that the total time of the UAV
decreases with an increasing n0 since the number of sensors that the UAV can cover
increases and the flying distance of the UAV decreases. We can also see that the total time of
the UAV decreases significantly when n0 changes in the large range of the total number of
sensors. The greater the number of sensors, the larger n0, and the fewer the clusters in the
network, the shorter the flight distance of the UAV. When the number of sensors is small,
the sensors are dispersed and n0 has little influence on the overall network clustering.

In Figure 4d, we illustrate the impact of the UAV and MUV speeds when we set
n = 100, n0 = 10, PR = 200 W, PL = 300 W, Ev = 10,000 J, r = 300 m, E0 = 20 J, and vmax
= 6 m/s, 8 m/s, 10 m/s, 12 m/s, 14 m/s, 16 m/s and change v f from 10 m/s to 20 m/s.
We can see that the total time of the UAV decreases with an increasing v f since the flying
time of the UAV decreases. Meanwhile, we can see that the total time of the UAV decreases
with an increasing vmax since the hovering time for waiting for the MUV decreases as
vmax decreases.
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In Figure 4e, we evaluate the impact of the sensor energy threshold E0 on the time cost
of the UAV in the cases where n is equal to 50, 100, 150, 200, 250, 300 when we set n0 = 10,
v f = 20 m/s, vmax = 10 m/s, PR = 200 W, PL = 300 W, Ev = 10,000 J, and r = 300 m and
vary E0 from 10 J to 60 J. The results demonstrate that with the sensor energy threshold
E0 increasing, the total time cost of the UAV increases linearly in these six cases. This
is because the hovering time of the UAV to charge the sensors increases as the energy
threshold of the sensors increases.

In Figure 4f, we measure the total time cost of the UAV when we set n = 50, 100, 150,
200, 250, 300, n0 = 10, v f = 20 m/s, vmax = 10 m/s, PR = 200 W, PL = 300 W, Ev = 10,000 J,
and E0 = 20 J and vary the ground coverage of the UAV r from 200 m to 400 m. We can see
that the time cost of the UAV decreases as r increases since the traveling time of the UAV
decreases with an increasing r . We can also see that when the coverage radius of the UAV
is too large, the time cost of the UAV gradually increases. This is because as the coverage
radius of the UAV increases, the efficiency of the UAV to charge the sensors decreases
and the time of the UAV to charge the sensors increases. At the same time, the energy
consumption of the UAV increases, the time of the UAV to replenish energy increases, and
the time to recharge the UAV increases.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. The performance of TOLCA under different configurations. (a) Increasing PL from 100 to
600 W; (b) Increasing n from 50 to 300; (c) Increasing n0 from 5 to 30; (d) Increasing v f from 10 to
20 m/s; (e) Increasing E0 from 10 to 60 J; (f) Increasing r from 200 to 400 m.

6. Conclusions

In this paper, we identify the trajectory optimization of laser-charged UAVs for charg-
ing WRSNs (TOLC problem), which focuses on optimizing the flight trajectory of a UAV
and the travel plans of an MUV. Then, we prove that the problem is NP-hard. We first pro-
pose a clustering algorithm WCMC to cluster the sensors and compute the weighted center
of each cluster. Based on the WCMC algorithm, we propose an approximate algorithm
TOLCA, which provides not only the flight trajectory, hovering scheme, and corresponding
hovering time of the UAV but also the charging points and corresponding charging times
of the MUV for charging the UAV. In the simulations, we first compare the results obtained
using the proposed algorithm and the ISODATA algorithm combined with the Greedy
algorithm to prove the effectiveness of the proposed algorithm. Then, we measure the
effectiveness of the TOLCA algorithm by setting different network configurations.
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