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Simple Summary: We performed transcriptome sequencing of the ovaries and testis of T. blochii to
acquire sex-biased miRNAs. RNA-seq analysis yielded 1366 known and 69 novel miRNAs with
289 significant DEMs (p < 0.05). KEGG analysis indicated that the target genes of the DEMs were
mainly enriched in pathways connected to sex differentiation and gonadal development signals,
consisting of the MAPK signaling pathway, Wnt signaling pathways, and steroid biosynthetic
pathways. Co-expression network analysis of miRNA-mRNA indicated that some miRNAs (oar-let-
7b, bta-miR-2898, pma-miR-138b, and novel-176) may play crucial roles in gonadal development in T.
blochii. Our research identified a set of sex-biased miRNAs that might be regulatory factors affecting
gonadal development in T. blochii. This provides new insight and may further our understanding the
role of miRNAs in gonadal development of this economically valuable species.

Abstract: The golden pompano (Trachinotus blochii) is a marine fish of considerable commercial importance
in China. It shows notable sexual size dimorphism; the growth rate of females is faster than that of males.
Therefore, sex-biased research is of great importance in T. blochii breeding. However, there have been few
studies on sex differentiation and mechanisms underlying sex determination in T. blochii. MicroRNAs
(miRNAs) play crucial roles in sex differentiation and determination in animals. However, limited miRNA
data are available on fish. In this study, two small RNA libraries prepared from the gonads of T. blochii
were constructed and sequenced. The RNA-seq analysis yielded 1366 known and 69 novel miRNAs with
289 significantly differentially expressed miRNAs (p < 0.05). Gene ontology (GO) analysis confirmed that
the TFIIA transcription factor complex (GO: 0005672) was the most significantly enriched GO term. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differentially expressed
miRNAs and target genes were mainly related to sex determination and gonadal developmental signaling
pathways, specifically the Wnt signaling pathway, MAPK signaling pathway, and steroid biosynthetic
pathway. MiRNA-mRNA co-expression network analysis strongly suggested a role for sex-biased miRNAs
in sex determination/differentiation and gonadal development. For example, gata4, foxo3, wt1, and sf1
genes were found to be regulated by bta-miR-2898; esr2 and foxo3 by novel_176, and ar by oar-let-7b.
Quantitative real-time polymerase chain reaction analysis of selected mRNAs and miRNAs validated the
integrated analysis. This study established a set of sex-biased miRNAs that are potential regulatory factors
in gonadal development in T. blochii. These results provide new insight into the function of miRNAs in sex
differentiation and determination in T. blochii and highlight some key miRNAs for future studies.
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1. Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been considered
to be crucial gene expression regulators in various species [1]. Mature miRNA sequences
are approximately 20–24 nucleotides (nt) in length and they regulate gene expression by
binding to the 3′-untranslated regions (3′-UTRs) of the target genes [2]. MiRNAs may
have multiple target genes, and each target gene can be regulated by multiple miRNAs [3].
MiRNAs are essential to the regulation of biological processes including those involved in
tissue development, apoptosis, and cell proliferation.

Sex differentiation and determination are crucial phylogenic processes in sexually re-
producing animals, and they are regulated by many mechanisms [4]. In mammals, miRNAs
are involved in reproduction, sex differentiation, gametogenesis, and embryogenesis [5–9].
Genes, social interaction, and environmental factors may all contribute to sex determina-
tion and differentiation in many fish species [10]. Teleosts, which are the largest group of
vertebrates, have many diverse sexual systems [11]. Teleost miRNAs were first discovered
in zebrafish [12], and several studies have reported the function of miRNAs in regulating
gonadal development. Let-7 and miR-21 regulate the development of eggs in rainbow
trout [13]. MiRNAs also participate in oocyte development, hydration, and competence,
indicating their importance in the regulation of oogenesis [14]. MiR-141 and miR-429 have
vital functions during testicular development and spermatogenesis in yellow catfish [15].
Let-7a, miR-143, and miR-202 are upregulated to induce differentiation of halibut testes [16].
Wang et al. suggested a possible role for miR-17-5p and miR-20a in estrogen production
by preventing and enhancing the expression of double-sex and mab-3-related transcription
factor 1 (dmrt1) and the cytochrome P450 family 19 subfamily A polypeptide 1a (cyp19a1a),
respectively [14]. MiR-138, miR-200a, and miR-338 may negatively regulate cytochrome
P450 family 17 subfamily A polypeptide 2 (cyp17a2), which is involved in the biosynthesis
of 20β-dihydroxy-4-pregnen-3one (20β-P), which plays a vital role in cell multiplication and
spermatogenesis [14]. In this way, miRNAs may be novel regulators of sex differentiation
and gonadal development.

Trachinotus blochii mainly grows in tropical and subtropical waters. After years of
development, T. blochii has become one of the three major mariculture fish in China because
of its fast growth, strong adaptability, good flavor, and high nutritional value [17]. There
are no distinct morphological differences between female and male T. blochii, even at the
mature stage [18]. This increases the difficulty of breeding parent fish and constructing its
family. Therefore, it is important to know about the gonad development and reproductive
regulation of T. blochii. A single nucleotide polymorphism (SNP) on chromosome 24 which
is confirmed by whole-genome sequencing, is closely associated with phenotypic sex [19].
There have been few studies on the sex differentiation and determination of T. blochii, which
has led to research into the sex-biased characteristics of T. blochii [20]. Many studies have
verified that miRNAs are dimorphically expressed in fish [21]. However, the function of
miRNAs in the reproductive development of T. blochii is still unknown. Clearly, establishing
the role of miRNAs in gonadal development of T. blochii is significant.

In the present work, we performed RNA sequencing to identify specific miRNAs
expressed in T. blochii gonads and investigated the differentially expressed miRNAs (DEMs)
to identify miRNAs related to gonadal development and differentially expressed in the
testes and ovaries. The present study may facilitate the analysis of the differences between
males and females and reveal the molecular mechanisms underlying these differences.
Females also grow faster than males and have higher nutritional value, and breeding female
T. blochii has considerable economic value. The results may facilitate better comprehension
of the functions of miRNAs in the process of T. blochii sex differentiation and gonadal
development and provide basic data for the further study.
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2. Materials and Methods
2.1. Experimental Animals and Sample Collection

The T. blochii samples were obtained from Blue Grain Technology Co., Ltd. (Sanya,
Hainan Province, China). The fish were spawned in the same sea cage and were 10 months
old at the time of the study. Our previous research (unpublished) showed ovary develop-
ment to take place during the middle and late periods of stage II and the testis during the
end of stage III. The average weight of the male T. blochii was 893.2 ± 43.8 g, and that of
females was 1028.5 ± 51.2 g. We gathered gonadal tissues from nine females (three samples
were placed in one microcentrifuge tube) and nine males (three samples per microcentrifuge
tube), which were snap-frozen in liquid nitrogen, and stored at −80 ◦C until processing.
All experimental procedures were conducted in accordance with the Guidelines for the
Care and Use of Laboratory Animals in China. The Animal Experimentation Ethics Com-
mittee of Hainan University approved this protocol (protocol code HNUAUCC-2021-00007,
26 February 2021).

2.2. RNA Extraction, miRNA Library Construction and Sequencing

The gonad RNA was isolated by using the TRIZOL reagent (Invitrogen, Carlsbad, CA,
USA), and DNA was eliminated using DNase I (New England Biolabs, New Ipswich, MA,
USA). We used a NanoPhotometer® spectrophotometer to detect RNA concentration and
purity. We used 1% agarose gel electrophoresis to determine if the RNA was contaminated
or degraded. After the samples were qualified, they were used to construct the sequencing
libraries. Sequencing libraries were produced utilizing NEBNext® Multiplex Small RNA
Library Prep Set for Illumina® (New England Biolabs) according to the recommendations
of manufacturer, and index codes were appended to the affiliated sequences for each
sample. Purified RNA (2 µL) was concatenated with 3′ and 5′ accommodators (Illumina,
San Diego, CA, USA) utilizing T4 ligase (New England Biolabs) (1 µL), and then reverse
transcribed into first-strand cDNA. The polymerase chain reaction (PCR) was used to
amplify primers complementary to the adaptor sequences. The PCR products were purified
by polyacrylamide gel electrophoresis (100 V, 80 min). To obtain the final small RNA
sequencing library, DNA fragments corresponding to 140–160 bp (small non-coding RNA
plus the 3′ and 5′ adaptors) were restored and dissolved in 8 µL of elution buffer. Each
library was loaded into the Illumina Hiseq (Illumina, San Diego, CA, USA) lane for single-
end sequencing.

2.3. Identification of miRNA

The quality control and read statistics of the original sequence were determined using
FastQC [22]. Sequences with poor quality, no 3′ adaptor, 5′ adaptor contaminants, or trimmed
sequences with short lengths (less than 18 nt) were here considered unordered reads and were
eliminated before analysis. The clean reads Q20 (Q20 represent the percentage of bases with a
Phred value greater than 20 in the total bases) and Q30 (Q30 represent the percentage of bases
with a Phred value greater than 30 in the total bases) (Phred = −10log10(e)) and GC contents
were computed, and high-quality, clean reads were applied to downstream analyses. These
clean reads were mapped to the reference genome of T. blochii utilizing HISAT2 software. The
reference genome of T. blochii was constructed in our laboratory and the data have not been
published. Then, transfer RNAs, ribosomal RNAs, small nucleolar RNAs, and small nuclear
RNAs were filtered from the mapped sequences through the Rfam (http://rfam.xfam.org/
(accessed on 27 October 2022)) and GenBank (http://www.ncbi.nlm.nih.gov (accessed on
27 October 2022)) databases. The residual sequences were estimated as conservative miRNAs
referring to the miRBase database. The ratio of total rRNA was used as an indicator of
sample quality. The rate of detection of high-quality plant samples was usually below
60%, and the rate of detection of animal samples was 40% [23]. To identify novel miRNAs,
we submitted the ultimately unannotated sRNA reads utilizing MIREAP software (https:
//sourceforge.net/projects/mireap/ (accessed on 27 October 2022)) to evaluate the secondary

http://rfam.xfam.org/
http://www.ncbi.nlm.nih.gov
https://sourceforge.net/projects/mireap/
https://sourceforge.net/projects/mireap/
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structure of Dicer cleavage sites and map the minimum free energy Dicer cleavage sites and
unnamed small RNA marker genomes.

2.4. Identification of the Differentially Expressed miRNAs

The expression levels of the miRNAs in the testis and ovaries were compared by normal-
izing the frequency of miRNA counts to transcripts per million (TPM) [24]. The differential
expression analysis of two groups was accomplished utilizing the DESeq R package (3.0.3).
The p-values were corrected using the method described by Benjamini and Hochberg to
control the error rate. Genes with |log2 (fold change)|> 0 and padj < 0.05 between the two
groups were considered DEMs.

2.5. Prediction and Functional Annotation of the DEM Target Genes

MiRanda with default settings was used to identify DEM target genes [25]. We
combined the miRNA-seq in this study with that from our previous study and so finally
identified miRNAs and target genes with negative regulatory relationships [20]. We used
the Gene Ontology (GO) database (http://www.geneontology.org/ (accessed on 27 October
2022)) to annotate the biological processes of the DEMs target genes [26] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/
(accessed on 27 October 2022)) to confirm which biochemical and signal transduction
pathways were significantly related to the DEM target genes [27]. KOBAS software [28]
was used to statistically test the enrichment of the target gene candidates in the KEGG
pathways. Terms with correct p-values < 0.05 were considered significantly enriched.

2.6. Co-Expression Network Analysis

To clearly establish the potential regulatory relationship between gender-related
miRNA-mRNA gene pairs, the gender-related gene pairs were screened by predicting
miRNA target genes based on the correlation between the DEMs and mRNA, and by
analyzing a co-expression network.

2.7. Quantitative Real-Time PCR (qPCR) Analysis

To verify the miRNA-seq accuracy and the miRNA and mRNA relationship correctness,
seven DEM target genes and 10 DEMs were chosen at random for the qPCR experiment. The
RNA of the qPCR samples was used to perform the miRNA sequencing. The primers for the
target genes and the DEMs which were used are presented in Table S1; β-actin served as the
internal reference for the mRNAs and U6 as the internal reference for the miRNAs. qPCR
was conducted on a LightCycler® 480 II Instrument (Roche, Basel, Switzerland). The 20 µL
reaction volume for mRNA quantification contained 10 µL of SYBR Green Master Mix (2×)
(Q711, Vazyme, Nanjing, China), 0.4 µL of each sense and antisense primer (10 µM), 1 µL of
cDNA (100 ng/µL), and 8.2 µL of ddH2O. The PCR amplification procedure was performed
at 95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s and 55 ◦C for 30 s. The quantification of
miRNA for the reaction system was the same as for mRNA. The cycling parameters were 95
◦C for 5 min, followed by 40 cycles at 95 ◦C for 10 s and 60 ◦C for 30 s. We estimated primer
specificity according to melting curves and calculated relative expression levels of mRNA and
miRNA using the 2−∆∆Ct method [29].

2.8. Statistical Analysis

Data are rendered as mean ± standard deviation for three independent experiments.
The independent sample t-test was used to detect differences using SPSS 22.0 software
(SPSS Inc., Chicago, IL, USA). p-value < 0.05 was considered significant.

3. Results
3.1. miRNA Sequencing

To determine the expression profiles of miRNA in the T. blochii gonads, six total RNA
libraries concerning the testis and ovaries were established and subjected to Illumina

http://www.geneontology.org/
http://www.genome.jp/kegg/
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deep sequencing. In total, 88,466,133 raw reads were produced: 15,122,647, 15,619,201,
and 19,226,171 reads from female libraries O1, O2, and O3, respectively, and 10,025,440,
14,336,950, and 14,135,724 reads from male libraries T1, T2, and T3, respectively. After
quality filtering, 84,769,441 clean reads were obtained. The clean reads were mapped to the
reference genome of T. blochii to produce the genomic distribution of the miRNAs. More
than 72% of the clean reads were mapped to the reference genome of T. blochii. About
30% and 50% of the reads were mapped to the negative and positive strands of genome,
respectively (Table S2). The length distributions of the miRNAs in each sample are given
in Figure 1. The miRNA read length distributions differed between the testis and ovary.
The lengths of the miRNAs varied more in the ovary than in the testis. The most common
length in the ovary was 27 nt, compared to 21 nt in the testis.
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3.2. Micro RNA Identification and Novel miRNA Prediction

In total, 1366 known miRNAs were acquired from the gonads, including 437 3p-miRNA
sequences and 457 5p-miRNA sequences. According to the length distributions of the known
miRNAs, we learned that 22 nt miRNAs were the most abundant, followed by 21 nt miRNAs
(Table S3). We also obtained 69 novel miRNAs, and the length distribution of novel miRNAs
was 22–23 nt (Table S4). The nucleotide nt preference distributions in the novel miRNAs
revealed that among the four bases, uracil (U) had the largest ratio, followed by adenosine
(A). Family analysis for known and novel miRNAs identified 171 miRNA families comprising
1 to 110 members.

3.3. Differentially Expressed miRNAs

Development-related miRNA expression was determined for the six testis and ovary
samples; 1435 miRNAs were obtained, including novel and known miRNAs. Overall,
289 miRNAs were predicated to be significantly differentially expressed between the ovary
and testis groups in the gene expression differential display. The hcluster heatmap of the DEM
levels is shown in Figure 2A, including 268 known and 21 novel miRNAs (Table S5). Among
them, 135 were downregulated and 154 were upregulated (Figure 2B).

3.4. Prediction of Differentially Expressed miRNA Target Genes

Based on the miRNA-seq in this study and mRNA-seq in our previous study [19],
we obtained DEMs and differentially expressed mRNAs (DEGs) expressed in opposite
directions. We combined this with target prediction and identified miRNA and target genes
with negative regulatory relationships. We compared the interaction network of miRNAs
to their target genes in the ovary group and the testis group, and 289 DEMs and 4062 DEGs
formed 13,403 negatively correlated miRNA-mRNA pairs (Table S6). Due to the negative
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regulatory mechanisms of miRNAs and their target genes, we identified a large number
of miRNAs targeting sex-biased genes. After the analysis, the miRNAs were found to
target one or more sex-biased genes, including pma-miR-138b (piwi-like RNA-mediated gene
silencing 1, piwil1), oar-let-7b (androgen receptor, ar), novel_176 (estrogen receptor 2, esr2 and
forkhead box O3, foxo3), and bta-miR-2898 (GATA binding protein 4, gata4; WT1 transcription
factor, wt1; foxo3; and steroidogenic factor 1, sf1). These four key sex-biased miRNAs and their
target genes were randomly selected to verify that the targeted regulation was correct, and
the qPCR validation results are given in Figure 3.
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3.5. GO and KEGG Enrichment Analyses

GO and KEGG enrichment analyses were executed on the target genes of the DEMs accord-
ing to the corresponding relationships between the miRNAs and their target genes. All DEGs
annotated for GO analysis were divided into three categories of molecular functions, biological
processes, and cellular components. GO term analysis showed that 117 GO terms were enriched
(p < 0.05). Among biological processes, the putative target genes were significantly enriched in
“transcription initiation from the RNA polymerase II promoter” (GO: 0006367). Among cellular
components, the putative target genes were significantly enriched in “transcription factor TFIIA
complex” (GO: 0005672). At the molecular function level, “enzyme regulator activity” (GO:
0030234) had more counts in target genes (223 genes) (Figure 4 and Table S7).

A total of 162 KEGG pathways were detected in the KEGG enrichment analysis (Table S8),
and the top 20 pathways are presented in Figure 5A. The pathways consisted of those involved
in gonadal and sexual development, consisting of the MAPK signaling pathway [30], the Wnt
signaling pathway [31], and the steroid biosynthetic pathway [32].
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To learn more about the functions of the DEMs, 20 miRNAs highly expressed in the
gonads were selected to predict the enriched pathways. Most genes in the ovary were
enriched in the MAPK [30] and Wnt signaling pathways [31] (Figure 5B and Table S9). The
sex differentiation and gonadal development pathways were also identified in the testis,
including the transforming growth factor (TGF)-beta [33] and the peroxisome proliferator-
activated receptor (PPAR) signaling pathways [34] (Figure 5C and Table S10).

3.6. miRNA-mRNA Co-Expression Network Analysis

DEM target genes have been found to be mainly enriched in pathways related to sex
differentiation and gonadal development signals, including the MAPK signaling path-
way [30], Wnt signaling pathways [31], steroid biosynthesis pathway [32], and TGF-beta
signaling pathway [33]. To further understand the role of the DEMs during gonadal devel-
opment, co-expression network analysis using Cytoscape software was performed with the
DEMs and mRNAs enriched in the sex differentiation and gonadal development pathways.
The results shown in Table S11 reflect the four types of networks found: one mRNA associ-
ated with multiple miRNAs, one mRNA associated with one miRNA, multiple mRNAs
associated with multiple miRNAs, and multiple mRNAs associated with one miRNA. The
miRNA-mRNA co-expression relationship is shown in Figure 6.

3.7. Quantitative Real-Time PCR (qPCR) Validation

To validate the results of miRNA-seq, we performed a qPCR experiment to investigate
the relative expression levels of nine randomly selected miRNAs (seven upregulated and
two downregulated) from the testis and ovary groups. The tendencies in the expression of
the nine miRNAs detected by qPCR were closely consistent with the results of miRNA-seq,
which strengthened the results of this study (Figure 7).
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4. Discussion

Micro RNAs regulate many physiological functions, such as cell metabolism, gonadal
development, differentiation, and sex reversal. Gene expression at the post-transcriptional
level can be regulated by miRNAs by binding to the target gene 3′ UTR region. They
play a crucial role in the regulation of gonadal development [21]. In the present research,
1435 miRNAs were obtained and 289 significant DEMs were identified based on the RNA-
seq results, including 268 known and 21 novel miRNAs. We identified two peaks in miRNA
length distribution in our study. The length of the highest peak was 27–28 nt, and the
length of the second-highest peak was 21–22 nt. This indicates a duality of miRNA length
distribution in the gonad, which was consistent with the findings of previous studies
on yellow catfish [35]. The main peak, with 27–28 nt reads in the gonad, was mainly
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attributable to the abundant expression of Piwi-interacting RNAs (piRNAs) [36], which are
related to gene silencing, specifically transposon silencing [37]. In mammals, piRNAs play
critical roles in germ cell development [38], and previous studies have found that piRNAs
exist in the testes during both sexually immature and mature stages [39].

4.1. Known Sex-Biased miRNAs

Our results indicated that let-7b-5p and miR-2898 were more abundantly expressed
in the ovaries of T. blochii. Let-7 is a regulator that may play a part in concerting mRNA
stability and translation in bovine oocytes [39]. MiR-let-7 acts as a primary regulator in
Drosophila sex determination and gonadal differentiation, maintaining ovarian function [40].
Studies on Trachinotus ovatus suggest that dre-let-7c-5p regulates ovarian development [41].
Let-7 is also highly expressed in the ovaries of Smphysodon aequifasciatus [42]. Our study
suggested that let-7b-5p was highly expressed in the ovaries, indicating that it may take
part in ovarian development in T. blochii. Studies have shown that sf1 plays crucial roles
in slider turtle sex differentiation and determination [43] and is an essential regulator of
gonad development in Nile tilapia [44]. Foxo3 has been shown to be involved in ovarian
development in the Gobiocypris rarus [45], and it upregulates cyp19a1a during vitellogenesis
in the orange-spotted grouper [46]. Gata4 is not only required for gonad differentiation in
tilapia but also important to gonad development and maturation [47]. It also performs a
crucial function in sex differentiation in Cynoglossus semilaevis [48]. Our findings suggest
that the female sex-biased genes sf1, foxo3, and gata4 are regulated by bta-miR-2898, which
has also been shown to be involved in the formation of the ovarian corpus luteum in
cows [49]. This indicates that bta-miR-2898 may play a part in female gonad development
in T. blochii. KEGG enrichment analysis has been performed on target genes of highly
expressed miRNAs within the gonads. Most genes are enriched in the MAPK signaling
pathway [30] and the Wnt signaling pathway [31] in the ovary. The target gene regulatory
pathways of highly expressed miRNAs in the testis are mainly the TGF-beta signaling
pathway [33] and the PPAR signaling pathway [34]. The Wnt signaling pathway is critical
to mammalian female development [50]. The TGF-beta signaling pathway is activated in
mammalian testis and plays a key role in promoting spermatogenesis and maintaining
testicular differentiation [33]. These results suggest that related miRNAs may play an
important role in gonadal development and differentiation.

We also found miR-130b-5p and miR-22 to be richly expressed in T. blochii ovaries, and
miR-202, miR-145, miR-143, and miR-103b were more abundantly expressed in the testes.
These miRNAs are also crucial to gonadal development in other species. MiR-22a-3p is
involved in vitellogenesis and ovarian development in Danio rerio [51]. In addition, human
studies have shown that miR-130b is benign in normal ovarian tissues, but miR-130b
expression trends downward in malignant ovarian tumors [52]. This research suggest that
miR-130b may play a key role in maintaining ovarian function in T. blochii. MiR-202 is
upregulated to induce testis differentiation in zebrafish [53]. MiR-202 may also be involved
in testicular differentiation in T. blochii. MiR-143, miR-145, and miR-202-3p have been
detected during testis development and spermatogenesis in Atlantic halibut [54]. They
are also the main miRNAs detected in the testis of Nile tilapia [10]. MiR-145 plays an
important role in male differentiation by targeting male SRY-box transcription factor 9 (sox9),
which acts on Sertoli cells [55]. MiR-103 is expressed in both XY and YY testis of yellow
catfish [56]. MiR-103 has been found to be expressed at high levels in the testis of Atlantic
halibut [54]. These results suggest that these miRNAs may also play a crucial role in the
gonadal development of T. blochii. The functions of these miRNAs in T. blochii need to be
verified through further investigation.

4.2. Novel Sex-Biased miRNAs

We found novel miRNAs, such as novel_176, novel_133, novel_145, and others.
Novel_176 was found to be expressed at higher levels in the ovary than in the testis,
and it is a potential novel miRNA in gonad of T. blochii. KEGG analysis confirmed that
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novel_176 and target genes are related to sex determination and gonadal development
signaling pathways, such as oocyte meiosis (sdu04114), the TGF-beta signaling pathway
(sdu04350), and the FoxO signaling pathway (sdu04068). In our study, we found novel-176
regulated esr2 and foxo3. Foxo3 is in the FoxO signaling pathway. Studies have shown that
the FoxO signaling pathway, which contains a transcription factor family responsible for
suppressing the expression of genes related to cell growth, proliferation, and differentia-
tion, is upregulated in female hybrid tilapia [57]. Novel-176 may be related to female sex
differentiation. Esr2 is a sex-determining gene in Carangidae fishes. It is highly expressed
in the testis. Estrogen receptor expression is male-biased in the bluehead wrasse [58], Nile
tilapia [59], and rainbow trout [60], suggesting that novel-176 may also be related to gonadal
development in males. Novel_133 targets sox9. Sox9 is a crucial gene in male sex differ-
entiation and gonadal development. Studies have shown that the sox9 gene is expressed
in the testis of mature individuals and plays an important role in spermatogenesis [61].
The sox9 gene was detected in the gonads of Pelteobagrus fulvidraco, carp, and Monopterus
albus [62]. This suggests that novel_133, which regulates sox9, may play a crucial role in the
differentiation and development of male gonads. Novel_145 regulates the expression of
wt1, which has been found to have high expression in developing and adult testis of catfish
and played an important role in spermatogenesis [63]. In addition, wt1 has been found to
be a testis-biased gene in Silurus asotus [64], Cyprinus carpio, and tilapia [65,66]. In our study,
novel_145 was also highly expressed in the testis of T. blochii, indicating that novel_145
may play an essential role in the development of testis. In conclusion, these novel miRNAs
can be the significant candidates for further studies of gonadal development in T. blochii.

5. Conclusions

Transcriptome sequencing was performed on the testes and ovaries of T. blochii in
the present work. RNA-seq analysis yielded 1366 known and 69 novel miRNAs with
289 significant DEMs (p < 0.05). GO analysis confirmed that the transcription factor TFIIA
complex (GO: 0005672) was the most significantly enriched GO term. KEGG analysis
showed that the target genes of the DEMs are mainly enriched in pathways related to
sex differentiation and gonadal development signals, consisting of the MAPK signaling
pathway, Wnt signaling pathways, and steroid biosynthetic pathways. The co-expression
network analysis of miRNA-mRNA indicated that some miRNAs (oar-let-7b, bta-miR-
2898, pma-miR-138b, and novel-176) may play key roles in T. blochii gonadal development.
These results will improve our understanding of the molecular mechanism of gonadal
development and facilitate genetic studies and breeding of T. blochii.
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