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Abstract: Urate oxidase (UOx) surrounded by synthetic macromolecules, such as polyethyleneimine
(PEI), poly(allylamine hydrochloride) (PAH), and poly(sodium 4-styrenesulfonate) (PSS) is a conve-
nient model of redox-active biomacromolecules in a crowded environment and could display high
enzymatic activity towards uric acid, an important marker of COVID-19 patients. In this work, the
carbon fiber electrode was modified with Prussian blue (PB) redox mediator, UOx layer, and a layer-
by-layer assembled polyelectrolyte film, which forms a complex coacervate consisting of a weakly
charged polyelectrolyte (PEI or PAH) and a highly charged one (PSS). The film deposition process was
controlled by cyclic voltammetry and scanning electron microscopy coupled with energy-dispersive
X-ray analysis (at the stage of PB deposition) and through quartz crystal microbalance technique (at
latter stages) revealed uniform distribution of the polyelectrolyte layers. Variation of the polyelec-
trolyte film composition derived the following statements. (1) There is a linear correlation between
electrochemical signal and concentration of uric acid in the range of 10−4–10−6 M. (2) An increase in
the number of polyelectrolyte layers provides more reproducible values for uric acid concentration
in real urine samples of SARS-CoV-2 patients measured by electrochemical enzyme assay, which
are comparable to those of spectrophotometric assay. (3) The PAH/UOx/PSS/(PAH/PSS)2-coated
carbon fiber electrode displays the highest sensitivity towards uric acid. (4) There is a high enzyme
activity of UOx immobilized into the hydrogel nanolayer (values of the Michaelis–Menten constant
are up to 2 µM) and, consequently, high affinity to uric acid.

Keywords: layer-by-layer assembly; polyelectrolyte; crowding effect; uric acid; SARS-CoV-2

1. Introduction

Macromolecular crowding plays a key role in the cellular environment affecting gene
expression [1], protein stability [2], and the kinetics of enzyme reactions [3–5], to name just
a few. This is due to dynamic compartmentalization via liquid–liquid phase separation,
which increases the local enzyme concentration and alters the diffusion of substrates.
From thermodynamic viewpoint, in agreement with the McMillan and Mayer theory of
particle–particle interaction, entropy decreases when proteins and other macromolecules
are excluded from the physical volume occupied by bulky crowding agents.

Enzymatic compartments could be developed through encapsulation in polymer
nanoparticles [6] or surface treatment methodologies, such as immobilization onto
Langmuir–Blodgett [7] or Langmuir–Schaefer films [8]; the latter, however, require ex-
pensive equipment and highly qualified personnel. Alternatively, layer-by-layer (LbL)
assembled nanoarchitectures are easily accessible through adsorption of polyelectrolytes
on the electrode [9–13], which could avoid a decrease in the mobility of enzyme binding
sites [14–17]. Pairs of synthetic polyelectrolytes allow one to develop such crowded repro-
ducible conditions due to the formation of the individual phase of the coacervate complex
and exclusion of excess salt and water from the phase [18,19]. Therefore, the kinetics of
enzymatic reactions in crowded medium does not depend on the ionic strength due to
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free ions, it rather depends on the type of polyelectrolyte macromolecules that surround
the enzyme and their composition [20,21]. Theoretical predictions of the decrease of the
effective Michaelis constant with an increase in the volume fraction of crowding agents [4]
agree with the experimental findings that the highest activity of horseradish peroxidase and
urate oxidase is achieved in aqueous two-phase system of high molecular weight dextran
and low molecular weight poly (ethylene glycol), and partition of these enzymes between
phases is a function of salt concentration and ion position in Hofmeister series [5].

We have previously suggested an approach for electrochemical immunosensors with
a quasi-mobile polyelectrolyte–protein hydrogel interface [22], including nanofilms [23].
Hydrogel interfaces based on neutral polyelectrolytes provide reproducible results in
complex systems and simple variation of hydrogel composition, which enables facile data
collection for machine learning to decrease the limit of detection [22,24]. The crowded
tick-borne encephalitis antibodies immobilized in the electrode of polyelectrolyte-protein
design could detect up to five whole virus particles. It proves polyelectrolyte effectiveness
for the sensitivity increase of the immunosensors compared to the antibody-only modified
electrode. Hydrophilic properties of polyelectrolytes in a crowded medium suppressed
nonspecific protein adsorption [23]. We have shown that LbL assembly effectively controls
the adsorption of antigens and antibodies conjugated with horseradish peroxidase on
the electrode surface. Even though theoretical works on enzyme behavior in crowded
environments indicate unique properties of hydrogels made from charged macromolecules
(e.g., a topologically frustrated state of DNA in poly (styrene sulfonate) (PSS) hydrogel [25]),
mainly uncharged species were experimentally studied [26]. Moreover, the entropy of such
crowded systems is predicted to be higher than that in aqueous solutions [25,27].

In this work, we propose a polyelectrolyte crowding concept for the design of an
enzyme-based sensor towards uric acid (UA), which was recently identified as a prognostic
indicator and a marker of disease severity in COVID-19 patients [28]. We show that UOx,
noncovalently immobilized into hydrogel nanolayers, preserves its reactivity and enzyme-
based electrochemical biosensor, with the ability to detect micromolar concentrations of
uric acid, could be developed.

2. Materials and Methods

Carbon fibers (CFs) with surface density of 450 g/m2 were produced by M-Carbo
(Minsk, Belarus). Lyophilized Bacillus fastidiosus uricase (9 U/mg), UA, branched polyethyle-
neimine (PEI, MW~750,000, 50% (w/v) solution), PSS (MW~1,000,000), poly (allylamine
hydrochloride) (PAH, MW~15,000–20,000), 2-nitrophenyl octyl ether (o-NPOE), high molec-
ular weight poly (vinyl chloride) (PVC), and 45 wt% THF solution in H2O (Sigma-Aldrich,
Burlington, USA) and HCl and KCl (Fluka, Buchs, Switzerland) were used as received.
Silver conductive adhesive (Kontaktol, Keller, Saint Petersburg, Russia) and nail polish
were purchased from local stores. All solutions were prepared using deionized (DI) water
(>18.0 MΩ cm, Millipore Milli Q Gradient System, Burlington, USA). Urine samples were
provided by the Children’s City Clinical Hospital No. 5, named after N.F. Filatov (Saint
Petersburg, Russia), and a 10-fold dilution with a buffer solution (pH 7.4) was applied to
the samples before measurements.

Carbon fiber electrodes (CFEs) were modified with Prussian blue Fe4[Fe(CN)6]3 (PB)
through electrodeposition using 12 cyclic scans of cyclic voltammetry within the range of
–0.2 to 0.6 V at a scan rate of 0.05 V/s from a solution containing 1.5 mM K3[Fe(CN)6] and
1.5 mM FeCl3 in 0.1 M KCl and 0.1 M HCl. Then, the CF/PB coating was washed with DI
water and activated by applying another 50 cycles in electrolyte solution (0.1 M KCl and
0.1 M HCl) using the same protocol. After deposition, the electrodes were washed with
DI water and dried in air. Surface morphology and elemental composition of PB-coated
CFEs were studied on a Tescan Vega-3 scanning electron microscope (Brno, Czech Republic)
equipped with an energy-dispersive X-ray analyzer (EDX).

The films of (PEI/UOx)(PEI/PSS)n (n = 1, 2) and (PAH/UOx)(PAH/PSS)2 were de-
posited onto the working surface of the PB-coated CF electrode using the LbL technique,



Polymers 2022, 14, 5145 3 of 10

with an immersion of the electrode into the solution of corresponding component for 30 s
and washing with PBS (pH 7.4) before depositing the subsequent layer. This pH value was
chosen due to the maximum catalytic activity (optimum pH is 7) and stability of uricase
under these conditions and that it falls within pH range of real urine samples (pH 4.5–8.0).

Cyclic voltammograms were recorded using an SP-50 potentiostat-galvanostat (Elec-
trochemical Instruments, Chernogolovka, Russia) in a standard three-electrode cell at 25 ◦C.
CF/PB/(PEs/UOx)n (n = 1, 2) was used as the working electrode; CF/Ag/AgCl/PEs, the
reference; and CF, a counter electrode.

QCM measurements were run using a flow module connected to a 10 M eQCM
instrument (Gamry Instruments, Warminster, PA, USA). The electrodes were soaked in
piranha solution for 1 min, washed with DI water, and dried under inert gas before use. The
5-MHz Au-coated AT-cut quartz crystal (Shenzhen RenLux Crystal Company, Shenzhen,
China) was fixed using crystal holder. All solutions were flowed into the modules using a
BT100LC peristaltic pump (Baoding Chuangrui Precision Pump Company, Baoding, China)
at a flow rate of 2 mL/min. To correlate the change of oscillation frequency of quartz
microcrystal, ∆f, and the mass of deposited PE or UOx layers, ∆m, Sauerbrey Equation (1)
was used:

∆ f =
2 f 2

0
A√ρqµq

∆m, (1)

where f 0 is the fundamental frequency (5 MHz); A is the piezoelectrically active crystal
area (1.5386 cm2); ρq is the density of quartz (2.648 g·cm−3); and µq is the shear modulus of
quartz (2.947 × 1011 g·cm−1·s−2).

The Ag/AgCl reference electrode was prepared by covering with polyelectrolytes and
Ag-based ink. CF was covered with nail polish leaving 15 mm uncovered at both ends.
Following this step, one of the ends was coated with Ag conductive glue and left to dry
in air for 30 min. Then, a Ag-coated area was immersed into 1 M HCl and rinsed with DI
water to produce a AgCl-coated CF. The working area of the electrode was modified via
LbL assembly as follows. Firstly, the electrode was dipped for 30 s into PEI solution and,
then, for 30 s into PSS solution, and it was rinsed with DI water between dips. Thus, a
total of 32 layers of PEI and 32 layers of PSS were adsorbed. The membrane precursor was
prepared by stirring the solution of 335 mg of o-NPOE and 165 mg of PVC in 1 mL of THF
for 20 min and then stored at 4 ± 2 ◦C before use. The polymer-coated end of the fiber was
dipped into the membrane mixture four times with 2-min intervals for drying. Finally, the
electrode was suspended vertically for membrane setting for 40–90 min at 25 ◦C.

To evaluate the kinetics of the enzymatic process, the Michaelis–Menten constant was
calculated for each type of structural modification according to Equation (2) [29]:

1
Iss

=
Km

Imax

1
C
+

1
Imax

, (2)

where Km is the Michaelis–Menten constant, µM; Imax is the limiting current, µA; C is the
substrate concentration, µM; and Iss is the current of the reaction, µA.

Spectrophotometric determination of UA was conducted using a Klinitest-MK reagent
set (Eko-servis, Saint Petersburg, Russia). This set exploits the reaction of 4-aminoantipyrine,
2-hydroxy-3,5-dichloro-benzenesulfonate, and H2O2 in the presence of peroxidase that af-
fords a colored product (N-(4-antipyryl)-3-chloro-5-sulfonate-p-benzoquinonemonoimine),
the absorbance maximum of which corresponds to 520 nm.

3. Results and Discussion

The concept of fabrication of the uric acid-selective electrode is given in Figure 1. Along
with graphene [30] and fabric substrates [31,32], carbon fiber (CF) is a promising substrate
for the development of wearable sensors [15,33–37], with a high strength-to-volume ratio,
and was suggested in this work as an electrode for a three-electrode electrochemical
cell due to its high carrier mobility, electrical conductivity, environmental stability, low
weight, and high-temperature resistance, as well as low-cost production. To perform
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electrochemical study of enzyme activity, the CF surface needs to be modified through
electrodeposition with Prussian blue (Fe4[Fe(CN)6]3) (PB), which is used as a non-diffusion
redox mediator and prevents side reactions of metal salts with polyelectrolytes [38,39].
Subsequent modification of the PB-coated CF electrode is aimed at the development of
a crowded environment via the hydrogel nanolayer with immobilized UOx, which is
a polyelectrolyte complex obtained through LbL assembly of coacervate layers. Weak
cationic polyelectrolytes PEI and PAH are usually employed as the first layer [40] and
they normally do not form polyelectrolyte coacervate complexes due to a significant
relaxation time and interaction with an oppositely charged polyelectrolyte [41]. However,
weak polyelectrolytes could adsorb both on positively and negatively charged surfaces
due to their amphiphilicity and, thus, stabilize the next layer of UOx that is negatively
charged at pH 7.4 [39]. Coating of the uricase layer with the negatively charged strong
PSS polyelectrolyte could further stabilize the enzyme and provide a charge-balanced
polyelectrolyte–protein–polyelectrolyte complex [42,43] due to its deposition after PEI. This
strategy of enzyme immobilization allows biomolecules to preserve their activity on the
electrode surface due to charge immobilization instead of covalent grafting [44], which
creates a pseudo-homogeneous system on the electrode surface and increases enzyme
mobility to interact with the substrate. We suppose that polyelectrolyte complexation
increases the sensitivity of analysis. Moreover, PEI–PSS and PAH–PSS complexes facilitate
enzyme–substrate interaction and prevent the desorption of protein from the electrode
surface, which otherwise damps analytical signal over time [45,46].
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Figure 1. Immobilization of UOx onto CFE with PB redox mediator coated by PEI(PAH)/PSS layers.

The surface of the CF electrode was probed by scanning electron microscopy (SEM)
and energy-dispersive X-ray spectroscopy (EDX) to evaluate the effectiveness of deposition
of PB. SEM images of the CF electrode and uniform distribution of Fe, C, and N in mapped
EDX spectra after electrodeposition of PB confirm that the CF surface is fully covered by PB
(Figure 2). Voltammogram traces of PB mediator show intrinsic redox peaks centered at ca.
+380 mV, which correspond to the oxidation of the ferrocyanide ion.

The QCM technique was further employed to evaluate the stability of LbL-assembled
enzyme–polyelectrolyte hydrogels at each deposition stage. The amino group in the
branched PEI macromolecule is supposed to display a higher adhesion to gold-coated
quartz substrate as compared to that in PAH due to less notable steric hindrances. Indeed,
deposition of the first layer of branched PEI onto quartz from a flow of corresponding
solution in PBS resulted in a mass gain of 0.3839 µg, which is three times as large as that
during deposition of the first layer of PAH (0.1468 µg) (Figure 3, Table 1). Subsequent
adsorption of UOx and PE layers always led to a weight gain and final washing of the film
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with PBS did not alter the resonant frequency of quartz, which confirmed the construction
of a stable crowded interface through polyelectrolyte layer interactions [47]. Comparison
of added mass values after deposition of the second layer of cationic polyelectrolyte onto
PSS indicates a stronger interaction between PSS and PEI (+0.5686 µg) as compared to that
between PAH and PEI (+0.0645 µg). Sharper peaks on the QCM curve corresponding to the
adsorption of PAH/UOx/PSS/PAH/PSS multilayer as compared to broader ones in the
case of PEI/UOx/PSS/PEI/PSS suggest the formation of more rigid film on the Au-coated
quartz surface when using PAH polyelectrolytes instead of PEI.

Polymers 2022, 14, 5145 5 of 11 
 

 

 

Figure 2. (a) Cyclic voltammograms of PB deposition. (b) SEM images of the PB-modified CF elec-

trode and corresponding EDX distribution maps of C, Fe, and N atoms. 

The QCM technique was further employed to evaluate the stability of LbL-assembled 

enzyme–polyelectrolyte hydrogels at each deposition stage. The amino group in the 

branched PEI macromolecule is supposed to display a higher adhesion to gold-coated 

quartz substrate as compared to that in PAH due to less notable steric hindrances. Indeed, 

deposition of the first layer of branched PEI onto quartz from a flow of corresponding 

solution in PBS resulted in a mass gain of 0.3839 μg, which is three times as large as that 

during deposition of the first layer of PAH (0.1468 μg) (Figure 3, Table 1). Subsequent 

adsorption of UOx and PE layers always led to a weight gain and final washing of the film 

with PBS did not alter the resonant frequency of quartz, which confirmed the construction 

of a stable crowded interface through polyelectrolyte layer interactions [47]. Comparison 

of added mass values after deposition of the second layer of cationic polyelectrolyte onto 

PSS indicates a stronger interaction between PSS and PEI (+0.5686 μg) as compared to that 

between PAH and PEI (+0.0645 μg). Sharper peaks on the QCM curve corresponding to 

the adsorption of PAH/UOx/PSS/PAH/PSS multilayer as compared to broader ones in the 

case of PEI/UOx/PSS/PEI/PSS suggest the formation of more rigid film on the Au-coated 

quartz surface when using PAH polyelectrolytes instead of PEI. 

Figure 2. (a) Cyclic voltammograms of PB deposition. (b) SEM images of the PB-modified CF
electrode and corresponding EDX distribution maps of C, Fe, and N atoms.

Polymers 2022, 14, 5145 6 of 11 
 

 

 

Figure 3. QCM data for adsorbed (a) PAH/UOx/PSS/PAH/PSS and (b) PEI/UOx/PSS/PEI/PSS layers. 

Table 1. Average mass gain values from two independent QCM measurements. 

Polyelectrolyte System Layer Composition Added Mass, μg Final Mass, μg 

PAH/UOx/PSS/PAH/PSS 

PAH 0.1468 0.1468 

PAH/UOx 0.0544 0.2012 

PAH/UOx/PSS 0.0739 0.2751 

PAH/UOx/PSS/PAH 0.0645 0.3396 

PAH/UOx/PSS/PAH/PSS 0.0890 0.4286 

PEI/UOx/PSS/PEI/PSS 

PEI 0.3839 0.3839 

PEI/UOx 0.1637 0.5476 

PEI/UOx/PSS 0.1547 0.7023 

PEI/UOx/PSS/PEI 0.5686 1.2709 

PEI/UOx/PSS/PEI/PSS 0.4201 1.6910 

Evidence of the temporally stable LbL-assembled hydrogel made the fabrication of 

the CF-based working electrode possible and PB/CFE was sequentially coated with a hy-

drogel nanolayer of PAH–enzyme or PEI–enzyme composition. An interface based on CF, 

Ag paste, PE layers, and a membrane represented a pseudo-liquid reference electrode, 

which ensures stable and reproducible analytical signal [15,36]. The electrochemical sen-

sor made from three PE–UOx nanoarchitectures of working electrode 

(PAH/UOx/PSS/(PAH/PSS)2, PEI/UOx/PSS/(PEI/PSS)2, and PEI/UOx/PEI/PSS) showed a 

sufficiently high differentiation between oxidation and reduction peaks in cyclic voltam-

mogram upon addition of uric acid (Figure 4a–c), which indicates reversibility of the re-

dox process. Further calibration of the fabricated electrodes was made by plotting of de-

creasing oxidation peak current intensity against the increasing concentrations of UA in 

order to evaluate their relationship (Figure 4a–c). This resulted in a linear response of cur-

rent in a wide dynamic range of concentration of UA (1–70 μM; Figure 4d). The largest 

change of the analytical signal represented by the current intensity on the surface of CFE 

centered at ca. 300 mV, which corresponds to the UA → UOx → [Fe(CN)6]3− cascade elec-

tron transfer, was reported in the case of the PAH/UOx/PSS/(PAH/PSS)2 layer. The slope 

of the fitted line of current vs. lgC plot (10.64 ± 0.96 μA μM–1) indicated the highest sensi-

tivity of this electrode configuration (Figure 4d, blue line). It should be noted that the cur-

rent response of uricase-free polyelectrolyte-modified PB-CFEs to high concentrations of 

uric acid (70 μM) was exactly the same as that in PBS solution at pH 7.4 (Figure S1), which 

indicates the role of UOx as a mediator of electron transfer from UA to ferrocyanide ion. 

The detection limit of all fabricated sensors was further measured at the uric acid concen-

tration, at which signal-to-noise ratio is 3σ, and was estimated to be 0.81 ± 0.07 μM. The 

values of Michaelis–Menten constant (Km) of ca. 2 μM were determined from Hanes–

Woolf plots (Figure 4e) and confirmed high affinity of the immobilized enzyme to UA, 

which allows one to use the developed sensors for electrochemical detection of UA. 

Figure 3. QCM data for adsorbed (a) PAH/UOx/PSS/PAH/PSS and (b) PEI/UOx/PSS/PEI/PSS layers.



Polymers 2022, 14, 5145 6 of 10

Table 1. Average mass gain values from two independent QCM measurements.

Polyelectrolyte System Layer Composition Added Mass, µg Final Mass, µg

PAH/UOx/PSS/PAH/PSS

PAH 0.1468 0.1468
PAH/UOx 0.0544 0.2012

PAH/UOx/PSS 0.0739 0.2751
PAH/UOx/PSS/PAH 0.0645 0.3396
PAH/UOx/PSS/PAH/PSS 0.0890 0.4286

PEI/UOx/PSS/PEI/PSS

PEI 0.3839 0.3839
PEI/UOx 0.1637 0.5476

PEI/UOx/PSS 0.1547 0.7023
PEI/UOx/PSS/PEI 0.5686 1.2709

PEI/UOx/PSS/PEI/PSS 0.4201 1.6910

Evidence of the temporally stable LbL-assembled hydrogel made the fabrication of the
CF-based working electrode possible and PB/CFE was sequentially coated with a hydrogel
nanolayer of PAH–enzyme or PEI–enzyme composition. An interface based on CF, Ag
paste, PE layers, and a membrane represented a pseudo-liquid reference electrode, which
ensures stable and reproducible analytical signal [15,36]. The electrochemical sensor made
from three PE–UOx nanoarchitectures of working electrode (PAH/UOx/PSS/(PAH/PSS)2,
PEI/UOx/PSS/(PEI/PSS)2, and PEI/UOx/PEI/PSS) showed a sufficiently high differentia-
tion between oxidation and reduction peaks in cyclic voltammogram upon addition of uric
acid (Figure 4a–c), which indicates reversibility of the redox process. Further calibration
of the fabricated electrodes was made by plotting of decreasing oxidation peak current
intensity against the increasing concentrations of UA in order to evaluate their relationship
(Figure 4a–c). This resulted in a linear response of current in a wide dynamic range of
concentration of UA (1–70 µM; Figure 4d). The largest change of the analytical signal
represented by the current intensity on the surface of CFE centered at ca. 300 mV, which
corresponds to the UA→ UOx→ [Fe(CN)6]3− cascade electron transfer, was reported in
the case of the PAH/UOx/PSS/(PAH/PSS)2 layer. The slope of the fitted line of current vs.
lgC plot (10.64 ± 0.96 µA µM−1) indicated the highest sensitivity of this electrode configu-
ration (Figure 4d, blue line). It should be noted that the current response of uricase-free
polyelectrolyte-modified PB-CFEs to high concentrations of uric acid (70 µM) was exactly
the same as that in PBS solution at pH 7.4 (Figure S1), which indicates the role of UOx as a
mediator of electron transfer from UA to ferrocyanide ion. The detection limit of all fabri-
cated sensors was further measured at the uric acid concentration, at which signal-to-noise
ratio is 3σ, and was estimated to be 0.81 ± 0.07 µM. The values of Michaelis–Menten con-
stant (Km) of ca. 2 µM were determined from Hanes–Woolf plots (Figure 4e) and confirmed
high affinity of the immobilized enzyme to UA, which allows one to use the developed
sensors for electrochemical detection of UA. Comparison with the free uricase (340 µM [29])
indicates a higher enzyme activity (by more than two orders of magnitude).

UA detection within hydrogel nanoarchitectures was also probed for urine samples of
SARS-CoV-2 patients (Figure 5). The results of analysis using the proposed CF-based three-
electrode system and the crowded nanoarchitecture of PE–enzyme composition correlate
with the reference values of spectrophotometric assay showing a low variation due to
repeatability (standard deviation is 4.8% in the case of PEI/UOx/PSS/(PEI/PSS)2 to 7.0%
in the case of PAH/UOx/PSS/(PAH/PSS)2).

The obtained linear range, sensitivity, limit of detection, and Michaelis–Menten
constant values of the fabricated sensor show its competitiveness with analogous en-
zymatic uric acid electrochemical sensors based on screen-printed electrodes or metal
substrates [29,48–55], the main characteristics of which are listed in Table 2, as well as non-
enzymatic sensors [56]. Unfortunately, sensor performance data for the electrodes modified
with polyelectrolyte multilayers with alternating uricase layers [54] were insufficient for a
direct comparison with the sensor in this work, but our fabricated sensor benefits from a
lower consumption of uricase enzyme (one layer in this work vs. ten layers in [54]) and a



Polymers 2022, 14, 5145 7 of 10

less expensive substrate (CFE vs. Pt). Thus, the CF-based LbL-assembled uricase biosensor
is prospective for clinical use due to its low cost, portability, and a relatively simple design.

Figure 4. Cyclic voltammogram traces recorded using (a) PAH/UOx/PSS/(PAH/PSS)2,
(b) PEI/UOx/PSS/(PEI/PSS)2, and (c) PEI/UOx/PSS/PEI/PSS working electrodes and (d) cor-
responding calibration plots and (e) Hanes–Woolf plots for the calculation of the Michaelis–Menten
constant (Km).
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Table 2. Comparison of analytical characteristics of enzymatic electrochemical sensors of uric acid.

Sensor Linear Range, µM LOD, µM KM, µM Sensitivity,
µA/µM

UOx/ZnO/ITO [48] 5–750 130 n/a 0.010
Nafion/UOx/ZnO/FTO [49] 10–1500 2.5 n/a 0.345

PANI–UOx/ITO [29] 10–600 10 5.1 0.016–0.047
UOx/PANI–PB/Pt [50] 10–160 2.6 34.13 0.160

UOx/MWCNT/SPE [51] 0.0001–1 0.0005 0.04 418
UOx/MWCNT-CMC/Au [52] 20–5000 2.8 630 0.233

GA/UOx/Chitosan/SACNT/Pt [53] 100–1000 1.0 n/a 0.518
(UOx/PAA)9UOx/(PAA/PVS)2PAA/Pt [54] 1–1000 n/a n/a n/a

UOx/Fc/Cu2O/GCE [55] 0.1–1000 0.06 34.74 0.002
This work 1–70 0.81 ± 0.07 2 10.64 ± 0.96

4. Conclusions

An approach to the design of a uric acid sensor based on a carbon fiber electrode coated
by uricase enzyme in a crowded medium of synthetic polyelectrolytes through electrostatic
interactions has been proposed. The competitiveness of electrochemical enzyme assay
with spectrophotometric assay for the determination of uric acid in terms of repeatability
has been demonstrated. The proposed carbon fiber system modified with the hydrogel
nanolayer of polyelectrolytes can be used to collect big data and apply machine learning
for fundamental physicochemical study of proteins in crowded systems and practical
application as single-use electrochemical sensors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14235145/s1, Figure S1: Cyclic voltammograms recorded
using (PEI/PSS)2/PB/CF working electrode in PBS solution or 0.07 mM solution of UA in PBS.
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