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Abstract: HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-
known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the
brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator
of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in
microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to
HIV-1 Tat (25 ng/mL) and/or cocaine (10 µM) resulted in the significantly decreased expression
of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation
in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA
sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-
124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased
expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia
exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demon-
strate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in
intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the
exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.

Keywords: cocaine; DNA methylation; epigenetics; HIV-1 associated neurocognitive disorders;
HIV-1 Tat; microglia; neuroinflammation

1. Introduction

The Centers for Disease Control and Prevention defines HIV-1 infection and drug abuse
as intertwined epidemics, leading to compromised adherence to combined antiretroviral
therapy and exacerbating HIV-1-associated neurocognitive disorders (HAND). Chronic
low-level inflammation (mediated by viral proteins such as HIV-1 transactivator of tran-
scription (Tat) and gp120, antiretrovirals, and abused drugs) has been considered a central
driving element, as well as an essential correlate of HAND pathogenesis [1–4]. HIV-1 Tat is
a neurotoxic, early viral protein consisting of 86–102 amino acids and is secreted from HIV-1-
infected cells to control the viral replication [5–7]. HIV-1 Tat is also known to disturb cellular
homeostasis via the augmented production of reactive oxygen species (ROS) that further
change CNS functions [8–11]. Emerging studies also document the harmful effects of
HIV-1 Tat protein in CNS cells, such as microglia, astrocytes, neurons, pericytes, oligo-
dendrocytes, and endothelial cells, and the reported mechanisms include dysregulated
autophagy, endoplasmic reticulum stress, defective lysosomal functions, dysfunctional
mitochondria, inflammasome activation, and epigenetic modifications both in vitro and
in vivo [12–26].

Similarly, the psychostimulant drug cocaine has also been reported to alter CNS
functions in vitro and in vivo [27–41]. It is also well-known that HIV-1 Tat and cocaine
cause neuronal dysfunction and are involved in HIV-associated neurocognitive disorder
(HAND) [42–48]. People living with HIV-1 (PLWH) who abuse cocaine have exhibited
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the synergistic potentiation of viral replication and disease progression, in contrast with
PLWH who do not use cocaine or HIV-1 negative cocaine users [49]. It is also well-known
that neuroinflammation is an essential correlate of HAND pathogenesis in HIV-1-infected
individuals [50]. Moreover, the increased production of proinflammatory cytokines by the
activated microglia is also associated with cognition, memory and learning, and sensory
functions in HAND patients with drug abuse [51–54]. Studies have also shown that HIV-1/
HIV-1 Tat infection potentiates alterations in DNA methylation machinery, particularly the
induction of DNMT1 expression and MeCP2/STAT3-mediated neuroinflammation [24,55].
Cocaine exposure in mice also elevates DNA methylation enzymes and MeCP2 bind-
ing, which decreases gene expression patterns in the nucleus accumbens [38]. Further-
more, cocaine exposure activates the mouse microglia via KLF4/TLR4 signaling axis both
in vitro and in vivo [30]. These studies also signify the role of miR-124, a brain-enriched
miRNA that plays a critical role in microglial quiescence and neuronal homeostasis [56–58].
In this study, we hypothesized that the exposure of mouse primary microglia to both
HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter
DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory
cytokines, ultimately culminating in neuroinflammation.

2. Results
2.1. HIV-1 Tat and Cocaine Significantly Decreased the miR-124 Levels in Mouse Primary
Microglial Cells

To examine the combinatorial role of miR-124 in HIV-1 Tat- and cocaine-mediated
microglial activation, we exposed mouse primary microglial cells (mPMs) to HIV-1 Tat
(25 ng/mL) and cocaine (10 µM) for 24 h. After exposure, total RNA was isolated and used
to determine the mature miR-124 expression using qPCR. As shown in
Figure 1A, the expression of mature miR-124 was significantly decreased in mPMs ex-
posed to HIV-1 Tat and cocaine compared with individual exposure of HIV-1 Tat and
cocaine. Since three primary miR-124 (-1, -2, and -3) are responsible for the production of
mature miR-124, we next determined the effects of HIV-1 Tat and/or cocaine on the expres-
sion levels of primary miR-124-1, -2, and -3 in mPMs by qPCR. As shown in Figure 1B,C, the
expression of primary miR-124-1 and -2 was significantly downregulated in HIV-1 Tat- and
cocaine-exposed mPMs compared with control cells and individual exposure. However,
the expression of primary miR-124-3 was not altered following HIV-1 Tat and/or cocaine
exposure to mPMs (Figure 1D). We also found that HIV-1 Tat- and/or cocaine-exposed
mPMs showed increased cellular activation with ameboid morphology, thereby indicating
the increased microglial activation (Figure S1A).
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Figure 1. HIV-1 Tat and cocaine significantly decreased the miR-124 levels in mouse primary
microglial cells. Representative qPCR analysis showing the expression of mature miR-124
(A), pri-miR-124-1 (B), pri-miR-124-2 (C), and pri-miR-124-3 (D) in HIV-1 Tat- (25 ng/mL) and
cocaine (10 µM)-exposed mouse primary microglial cells for 24 h. Data are mean ± SEM from six
independent experiments. Nonparametric Kruskal–Wallis one-way ANOVA followed by Dunn’s
post hoc test was used to determine the statistical significance of multiple groups. * p < 0.05 versus
control; # p < 0.05 versus HIV-1 Tat or cocaine.
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2.2. HIV-1 Tat and Cocaine Significantly Increased the Global Methylation and DNMT1 Levels in
Primary Mouse Microglial Cells

Since the exposure of mPMs to HIV-1 Tat and cocaine significantly decreased the
expression of mature miR-124, as well as the primary miR-124-1 and -2, we next planned
to find the global methylation status in mPMs following exposure to HIV-1 Tat and/or
cocaine. Briefly, mPMs were exposed to HIV-1 Tat (25 ng/mL) and/or cocaine (10 µM) for
24 h. Following exposure, genomic DNA was isolated and used for quantifying global
DNA methylation levels using 5-mC DNA ELISA Kit (Catalog No. D5325, Zymo Research,
Orange, CA, USA), per the manufacturer’s instructions. As shown in Figure 2A, exposure
of mPMs to HIV-1 Tat and/or cocaine significantly increased the global DNA methylation,
compared with individual exposure. We next determined the effects of HIV-1 Tat and/or
cocaine on the mRNA expression levels of DNMT1 in mPMs. mPMs were exposed to
HIV-1 Tat (25 ng/mL) and/or cocaine (10 µM) for 24 h, following which total RNA was
extracted to quantify the mRNA levels of the DNMT1 using qPCR. As shown in Figure 2B,
the mRNA expression levels of DNMT1 in HIV-1 Tat- and/or cocaine-exposed mPMs are
significantly than with individual exposure. Next, we wanted to find the specificity of
DNMT1 in the HIV-1 Tat and cocaine-mediated downregulation of miR-124 in microglial
cells. To confirm this, we pretreated the mPMs with 5-AZA (5 µM), a DNMT inhibitor,
and checked the expression levels of miR-124 using qPCR. As shown in Figure 2C, 5-AZA
pretreatment significantly abrogated the HIV-1 Tat- and/or cocaine-mediated downregu-
lation of miR-124 in mPMs. We also determined the expression of miR-124 in DNMT1 si-
lenced mPMs and found downregulation of miR-124 in HIV-1 Tat and/or cocaine-exposed,
scrambled control transfected mPMs, which was significantly increased in DNMT1 si-
lenced mPMs (Figure 2D). DNMT1 silencing efficiency was shown in Figure S1B. These
results further confirmed the involvement of DNMT1 in HIV-1 and/or cocaine-mediated
miR-124 downregulation.
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Figure 2. HIV-1 Tat and cocaine significantly increased the global methylation and DNMT1 levels in
mouse primary microglial cells. (A) Quantification of 5-mC using ELISA in HIV-1 Tat (25 ng/mL)
and cocaine (10 µM) exposed mouse primary microglial cells for 24 h. (B) Representative qPCR
analysis showing the expression of DNMT1 mRNA in HIV-1 Tat (25 ng/mL) and cocaine (10 µM)
exposed mouse primary microglial cells for 24 h. (C) Representative qPCR analysis showing the
expression of miR-124 in mouse primary microglial cells pretreated with 5-Aza (5 µM) followed by
HIV-1 Tat (25 ng/mL) and cocaine (10 µM) exposure for 24 h. (D) Representative qPCR analysis
showing the expression of miR-124 in DNMT1 gene silenced mouse primary microglial cells exposed
with HIV-1 Tat (25 ng/mL) and cocaine (10 µM) for 24 h. Data are mean ± SEM from six independent
experiments. Nonparametric Kruskal–Wallis one-way ANOVA followed by Dunn’s post hoc test was
used to determine the statistical significance of multiple groups. * p < 0.05 versus control; # p < 0.05
versus HIV-1 Tat or cocaine.

2.3. HIV-1 Tat and Cocaine Significantly Increased the DNA Methylation Levels in Primary
miR-124-1 and -2, in Microglia

Next, we isolated the genomic DNA from mPMs exposed to HIV-1 Tat and cocaine
to determine the promoter DNA methylation levels of all three primary miR-124s. Briefly,
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mouse primary microglial cells were exposed to HIV-1 Tat (25 ng/mL) and/or cocaine
(10 µM) for 24 h, followed by the extraction of genomic DNA for bisulfite-mediated nu-
cleotide conversion. The PCR products were then sequenced to find the specific methy-
lation of cytosine. We then determined the effects of HIV-1 Tat and cocaine on the DNA
methylation levels of the primary miR-124-1 promoter in mouse primary microglial cells.
Bioinformatics analyses showed dense CpG islands in the promoter region of primary
miR-124-1. We thus designed two sets of primers so that their PCR products (fragments
1 and 2) encompassed approximately one kilobase of the promoter region.

As shown in Figure 3A, HIV-1 Tat and cocaine exposure of mPMs resulted in a
substantial increase in promoter DNA methylation levels, both in fragment-1 as well as in
fragment-2. Similar findings were observed in the promoter DNA methylation of primary
miR-124-2 in HIV-1 Tat- and cocaine-exposed mPMs (Figure 3B). Our results demonstrated
that HIV-1 Tat and cocaine significantly increased the methylation levels of primary miR-
124-1 and -2 promoter regions. However, HIV-1 Tat and cocaine did not alter the CpG
methylation rate in primary miR-124-3 promoter in mPMs (Figure 3C). Findings from
these studies provided evidence that alterations in DNA methylation in primary miR-124
promoter are responsible for HIV-1 Tat- and cocaine-mediated miR-124 downregulation.
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Figure 3. HIV-1 Tat and cocaine significantly increased the DNA methylation levels in primary
miR-124-1 and -2, in microglia. Promoter DNA methylation of pri-miR-124-1 (A), prim-miR-124-2
(B), and pri-miR-1244-3 (C), using bisulfite-converted genomic DNA sequencing in HIV-1 Tat
(25 ng/mL)- and cocaine (10 µM)-exposed mouse primary microglial cells. The promoter methy-
lation status of sequenced data was analyzed using default threshold settings by BISMA software
(http://services.ibc.uni-stuttgart.de/BDPC/BISMA, accessed on 25 July 2021).

2.4. HIV-1 Tat and/or Cocaine Significantly Increased the Proinflammatory Cytokines in Microglia

Because miR-124 is involved in maintaining microglial quiescence, we next sought
to investigate the effect of miR-124 on the HIV-1 Tat- and cocaine-mediated expression of
proinflammatory cytokines in mPMs. Cells were treated with HIV-1 Tat and/or cocaine
(as described above), followed by total RNA isolation and assessment for proinflamma-
tory expression levels (IL1β, IL6, and TNF) mediators by qPCR and ELISA, respectively.
As shown in Figure 4A–C, IL1β, IL6, and TNF expression levels significantly increased
in mPMs exposed to HIV-1 Tat and/or cocaine compared with individual treatment. In
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addition, we performed ELISA to quantify these proinflammatory cytokines in the super-
natant collected from mPMs exposed with HIV-1 Tat and/or cocaine for 24 h, and the
results showed a significant increase in these proinflammatory cytokines in mPMs treated
with HIV-1 Tat and/or cocaine (Figure 4D–F). Overall, these results demonstrated that the
HIV-1 Tat- and cocaine-mediated activation of microglia involve the upstream downregula-
tion of miR-124 through DNMT1-mediated miR-124 promoter DNA methylation.
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Figure 4. HIV-1 Tat and/or cocaine significantly increased the proinflammatory cytokines in microglia.
Representative qPCR analysis showing the expression of IL1β (A), IL6 (B), and TNF (C) mRNA in
HIV-1 Tat (25 ng/mL) and cocaine (10 µM) exposed mouse primary microglial cells for 24 h. Quan-
tification of IL1β (D), IL6 (E), and TNF (F) levels using ELISA in HIV-1 Tat (25 ng/mL) and cocaine
(10 µM) exposed mouse primary microglial cells for 24 h. Data are mean ± SEM from six independent
experiments. Nonparametric Kruskal–Wallis one-way ANOVA followed by Dunn’s post hoc test was
used to determine the statistical significance of multiple groups. * p < 0.05 versus control; # p < 0.05
versus HIV-1 Tat or cocaine; NS, Not significant.

2.5. HIV-1 Tat and/or Cocaine Significantly Increased Microglial Activation

We further determined the effect of HIV and/or cocaine on microglial activation
in mPMs transiently transfected with miRNA control and miR-124 mimic, followed by
HIV-1 Tat and/or cocaine exposure for a period of 24 h. Then we isolated the proteins
from these treated cells and performed western blotting for CD11b. As shown in Figure 5,
we found a synergistic increase in microglial activation in mPMs transfected with miRNA
control, followed by HIV-1 Tat and cocaine exposure, compared with individual expo-
sure. Additionally, the HIV-1 Tat- and/or cocaine-mediated upregulated proinflammatory
cytokines such as IL1β, IL6, and TNF were notably downregulated in DNMT1-silenced
mPMs exposed to HIV-1 Tat and/or cocaine for 24 h (Figure S1C–E).
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Figure 5. HIV-1 Tat and/or cocaine significantly increased microglial activation. Representative
western blotting analysis showing the expression of CD11b in HIV-1 Tat (25 ng/mL) and cocaine
(10 µM) exposed mouse primary microglial cells for 24 h. Data are mean ± SEM from six independent
experiments. Nonparametric Kruskal–Wallis one-way ANOVA followed by Dunn’s post hoc test was
used to determine the statistical significance of multiple groups. * p < 0.05 versus control; # p < 0.05
versus HIV-1 Tat or cocaine. NS: non-significant.

3. Discussion

This study demonstrates the epigenetic role of HIV-1 Tat and/or cocaine in the context
of microglial activation with the involvement of promoter DNA methylation of miR-124.
The rationale for choosing HIV-1 Tat dose is based on the fact that the concentration of
HIV-1 Tat protein in the CSF is ~16 ng/mL, while that in the serum of HIV-1-infected
individuals ranges from 0.1 to 40 ng/mL with actual concentration at tissue sites being
even higher [59–61]. It has also been suggested that the local extracellular concentrations
of HIV-1 Tat in the CNS could be even higher, especially in the locality of HIV-1-infected
perivascular cells [62–64]. Therefore, similar concentrations of HIV-1 Tat were used in
the present study. For cocaine dose, it has been revealed that the plasma concentra-
tions of cocaine in humans, following intranasal cocaine administration, range between
0.4 and 1.6 µM [65], while the plasma cocaine concentrations in tolerant abusers reach
levels up to 13 µM [66]. In addition, the cocaine concentrations in the postmortem brains of
chronic cocaine users following acute intoxications have been reported to be higher than
100 µM [67]. We thus rationalized that 25 ng/ml HIV-1 Tat and 10 µM cocaine would be
compatible with the average levels observed in HIV-1-infected people with cocaine abuse.
The rationale for choosing time is based on our published literature showing the optimal
downregulation of miR-124 at 24 h following HIV-1 Tat and cocaine exposure to mouse
primary microglial cells [24,30,31].

Herein, we first determined the expression of mature miR-124 in mPMs exposed
to HIV-1 Tat and cocaine and found the significant downregulation of mature miR-124,
compared with individual exposure to HIV-1 Tat and cocaine. We also found that the
decreased expression of mature miR-124 was due to the decreased expression of its primary
miR-124-1 and -2 through promoter DNA hypermethylation. Further, the overexpression
of miRNA in mPMs notably diminishes the augmented expression of proinflammatory
cytokines and cellular activation. Thus, the modulation of the expression levels of miR-124
can be projected as a therapeutic target for attenuating the microglial activation mediated
by HIV-1 Tat and/or cocaine.

Accumulating evidence confirmed the crucial role of miR-124 in microglial quiescence,
and its decreased expression was correlated with microglial activation [56–58]. Additionally,
microglial activation is positively linked with the proinflammatory cytokines storm with
augmented production of reactive oxygen species, which is a confounding factor in the
HAND pathogenesis [68]. In this study, we focused on the involvement of miR-124 in
microglial activation following HIV-1 Tat and/or cocaine exposure. The justification for
using HIV-1 Tat as a substitute for infection in cell culture is as follows. It is well recognized
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that despite cART, HIV-1 Tat remains present in the CNS and lymph nodes of treated
patients [69,70]. There is also the indication of low-level virus replication in the CNS of
cART-treated subjects [69,70], thereby providing rationality to the use of HIV-1 Tat as a
surrogate of HIV-1 infection in cell culture studies.

Further, the decreased expression of miR-124 in HIV-1 Tat and/or cocaine-exposed
mPMs revealed the reciprocal association between miR-124 and microglial activation.
It is well known that dysregulated miRNA expression is often associated with altered
DNA methylation of the respective miRNA encoding genes, thereby contributing to several
disease processes [71]. In this study, we also showed that HIV-1 Tat and/or cocaine-exposed
mPMs elicited elevated levels of 5-mC (an indicator of global DNA methylation) along with
the increased expression of DNA methylation enzyme, such as DNMT1, thereby indicating
a possible involvement of epigenetic DNA modifications in the regulation of miR-124.

Further, the decreased expression of miR-124 in HIV-1 Tat and/or cocaine-exposed
mPMs revealed the reciprocal association between miR-124 and microglial activation.
It is well known that dysregulated miRNA expression is often associated with altered
DNA methylation of the respective miRNA encoding genes, thereby contributing to several
disease processes [71]. In this study, we also showed that HIV-1 Tat and/or cocaine-exposed
mPMs elicited elevated levels of 5-mC (an indicator of global DNA methylation) along with
the increased expression of DNA methylation enzymes, such as DNMT1, thereby indicating
a possible involvement of epigenetic DNA modifications in the miR-124 regulation.

To further understand the detailed molecular mechanism(s) involving the role of
downregulated miR-124 in microglial activation and the involvement of epigenetic DNA
methylation, we performed bisulfite genomic DNA sequencing in HIV-1 Tat and cocaine-
exposed mPMs and found increased CpG methylation in the promoter of primary miR-124-1
and -2 (but not in the primary miR-124-3). One likely reason for the lack of change in DNA
methylation of the primary miR-124-3 promoter could be its part as a compensatory check
that likely functions only in the absence of the other two miRs. Our findings are consistent
with those by others demonstrating that both HIV-1 infection, as well as HIV-1 Tat and abused
drugs, can induce the expression of DNMTs in lymphomas, thereby leading to increased
genomic DNA methylation with dysregulated gene and miRNA expression [72–74]. Also,
promoter DNA methylation of primary miR-124s has been reported in various disease
conditions, including cancers, drug addiction, and HIV-1 infection [24,30,31,75–80].

Our earlier studies reported miR-124 downregulation in microglial cells exposed
to HIV-1 Tat and cocaine (individual exposure) via promoter DNA methylation, which
resulted in the activation of TLR4-mediated and MECP2-STAT3 signaling [24,30,31]. Other
published studies have also investigated the role of miR-124 in CNS inflammation and age-
related neurodegenerative diseases with a special focus on microglia and neurons [81–84].
The mechanism of miR-124 involvement in Alzheimer’s disease (AD) mainly interfered
with the clearance of the amyloid precursor protein and demonstrated that there was a
negative regulatory relationship between miR-124 and BACE1 expression and that miR-124
could be a promising therapeutic target in patients with AD [85,86]. In brain samples of
AD patients and AD mouse model, the expression of miR-124 was downregulated and in
turn, responsible for the post-transcriptional regulation of APP expression [86–88]. It is
also known that miR-124 is one of the most significantly dysregulated miRs in temporal
cortex samples from patients with AD, and it predicted that the dysregulation of miR-124
expression in the human brain might contribute to the pathogenic changes of AD [89]. In
addition to AD, microglial miR-124-mediated chronic inflammatory response in the brain
is reported in the onset and progression of Parkinson’s disease, with the involvement of
increased cell apoptosis, dysregulated autophagy, 6-OHDA-induced neuronal injury, and
NFKB signaling [90]. There are a few studies on the relationship between miR-124 and HD
and ALS. It was reported that miR-124 was downregulated in the cortex and hippocampus
of HD transgenic mice [91,92], and the neural stem cells from the ALS transgenic mice [93].

Drug addiction is now documented as a neuroinflammation-related disease, as several
abused drugs modulate the levels of miR-124. It has been reported that the chronic admin-
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istration of cocaine decreased miR-124 levels in the NAc, and that the downregulation of
miR-124 was critical for cocaine-induced synaptic plasticity and behavioral changes [94].
These findings agree with our results that cocaine exposure leads to the downregulation
of miR-124, ultimately culminating in microglial activation. The role of miR-124 in drug
addiction has also been reported in overexpression studies, wherein lentivirus-miR-124
transduction in the NAc resulted in the attenuation of cocaine-induced CPP [95]. Inter-
estingly, reduced levels of miR-124 have also been found in the ventral tegmental area of
methamphetamine self-administering rats by microarray analysis [96]. Reports also demon-
strate decreased miR-124 levels in ethanol-withdrawn rats, which was likely attributed to
histone acetylation [97]. All these studies allude to the fact that miR-124 downregulation is
critical for reward-related behavior changes induced by abused drugs, but detailed mecha-
nisms remain unexplored. Overall, our findings are consistent with the published reports
and lend further credence to the fact that the HIV-1 Tat- and cocaine-mediated downregula-
tion of microglial miR-124 was involved in increased microglial activation mediated by the
promoter DNA methylation of miR-124. It is also well-known that neuroinflammation is
an essential correlate of HAND pathogenesis in HIV-1-infected individuals [50]. Moreover,
the increased production of proinflammatory cytokines by the activated microglia is also
associated with cognition, memory and learning, and sensory functions in HAND patients
with drug abuse [51–54].

4. Materials and Methods
4.1. Mouse Primary Microglia

Mouse primary microglial cultures were prepared from one- to three-day-old new-
born pups of either sex, bred from C57B1/6 under standard conditions, as published
previously [98], with slight modifications [13,18,24]. The purity of the isolated microglia
was assessed by immunocytochemistry using the antibody specific for Iba-1 (Catalog No.
019–19741, Wako Pure Chemical Industries, Ltd., Irvine, CA, USA; 1:200 dilution), and used
if it is >95% pure.

4.2. TaqMan® miRNA Assays

miR-124 expression was determined using TaqMan® miRNA assays, as described
previously [24,30,31]. Briefly, isolated total RNA was reverse-transcribed to synthesize
cDNA for individual miRNA using specific miRNA primers (miR-124 Assay ID: 001182; U6
snRNA Assay ID: 4427975; Thermo Fisher Scientific, Waltham, MA, USA) for the following
PCR reaction. Each PCR reaction was carried out in triplicate, and six independent experi-
ments were run. TaqMan® miRNA assays were performed using an Applied Biosystems®

QuantStudio™ 3 Real-Time PCR System (Applied Biosystems, Grand Island, NY, USA).
The expression level of miR-124 was calculated by normalizing with U6 snRNA.

4.3. Global DNA Methylation

Genomic DNA extracted from mPMs exposed to HIV-1 Tat and/or cocaine
were used to determine the global DNA methylation (5-methylcytosine) using 5-mC
DNA ELISA Kit (Catalog No. D5325, Zymo Research, Orange, CA, USA), per the
manufacturer’s instructions.

4.4. Bisulfite-Converted Genomic DNA Sequencing

Bisulfite-converted genomic DNA sequencing was performed using the protocol
described previously, with minor changes [24,31]. Briefly, genomic DNA extracted from
mouse primary microglial cells was exposed to bisulfite conversion by EZ DNA Methylation-
Direct Kit (Catalog No. D5021, Zymo Research, Orange, CA, USA). The bisulfite-modified
DNA was amplified by bisulfite sequencing PCR using Platinum PCR SuperMix High
Fidelity (Catalog No. 12532016, Thermo Fisher Scientific, Waltham, MA, USA), with
primers specific to mouse primary miR-124-1, primary miR-124-2, and primary miR-124-3
promoter regions. Subsequently, the amplified PCR products were purified by gel ex-
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traction with the Zymoclean Gel DNA recovery kit (Catalog No. D4008, Zymo Research,
Orange, CA, USA), followed by cloning into pCR4-TOPO vectors using the TOPO TA
Cloning kit (Catalog No. K457502, Thermo Fisher Scientific, Waltham, MA, USA). The
recombinant plasmids were transformed into One Shot TOP10 chemically competent
Escherichia coli (Catalog No. K459540, Thermo Fisher Scientific, Waltham, MA, USA) us-
ing the conventional chemical transformation method. Plasmid DNA was isolated from
approximately ten independent clones of each amplicon with PureLink Quick Plasmid
Miniprep Kit (Catalog No. K210011, Thermo Fisher Scientific, Waltham, MA, USA), then
sequenced (High-Throughput DNA Sequencing and Genotyping Core Facility, University
of Nebraska Medical Center, Omaha, NE, USA) to determine the status of CpG methylation.
Only the clones with an insert containing greater than 99.5% bisulfite conversion (i.e.,
nonmethylated cytosine residues to thymine) were included in this study. The sequence
data of each clone were analyzed for methylation in the miR-124 promoter by BISMA
software (http://services.ibc.uni-stuttgart.de/BDPC/BISMA; accessed on 25 July 2021)
using default threshold settings.

4.5. miR-124 Mimic Transfection

Mouse primary microglia were seeded into six-well plates (3 × 105 cells per well)
and were transiently transfected with 30 pmol of miR-124 mimic, and miRNA control
using Lipofectamine™ RNAiMAX (Catalog No. 13778150, Thermo Fisher Scientific,
Waltham, MA, USA), as described [24,30,31]. Following transfection, cells were exposed to
HIV-1 Tat (50 ng/mL) and/or cocaine (1 µM) for another 24 h, and total RNA and proteins
were extracted for further investigation, as indicated.

4.6. TaqMan® miRNA Assays for miR-124

The expression of miR-124 was quantified using TaqMan® miRNA assays, as
described [24,30,31]. Briefly, total RNA was extracted using Quick-RNA™ MiniPrep Plus
(Catalog No. R1058, Zymo Research, Orange, CA, USA), per the manufacturer’s protocol.
Thus, the total RNA isolated was reverse transcribed to synthesize cDNA for individ-
ual miRNA using specific miRNA primers from the TaqMan® miRNA assays and the
TaqMan® miRNA Reverse Transcription kit (Catalog No. 4366597, Thermo Fisher Scientific,
Waltham, MA, USA). The reverse transcription product was then diluted 1:10 for the
following PCR reaction. Each PCR reaction was carried out in triplicate, and six
independent experiments were run. TaqMan® miRNA assays were performed using
an Applied Biosystems® QuantStudio™ 3 Real-Time PCR System (Applied Biosystems,
Grand Island, NY, USA). The expression level of miR-124 was calculated by normalizing
with U6 snRNA.

4.7. Quantitative Polymerase Chain Reaction (qPCR)

qPCR experiments were performed according to our published protocol [18,24,30,31,36].
Briefly, total RNA was extracted using Quick-RNA™ MiniPrep Plus (Catalog No. R1058,
Zymo Research, Orange, CA, USA), per the manufacturer’s protocol. Reverse tran-
scription reactions were performed using iScript™ Reverse Transcription Supermix for
RT-qPCR (Catalog No. 1708841, Bio-Rad, Hercules, CA, USA), per the manufacturer’s
instructions. qPCRs were completed using TaqMan® Universal PCR Master Mix, no
AmpErase® UNG (Catalog No. 4324018, Thermo Fisher Scientific, Waltham, MA, USA) in
an Applied Biosystems® QuantStudio™ 3 Real-Time PCR System (Applied Biosystems,
Grand Island, NY, USA). Each reaction was carried out in triplicate, and six independent
experiments were run. Gapdh was used as a housekeeping control for the normalization,
and the fold change in expression was obtained by the 2−∆∆CT method.

4.8. Western Blotting

Western blotting was performed using standard procedures, as published
previously [18,24,30,31,36]. Briefly, the control and treated microglial cells were har-
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vested and lysed using the 200 µL of RIPA buffer (Catalog No. 9806, Cell Signaling
Technology, Danvers, MA, USA). Lysates were centrifuged at 12,000× g for 10 min at
4 ◦C, and the protein content of the supernatant was determined by a BCA assay using
Pierce™ BCA Protein Assay Kit (Catalog No. 23227, Thermo Fisher Scientific,
Waltham, MA, USA), as per the manufacturer’s instructions. Equal amounts of soluble
proteins were resolved in a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
followed by blotting onto a polyvinylidene fluoride membrane (Catalog No. IPVH00010,
Millipore, Danvers, MA, USA). Then, the membranes were blocked with 5% nonfat dry
milk (in 1× TTBS buffer) for one hour at room temperature, followed by overnight incuba-
tion with the indicated primary antibodies at 4 ◦C. After washing three times, membranes
were incubated with a secondary antibody for one hour at room temperature. Next, the
protein signals were visualized using Super Signal West Pico Chemiluminescent Substrate
(Catalog No. 34078, Thermo Fisher Scientific, Waltham, MA, USA). Each band inten-
sity was normalized to the internal control, β-actin (Catalog No. A5316, Sigma-Aldrich,
St. Louis, MO, USA; 1:5000 dilution), and the data were presented as a relative fold change
by using ImageJ analysis software [99].

4.9. ELISA

The supernatants from HIV-1 Tat and/or cocaine exposed to mPMs were used to
determine the levels of proinflammatory cytokines, such as IL1β, IL6, and TNF, using
ELISA, per the manufacturer’s instructions.

4.10. Statistical Analysis

All the data were expressed as mean ± SEM, and statistical significance was deter-
mined using GraphPad Prism version 6.01 (San Diego, CA, USA). The detailed statistical
analysis used is shown in each figure caption for all studies. Non-parametric Kruskal–
Wallis one-way ANOVA, followed by Dunn’s post hoc test, was used to find the statistical
significance between multiple groups. Values were statistically significant when p < 0.05.

5. Conclusions

In conclusion, this study demonstrated that the HIV-1 Tat- and/or cocaine-mediated
downregulation of miR-124 involved the DNA methylation of primary miR-124-1 and
primary miR-124-2 promoters. Furthermore, downregulated miR-124 led in turn to the
increased expression of proinflammatory cytokines and ensuing microglial activation.
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