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Abstract

While most classical approaches to Granger causality detection assume linear dynamics, many 

interactions in real-world applications, like neuroscience and genomics, are inherently nonlinear. 

In these cases, using linear models may lead to inconsistent estimation of Granger causal 

interactions. We propose a class of nonlinear methods by applying structured multilayer 

perceptrons (MLPs) or recurrent neural networks (RNNs) combined with sparsity-inducing 

penalties on the weights. By encouraging specific sets of weights to be zero—in particular, 

through the use of convex group-lasso penalties—we can extract the Granger causal structure. 

To further contrast with traditional approaches, our framework naturally enables us to efficiently 

capture long-range dependencies between series either via our RNNs or through an automatic lag 

selection in the MLP. We show that our neural Granger causality methods outperform state-of-the-

art nonlinear Granger causality methods on the DREAM3 challenge data. This data consists of 

nonlinear gene expression and regulation time courses with only a limited number of time points. 

The successes we show in this challenging dataset provide a powerful example of how deep 

learning can be useful in cases that go beyond prediction on large datasets. We likewise illustrate 

our methods in detecting nonlinear interactions in a human motion capture dataset.
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1 INTRODUCTION

In many scientific applications of multivariate time series, it is important to go beyond 

prediction and forecastability and instead interpret the structure within the time series. 

Typically, this structure provides information about the contemporaneous and lagged 

relationships within and between individual series and how these series interact. For 

example, in neuroscience it is important to determine how brain activation spreads through 

brain regions [1], [2], [3], [4]; in finance it is important to determine groups of stocks with 

low covariance to design low risk portfolios [5]; and, in biology, it is of great interest to infer 

gene regulatory networks from time series of gene expression levels [6], [7]. However, for a 

given statistical model or methodology, there is often a tradeoff between the interpretability 

of these structural relationships and expressivity of the model dynamics.

Among the many choices for understanding relationships between series, Granger causality 

[8], [9] is a commonly used framework for time series structure discovery that quantifies 

the extent to which the past of one time series aids in predicting the future evolution of 

another time series. When an entire system of time series is studied, networks of Granger 

causal interactions may be uncovered [10]. This is in contrast to other types of structure 

discovery, like coherence [11] or lagged correlation [11], which analyze strictly bivariate 

covariance relationships. That is, Granger causality metrics depend on the activity of the 

entire system of time series under study, making them more appropriate for understanding 

high-dimensional complex data streams. Methodology for estimating Granger causality may 

be separated into two classes, model-based and model-free.

Most classical model-based methods assume linear time series dynamics and use the popular 

vector autoregressive (VAR) model [7], [9]. In this case, the time lags of a series have a 

linear effect on the future of each other series, and the magnitude of the linear coefficients 

quantifies the Granger causal effect. Sparsity-inducing regularizers, like the Lasso [12] or 

group lasso [13], help scale linear Granger causality estimation in VAR models to the 

high-dimensional setting [7], [14].

In classical linear VAR methods, one must explicitly specify the maximum time lag to 

consider when assessing Granger causality. If the specified lag is too short, Granger causal 

connections occurring at longer time lags between series will be missed while overfitting 

may occur if the lag is too large. Lag selection penalties, like the hierarchical lasso [15] 

and truncating penalties [16], have been used to automatically select the relevant lags while 

protecting against overfitting. Furthermore, these penalties lead to a sparse network of 

Granger causal interactions, where only a few Granger causal connections exist for each 

series — a crucial property for scaling Granger causal estimation to the high-dimensional 

setting, where the number of time series and number of potentially relevant time lags all 

scale with the number of observations [17].

Model-based methods may fail in real world cases when the relationships between the 

past of one series and future of another falls outside of the model class [18], [19], [20]. 

This typically occurs when there are nonlinear dependencies between the past of one series 

and the future. Model-free methods, like transfer entropy [2] or directed information [21], 
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are able to detect these nonlinear dependencies between past and future with minimal 

assumptions about the predictive relationships. However, these estimators have high variance 

and require large amounts of data for reliable estimation. These approaches also suffer from 

a curse of dimensionality [22] when the number of series grows, making them inappropriate 

in the high-dimensional setting.

Neural networks are capable of representing complex, nonlinear, and non-additive 

interactions between inputs and outputs. Indeed, their time series variants, such as 

autoregressive multilayer perceptrons (MLPs) [23], [24], [25] and recurrent neural networks 

(RNNs) like long-short term memory networks (LSTM) [26] have shown impressive 

performance in forecasting multivariate time series given their past [27], [28], [29]. While 

these methods have shown impressive predictive performance, they are essentially black box 

methods and provide little interpretability of the multivariate structural relationships in the 

series. A second drawback is that jointly modeling a large number of series leads to many 

network parameters. As a result, these methods require much more data to fit reliably and 

tend to perform poorly in high-dimensional settings.

We present a framework for structure learning in MLPs and RNNs that leads to interpretable 

nonlinear Granger causality discovery. The proposed framework harnesses the impressive 

flexibility and representational power of neural networks. It also sidesteps the black-box 

nature of many network architectures by introducing component-wise architectures that 

disentangle the effects of lagged inputs on individual output series. For interpretability and 

an ability to handle limited data in the high-dimensional setting, we place sparsity-inducing 

penalties on particular groupings of the weights that relate the histories of individual series 

to the output series of interest. We term these sparse component-wise models, e.g. cMLP 

and cLSTM, when applied to the MLP and LSTM, respectively. In particular, we select for 

Granger causality by adding group sparsity penalties [13] on the outgoing weights of the 

inputs.

As in linear methods, appropriate lag selection is crucial for Granger causality selection in 

nonlinear approaches — especially in highly parametrized models like neural networks. 

For the MLP, we introduce two more structured group penalties [15], [30] [31] that 

automatically detect both nonlinear Granger causality and also the lags of each inferred 

interaction. Our proposed cLSTM model, on the other hand, sidesteps the lag selection 

problem entirely since the recurrent architecture efficiently models long range dependencies 

[26]. When the true network of nonlinear interactions is sparse, both cMLP and cLSTM 

approaches will select a subset of the time series that Granger-cause the output series, no 

matter the lag of interaction. To our knowledge, these approaches represent the first set 

of nonlinear Granger causality methods applicable in high dimensions without requiring 

precise lag specification.

We first validate our approach and associated penalties via simulations on both linear VAR 

and nonlinear Lorenz-96 data [32], showing that our nonparametric approach accurately 

selects the Granger causality graph in both linear and nonlinear settings. Second, we 

compare our cMLP and cLSTM models with existing Granger causality approaches [33], 

[34] on the difficult DREAM3 gene regulatory network recovery benchmark datasets [35] 
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and find that our methods outperform a wide set of competitors across all five datasets. 

Finally, we use our cLSTM method to explore Granger causal interactions between body 

parts during natural motion with a highly nonlinear and complex dataset of human motion 

capture [36], [37]. Our implementation is available online at https://github.com/iancovert/

Neural-GC.

Traditionally, the success stories of neural networks have been on prediction tasks in 

large datasets. In contrast, here our performance metrics relate to our ability to produce 

interpretable structures of interaction amongst the observed time series. Furthermore, these 

successes are achieved in limited data scenarios. Our ability to produce interpretable 

structures and train neural network models with limited data can be attributed to our use 

of structured sparsity-inducing penalties and the regularization such penalties provide, 

respectively. We note that sparsity inducing penalties have been used for architecture 

selection in neural networks [38], [39]. However, the focus of the architecture selection 

was on improving predictive performance rather than on returning interpretable structures of 

interaction among observed quantities.

More generally, our proposed formulation shows how structured penalties common in 

regression [30], [31] may be generalized for structured sparsity and regularization in neural 

networks. This opens up new opportunities to use these tools in other neural network 

context, especially as applied to structure learning problems. In concurrent work, a similar 

notion of sparse-input neural networks were developed for high-dimensional regression and 

classification tasks for independent data [40].

2 LINEAR GRANGER CAUSALITY

Let xt ∈ ℝp be a p-dimensional stationary time series and assume we have observed the 

process at T time points, x1, …, xT . Using a model-based approach, as is our focus, Granger 

causality in time series analysis is typically studied using the vector autoregressive model 

(VAR) [9]. In this model, the time series at time t, xt, is assumed to be a linear combination 

of the past K lags of the series

xt = ∑
k = 1

K
A(k)xt − k + et, (1)

where A(k) is a p × p matrix that specifies how lag k affects the future evolution of the series 

and et is zero mean noise. In this model, time series j does not Granger-cause time series i 

if and only if for all k, Aij
(k) = 0. A Granger causal analysis in a VAR model thus reduces to 

determining which values in A(k) are zero over all lags. In higher dimensional settings, this 

may be determined by solving a group lasso regression problem [41]
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min
A(1), …, A(K)

∑
t = K

T
xt − ∑

k = 1

K
A(k)xt − k

2

2

+λ∑
ij

Aij
(1), …, Aij

(K)

2
,

(2)

where ⋅ 2 denotes the L2 norm. The group lasso penalty over all lags of each (i, j) 

entry, Aij
(1), …, Aij

(K)
2 jointly shrinks all Aij

k  parameters to zero across all lags k [13]. The 

hyper-parameter λ > 0 controls the level of group sparsity.

The group penalty in Equation (2) may be replaced with a structured hierarchical penalty 

[30], [42] that automatically selects the lag of each Granger causal interaction [15]. 

Specifically, the hierarchical lag selection problem is given by

min
A(1), …, A(K)

∑
t = K

T
xt − ∑

k = 1

K
A(k)xt − k

2

2

+λ∑
ij

∑
k = 1

K
Aij

(k), …, Aij
(K)

2,

(3)

where λ > 0 now controls the lag order selected for each interaction. Specifically, at higher 

values of λ there exists a k for each (i, j) pair such that the entire contiguous set of lags 

Aij
(k), …, Aij

(K)  is shrunk to zero. If k = 1 for a particular (i, j) pair, then all lags are equal to 

zero and series i does not Granger-cause series j; thus, this penalty simultaneously selects for 

Granger non-causality and the lag of each Granger causal pair.

3. MODELS FOR NEURAL GRANGER CAUSALITY

3.1 Adapting Neural Networks for Granger Causality

A nonlinear autoregressive model (NAR) allows xt to evolve according to more general 

nonlinear dynamics [25]

xt = g x < t1, …, x < tp + et (4)

where x < ti = …, x(t − 2)i, x(t − 1)i  denotes the past of series i and we assume additive zero 

mean noise et.

In a forecasting setting, it is common to jointly model the full nonlinear functions g using 

neural networks. Neural networks have a long history in NAR forecasting, using both 

traditional architectures [25], [43], [44] and more recent deep learning techniques [27], [29], 

[45]. These approaches either utilize an MLP where the inputs are x < t = x(t − 1): (t − K), for 

some lag K, or a recurrent network, like an LSTM.

There are two problems with applying the standard neural network NAR model in the 

context of inferring Granger causality. The first is that these models act as black boxes that 
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are difficult to interpret. Due to sharing of hidden layers, it is difficult to specify sufficient 

conditions on the weights that simultaneously allows series j to Granger cause series i but 

not Granger cause series i′ for i ≠ i′. Second, a joint network over all xti for all i assumes that 

each time series depends on the same past lags of the other series. However, in practice, each 

xti may depend on different past lags of the other series.

To tackle these challenges, we propose a structured neural network approach to modeling 

and estimation. First, instead of modeling g jointly across all outputs xt, as is standard in 

multivariate forecasting, we instead focus on each output component with a separate model:

xti = gi x < t1, …, x < tp + eti

Here, gi is a function that specifies how the past K lags are mapped to series i. In this 

context, Granger non-causality between two series j and i means that the function gi does not 

depend on x < tj, the past lags of series j. More formally,

Definition 1.—Time series j is Granger non-causal for time series i if for all 

x < t1, …, x < tp  and all x < tj′ ≠ x < tj,

gi x < t1, …, x < tj, …, x < tp =
gi x < t1, …, x < tj′ , …x < tp

that is, gi is invariant to x < tj.

In Section 3.2 and 3.3 we consider these component models in the context of MLPs and 

LSTMs. We examine a set of sparsity inducing penalties as in Equations (2) and (3) 

that allow us to infer the invariances of Definition 1 that lead us to identify Granger 

non-causality.

3.2 Sparse Input MLPs

Our first approach is to model each output component gi with a separate MLP, so that we 

can easily disentangle the effects from inputs to outputs. We refer to this approach, displayed 

pictorially in Figure 1, as a component-wise MLP (cMLP). Let gi take the form of an MLP 

with L − 1 layers and let the vector ℎt
l ∈ ℝH denote the values of the m-dimensional lth 

hidden layer at time t. The parameters of the neural network are given by weights W and 

biases b at each layer, W = W 1, …, W L  and b = b1, …, bL . To draw an analogy with the 

time series VAR model, we further decompose the weights at the first layer across time 

lags, W 1 = W 11, …, W 1K . The dimensions of the parameters are given by W 1 ∈ ℝH × pK, 

W l ∈ ℝH × H for 1 < l < L, W L ∈ ℝH, bl ∈ ℝH for l < L and bL ∈ ℝ. Using this notation, the 

vector of first layer hidden values at time t are given by
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ℎt
1 = σ ∑

k = 1

K
W 1kxt − k + b1 , (5)

where σ is an activation function. Typical activation functions are either logistic or tanh 

functions. The vector of hidden units in subsequent layers is given by a similar form, also 

with σ activation functions:

ℎt
l = σ W lℎt

l − 1 + bl . (6)

After passing through the L−1 hidden layers, the time series output, xti, is given by a linear 

combination of the units in the final hidden layer

xti = gi x < t + eti = W Lℎt
L − 1 + bL + eti (7)

where WL is the linear output decoder and ℎt
L is the final hidden output from the final L − 

1th layer. The error term, eti, is modeled as mean zero Gaussian noise. We chose this linear 

output decoder since our primary motivation involves real-valued multivariate time series. 

However, other decoders like a logistic, softmax, or poisson likelihood with exponential link 

function [46], could be used to model nonlinear Granger causality in multivariate binary 

[47], categorical [48], or positive count time series [47].

3.2.1 Penalized Selection of Granger Causality in the cMLP—In Equation (5), 

if the jth column of the first layer weight matrix, W : j
1k, contains zeros for all k, then series 

j does not Granger-cause series i. That is, x(t − k)j for all k does not influence the hidden 

unit ℎt
1 and thus the output xti. Following Definition 1, we see gi is invariant to x < tj. Thus, 

analogously to the VAR case, one may select for Granger causality by applying a group 

penalty to the columns of the W1k matrices for each gi,

min
W

∑
t = K

T
xit − gi x(t − 1): (t − K)

2 + λ ∑
j = 1

p
Ω W : j

1 . (8)

where Ω is a penalty that shrinks the entire set of first layer weights for input series j, i.e., 

W : j
1 = W : j

11, …, W : j
1K , to zero. We consider three different penalties, which, together, show 

how we recast structured regression penalties to the neural network case.

We first consider a group lasso penalty over the entire set of outgoing weights across all lags 

for time series j, W : j
1 ,

Ω W : j
1 = W : j

1
F , (9)

where ⋅ F  is the Froebenius matrix norm. This penalty shrinks all weights associated with 

lags for input series j equally. For large enough λ, the solutions to Equation (8) with the 
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group penalty in Equation (9) will lead to many zero columns in each W1k matrix, implying 

only a small number of estimated Granger causal connections. This group penalty is the 

neural network analogue of the group lasso penalty across lags in Equation 2 for the VAR 

case.

To detect the lags where Granger causal effects exists, we propose a new penalty called a 

group sparse group lasso penalty. This penalty assumes that only a few lags of a series j 
are predictive of series i, and provides both sparsity across groups (a sparse set of Granger 

causal time series) and sparsity within groups (a subset of relevant lags)

Ω W : j
1 = α W : j

1
F + (1 − α) ∑

k = 1

K
W : j

1k
2 (10)

where α ∈ (0, 1) controls the tradeoff in sparsity across and within groups. This penalty is a 

related to, and is a generalization of, the sparse group lasso [49].

Finally, we may simultaneously select for both Granger causality and the lag order of the 

interaction by replacing the group lasso penalty in Equation (8) with a hierarchical group 

lasso penalty [15] in the MLP optimization problem,

Ω W : j
1 = ∑

k = 1

K
W : j

1k, …, W : j
1K

F . (11)

The hierarchical penalty leads to solutions such that for each j there exists a lag k such that 

all W : j
1k′ = 0 for k′ > k and all W : j

1k′ ≠ 0 for k′ ≤ k. Thus, this penalty effectively selects 

the lag of each interaction. The hierarchical penalty also sets many columns of W1k to be 

zero across all k, effectively selecting for Granger causality. In practice, the hierarchical 

penalty allows us to fix K to a large value, ensuring that no Granger causal connections at 

higher lags are missed. Example sparsity patterns selected by the three penalties are shown 

in Figure 2.

While the primary motivation of our penalties is for efficient Granger causality selection, 

the lag selection penalties in Equations (10) and (11) are also of independent interest to 

nonlinear forecasting with neural networks. In this case, over-specifying the lag of a NAR 

model leads to poor generalization and overfitting [25]. One proposed technique in the 

literature is to first select the appropriate lags using forward orthogonal least squares [25]; 

our approach instead combines model fitting and lag selection into one procedure.

3.3 Sparse Input RNNs

Recurrent neural networks (RNNs) are particularly well suited for modeling time series, as 

they compress the past of a time series into a hidden state, aiming to capture complicated 

nonlinear dependencies at longer time lags than traditional time series models. As with 

MLPs, time series forecasting with RNNs typically proceeds by jointly modeling the entire 

evolution of the multivariate series using a single recurrent network.
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As in the MLP case, it is difficult to disentangle how each series affects the evolution 

of another series when using an RNN. This problem is even more severe in complicated 

recurrent networks like LSTMs. To model Granger causality with RNNs, we follow the 

same strategy as with MLPs and model each gi function using a separate RNN, which we 

refer to as a component-wise RNN (cRNN). For simplicity, we assume a single-layer RNN, 

but our formulation may be easily generalized to accommodate more layers.

Consider an RNN for predicting a single component. Let ht ∈ ℝH represent the H-

dimensional hidden state at time t, representing the historical context of the time series 

for predicting a component xti. The hidden state at time t + 1 is updated recursively

ht = fi xt, ht − 1 , (12)

where fi is some nonlinear function that depends on the particular recurrent architecture.

Due to their effectiveness at modeling complex time dependencies, we choose to model the 

recurrent function f using an LSTM [26]. The LSTM model introduces a second hidden state 

variable ct, referred to as the cell state, giving the full set of hidden parameter as (ct, ht). The 

LSTM model updates its hidden states recursively as

ft = σ W fxt + Ufh(t − 1)

it = σ W inxt + Uinh(t − 1)

ot = σ W oxt + Uoh(t − 1)

ct = ft ⊙ ct − 1 + it ⊙ σ W cxt + Ucht − 1
ht = ot ⊙ σ ct

(13)

where ⊙ denotes element-wise multiplication and it, ft, and ot represent input, forget and 

output gates, respectively, that control how each component of the state cell, ct, is updated 

and then transferred to the hidden state used for prediction, ht. In particular, the forget 

gate, ft, controls the amount that the past cell state influences the future cell state, and the 

input gate controls the amount that the current observation influences the new cell state. 

The additive form of the cell state update in the LSTM allows it to encode long-range 

dependencies, since cell states from far in the past may still influence the cell state at time 

t if the forget gates remain close to one. In the context of Granger causality, this flexible 

architecture can represent long-range, nonlinear dependencies between time series. As in the 

cMLP, the output for series i at time t is given by a linear decoding of the hidden state

xti = gi x < t + eti = W 2ht + eti, (14)

where W2 are the output weights. We let W = (W1, W2, U1) be the full set of parameters 

where W 1 = W f ⊤, W in ⊤, W o ⊤, W c ⊤ ⊤
 and U1 = Uf ⊤, Uin ⊤, Uo ⊤, Uc ⊤ ⊤

represent the full set of first layer weights. As in the MLP case, other decoding schemes 

could be used in the case of categorical or count data.
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3.3.1 Granger Causality Selection in LSTMs—In Equation (14) the set of input 

matrices W1 controls how the past time series affect the forget gates, input gates, output 

gates, and cell updates, and, consequently, the update of the hidden representation. Like in 

the MLP case, for this component-wise LSTM model (cLSTM) a sufficient condition for 

Granger non-causality of an input series j on an output i is that all elements of the jth column 

of W1 are zero, W : j
1 = 0. Thus, we may select series that Granger-cause series i using a 

group lasso penalty across columns W1 of

min
W

∑
t = 2

T
xit − gi x < t

2 + λ ∑
j = 1

p
W : j

1
2 . (15)

For a large enough λ, many columns of W1 will be zero, leading to a sparse set of Granger 

causal connections. An example sparsity pattern in the LSTM parameters is shown in Figure 

3.

4 OPTIMIZING THE PENALIZED OBJECTIVES

4.1 Optimizing the Penalized cMLP Objective

We optimize the nonconvex objectives of Equation (8) using proximal gradient descent [50]. 

Proximal optimization is important in our context because it leads to exact zeros in the 

columns of the input matrices, a critical requirement for interpretating Granger non-causality 

in our framework. Additionally, a line search can be incorporated into the optimization 

algorithm to ensure convergence to a local minimum [51]. The algorithm updates the 

network weights W iteratively starting with W(0) by

W(m + 1) = proxγ(m)λΩ W(m) − γ(m)∇L W(m) , (16)

where L = ∑t = K
T xti − gi x < t

2 is the the neural network prediction loss and proxλΩ is 

the proximal operator with respect to the sparsity inducing penalty function Ω. The entries 

in W(0) are initialized randomly from a standard normal distribution. The scalar γ(m) is the 

step size, which is either set to a fixed value or determined by line search [51]. While the 

objectives in Equation (8) are nonconvex, we find that no random restarts are required to 

accurately detect Granger causality connections.

Since the sparsity promoting group penalties are only on the input weights, the proximal step 

for weights at the higher levels is simply the identity function. The proximal step for the 

group lasso penalty on the input weights is given by a group soft-thresholding operation on 

the input weights [50]

proxγ(m)λΩ W :k
i = soft W :k

1 , γ(m)λ (17)
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= 1 − λγ(m)

W : j
1

F +
W :k

1 , (18)

where (x)+ = max(0, x). For the group sparse group lasso, the proximal step on the input 

weights is given by group-soft thresholding on the lag specific weights, followed by group 

soft thresholding on the entire resulting input weights for each series, see Algorithm 2. 

The proximal step on the input weights for the hierarchical penalty is given by iteratively 

applying the group soft-thresholding operation on each nested group in the penalty, from the 

smallest group to the largest group [42], and is shown in Algorithm 3.

Algorithm 1

Proximal gradient descent with line search algorithm for solving Equation (8). Proximal 

steps given in Equation (17) for the group lasso penalty, in Algorithm 2 for the group sparse 

group lasso penalty, and in Algorithm 3 for the hierarchical penalty.

Require:λ > 0

 m = 0, initialize W(0)

 while not converged do

  m = m + 1

  determine γ by line search

  forj = 1 to pdo

   W : j
1(m + 1) = proxγλΩ W : j

1(m) − γ ∇W : j1 L W(m)

  end for

  forl = 2 to Ldo

   W l(m + 1) = W l(m) − γ ∇W lL W(m)

  end for

 end while

 return (W(m))

Algorithm 2

One pass algorithm to compute the proximal map for the group sparse group lasso penalty, 

for relevant lag selection in the cMLP model.

Require:λ > 0, γ > 0, W : j
11, …, W : j

1K

 fork = K to 1 do

  W : j
1k = soft W : j

1k, γλ

 end for

 W : j
11, …, W : j

1K = soft W : j
11, …, W : j

1K , γλ

 return W : j
11, …, W : j

1K
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Algorithm 3

One pass algorithm to compute the proximal map for the hierarchical group lasso penalty, 

for automatic lag selection in the cMLP model.

Require:λ > 0, γ > 0, W : j
11, …, W : j

1K

 fork = K to 1 do

  W : j
1k, …, W : j

1K = soft W : j
1k, …, W : j

1K , γλ

 end for

 return W : j
11, …, W : j

1K

Since all datasets we study are relatively small, the gradients are with respect to the full data 

objective (i.e., all time points); for larger datasets one could use proximal stochastic gradient 

[52].

4.2 Optimizing the Penalized cLSTM Objective

Similar to the cMLP, we optimize Equation (15) using proximal gradient descent. When the 

data consists of many replicates of short time series, like in the DREAM3 data in Section 7, 

we perform a full backpropagation through time (BPTT) to compute the gradients. However, 

for longer series we truncate the BPTT by unlinking the hidden sequences. In practice, we 

do this by splitting the dataset up into equal sized batches, and treating each batch as an 

independent realization. Under this approach, the gradients used to optimize Equation (15) 

are only approximations of the gradients of the full cLSTM model. This is very common 

practice in the training of of RNNs [53], [54], [55]. The full optimization algorithm for 

training is shown in Algorithm 4.

Algorithm 4

Proximal gradient descent with line search algorithm for solving Equation (15) for the 

cLSTM with group lasso penalty.

Require:λ > 0

 m = 0, initialize W(0)

 while not converged do

  m = m + 1

  compute ∇L W(m)  by BPTT (truncated for large T)

  determine γ by line search.

  forj = 1 to pdo

   W : j
1(m + 1) = soft W : j

1(m) − γ ∇W : j1 L W(m) , γλ

  end for

  W 2(m + 1) = W 2(m) − γ ∇W 2L W(m)
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  U1(m + 1) = U1(m) − γ ∇U1L W(m)

 end while

 return (W(m))

5 COMPARING cMLP AND CLSTM MODELS FOR GRANGER CAUSALITY

Both cMLP and cLSTM frameworks model each component function gi using independent 

networks for each i. For the cMLP model, one needs to specify a maximum possible 

model lag K. However, our lag selection strategy (Equation 11) allows one to set that to 

a large value and the weights for higher lags are automatically removed from the model. 

On the other hand, the cLSTM model requires no maximum lag specification, and instead 

automatically learns the memory of each interaction. As a consequence, the cMLP and 

cLSTM differ in the amount of data used for training, as noted by a comparison of the t 
index in Equation (15) and Equation (11). For a length T series, the cMLP and cLSTM 

models use T − K and T − 1 data points, respectively. While insignificant for large T, when 

the data consist of independent replicates of short series, as in the DREAM3 data in Section 

7, the difference may be important. This ability to simultaneously model longer range 

dependencies while harnessing the full training set may explain the impressive performance 

of the cLSTM in the DREAM3 data in Section 7.

Finally, the zero outgoing weights in both the cMLP and cLSTM are a sufficient but not 

necessary condition to represent Granger non-causality. Indeed, series i could be Granger 

non-causal of series j through a complex configuration of weights that exactly cancel each 

other. However, because we wish to interpret the outgoing weights of the inputs as a measure 

of dependence, it is important that these weights reflect the true relationship between inputs 

and outputs. Our penalization schemes in both cMLP and cLSTM acts as a prior that 

biases the network to represent Granger non-causal relationships with zeros in the outgoing 

weights of the inputs, rather than through other configurations. Our simulation results in 

Section 6 validate this intuition.

6 SIMULATION EXPERIMENTS

6.1 cMLP and cLSTM Simulation Comparison

To compare and analyze the performance of our two approaches, the cMLP and cLSTM, 

we apply both methods to detecting Granger causality networks in simulated linear VAR 

data and simulated Lorenz-96 data [32], a nonlinear model of climate dynamics. Overall, the 

results show that our methods can accurately reconstruct the underlying Granger causality 

graph in both linear and nonlinear settings. We first describe the results from the Lorenz 

experiment in detail and present the VAR results subsequently.

6.1.1 Lorenz-96 Model—The continuous dynamics in a p-dimensional Lorenz model 

are given by
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dxti
dt = xt(i + 1) − xt(i − 2) xt(i − 1) − xti + F, (19)

where xt( − 1) = xt(p − 1), xt0 = xtp, xt(p + 1) = xt1 and F is a forcing constant that determines 

the level of nonlinearity and chaos in the series. Example series for two settings of F are 

displayed in Figure 4. We numerically simulate a p = 20 Lorenz-96 model with a sampling 

rate of Δt = 0.05, which results in a multivariate, nonlinear time series with sparse Granger 

causal connections.

Average values of area under the ROC curve (AUROC) for recovery of the causal structure 

across five initialization seeds are shown in Table 1, and we obtain results under three 

different data set lengths, T ∈ (250, 500, 1000), and two forcing constants, F ∈ (10, 40). We 

compare results for the cMLP and cLSTM with two baseline methods that also rely on 

neural networks, the IMV-LSTM and leave-one-out LSTM (LOO-LSTM) approaches. The 

IMV-LSTM [56], [57] uses attention weights to provide greater interpretability than standard 

LSTMs, and it can detect Granger causal relationships by aggregating its attention weights; 

LOO-LSTM detects Granger causal relationships through the increase in loss that results 

from withholding an input time series (see Appendix).

We use H = 100 hidden units for all four methods, as experiments show that performance 

does not improve with a different number of units. While more layers may prove beneficial, 

for all experiments we fix the number of hidden layers, L, to one and leave the effects 

of additional hidden layers to future work. For the cMLP, we use the hierarchical penalty 

with model lag of K = 5; see Section 6.2 for a performance comparison of several possible 

penalties across model input lags.

For our methods, we compute AUROC values by sweeping λ across a range of values; 

discarded edges (inferred Granger non-causality) for a particular λ setting are those whose 

associated L2 norm of the input weights of the neural network is equal to zero. Note that 

our proximal gradient algorithm sets many of these groups to be exactly zero. We compute 

AUROC values for the IMV-LSTM and LOO-LSTM by sweeping a range of thresholds 

for either the attention values or the increase in loss due to withholding time series (see 

Appendix).

As expected, the results indicate that the cMLP and cLSTM performance improves as the 

data set size T increases. The cMLP outperforms the cLSTM both in the less chaotic regime 

of F = 10 and the more chaotic regime of F = 40, but the gap in their performance narrows 

as more data is used. Both methods outperform the IMV-LSTM and LOO-LSTM by a wide 

margin. Furthermore, our models’ 95% confidence intervals are relatively narrow, at less 

than 1% AUROC for the cLSTM and cMLP, compared with 3–5% for the IMV-LSTM.

To understand the role of the number of hidden units in our methods, we perform an ablation 

study to test different values of H; the results show that both the cMLP and cLSTM are 

robust to smaller H values, but that their performance benefits from H = 100 hidden units 

(see Appendix). Additionally, we investigate the importance of the optimization algorithm; 

we found that Adam [58], proximal gradient descent [50] and proximal gradient descent 
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with a line search [51] lead to similar results (see Appendix). However, because Adam 

requires a thresholding parameter and the line search is computationally costly, we use 

standard proximal gradient descent in the remainder of our experiments.

6.1.2 VAR Model—To analyze our methods’ performance when the true underlying 

dynamics are linear, we simulate data from p = 20 VAR(1) and VAR(2) models with 

randomly generated sparse transition matrices. To generate sparse dependencies for each 

time series i, we create self dependencies and randomly select three more dependencies 

among the other p − 1 time series. Where series i depends on series j, we set Aij
k = 0.1 for k 

= 1 or k = 1,2, and all other entries of A are set to zero. Examining both VAR models allows 

us to see how well our methods detect Granger causality at longer time lags, even though no 

time lag is explicitly specified in our models. Our results are the average over five random 

initializations for a single dependency graph.

The AUROC results are displayed in Table 2 for the cLSTM, cMLP, IMV-LSTM, and 

LOO-LSTM approaches for three dataset lengths, T ∈ (250, 500, 1000). As expected, the 

performance of the cLSTM and cMLP improves at larger T, and, as in the Lorenz-96 

case, both models outperform the IMV-LSTM and LOO-LSTM by a wide margin. The 

cMLP remains more robust than the cLSTM with smaller amounts of data, but the cLSTM 

outperforms the cMLP on several occasions with T = 500 or T = 1000.

The IMV-LSTM consistently underperforms our methods with these datasets, likely because 

it is not explicitly designed for Granger causality discovery. Our finding that the IMV-

LSTM performs poorly at this task is in line with recent work suggesting that attention 

mechanisms should not be understood as indicators of feature importance [59]. The LOO-

LSTM approach also achieves surprisingly poor performance, likely due to two factors: (i) 

unregularized LSTMs are prone to overfitting in the low-data regime, even when Granger 

causal time series are held out, and (ii) withholding a single Granger causal time series will 

not impact the loss if the remaining time series have dependencies that retain its signal.

6.2 Quantitative Analysis of the Hierarchical Penalty

We next quantitatively compare three possible structured penalties for Granger causality 

selection in the cMLP model. In Section 3.2 we introduced the full group lasso (GROUP) 

penalty over all lags (Equation 8), the group sparse group lasso (MIXED) (Equation 10) and 

the hierarchical (HIER) lag selection penalty (Equation 11). We compare these approaches 

across various choices of the cMLP model’s maximum lag, K ∈ (5, 10, 20). We use H 
= 10 hidden units for data simulated from the nonlinear Lorenz model with F = 20, p 
= 20, and T = 750. As in Section 6.1, we compute the mean AUROC over five random 

initializations and display the results in Table 3. Importantly, the hierarchical penalty 

outperforms both group and mixed penalties across all model input lags K. Furthermore, 

performance significantly declines as K increases in both group and mixed settings while 

the performance of the hierarchical penalty stays roughly constant as K increases. This 

result suggests that performance of the hierarchical penalty for nonlinear Granger causality 

selection is robust to the input lag, implying that precise lag specification is unnecessary. In 
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practice, this allows one to set the model lag to a large value without worrying that nonlinear 

Granger causality detection will be compromised.

6.3 Qualitative Analysis of the Hierarchical Penalty

To qualitatively validate the performance of the hierarchical group lasso penalty for 

automatic lag selection, we apply our penalized cMLP framework to data generated from a 

sparse VAR model with longer interactions. Specifically, we generate data from a p = 10, 

VAR(3) model as in Section 2. To generate sparse dependencies for each time series i, we 

create self dependencies and randomly select two more dependencies among the other p−1 

time series. When series i depends on series j, we set Aij
k = 0.1 for k = 1, 2, 3. All other 

entries of A are set to zero. This implies that the Granger causal connections that do exist are 

of true lag 3. We run the cMLP with the hierarchical group lasso penalty and a maximal lag 

order of K = 5; for comparison, we also train a VAR model with a hierarchical penalty and 

maximal lag order K = 5.

We visually display the selection results for one cMLP (i.e., one output series) and the VAR 

baseline across a variety of λ settings in Figure 5. For the lower λ = 4.09e–4 setting, the 

cMLP both (i) overestimates the lag order for a few input series and (ii) allows some false 

positive Granger causal connections. For the higher λ = 7.94e–4, lag selection performs 

almost perfectly, in addition to correct estimation of the Granger causality graph. Higher λ 
values lead to larger penalization on longer lags, resulting in weaker long-lag connections. 

The VAR model, which is ideal for VAR data, does not perform noticeably better. While 

we show results for multiple λ for visualization, in practice one may use cross validation to 

select the appropriate λ, and in turn, the per-interaction lag.

7 DREAM CHALLENGE

We next apply our methods to estimate Granger causality networks from a realistically 

simulated time course gene expression data set. The data are from the DREAM3 challenge 

[35] and provide a difficult, nonlinear data set for rigorously comparing Granger causality 

detection methods [33], [34]. The data is simulated using continuous gene expression and 

regulation dynamics, with multiple hidden factors that are not observed. The challenge 

contains five different simulated data sets, each with different ground truth Granger causality 

graphs: two E. Coli (E.C.) data sets and three Yeast (Y.) data sets. Each data set contains p 
= 100 different time series, each with 46 replicates sampled at 21 time points for a total of 

966 time points. This represents a very limited data scenario relative to the dimensionality 

of the networks and complexity of the underlying dynamics of interaction. Three time series 

components from a single replicate of the E. Coli 1 data set are shown in Figure 4.

We apply both the cMLP and cLSTM to all five data sets. Due to the short length of the 

series replicates, we choose the maximum lag in the cMLP to be K = 2 and use H = 10 and 

H = 5 hidden units for the cMLP and cLSTM, respectively. For our performance metric, we 

consider the DREAM3 challenge metrics of area under the ROC curve (AUROC) and area 

under the precision recall curve (AUPR). Both curves are computed by sweeping λ over a 

range of values, as described in Section 6.
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In Figure 6, we compare the AUROC and AUPR of our cMLP and cLSTM to previously 

published AUROC and AUPR results on the DREAM3 data [33]. These comparisons 

include both linear and nonlinear approaches: (i) a linear VAR model with a lasso penalty 

(LASSO) [7], (ii) a dynamic Bayesian network using first-order conditional dependencies 

(G1DBN) [34], and (iii) a state-of-the-art multi-output kernel regression method (OKVAR) 

[33]. The latter is the most mature of a sequence of nonlinear kernel Granger causality 

detection methods [60], [61]. In terms of AUROC, our cLSTM outperforms all methods 

across all five datasets. Furthermore, the cMLP method outperforms previous methods on 

two datasets, Y.1 and Y.3, ties G1DBN on Y.2, and slightly under performs OKVAR in E.C.1 

and E.C.2. In terms of AUPR, both cLSTM and cMLP methods do much better than all 

previous approaches, with the cLSTM outperforming the cMLP in three datasets. The raw 

ROC curves for cMLP and cLSTM are displayed in Figure 7.

These results clearly demonstrate the importance of taking a nonlinear approach to Granger 

causality detection in a (simulated) real-world scenario. Among the nonlinear approaches, 

the neural network methods are extremely powerful. Furthermore, the cLSTM’s ability to 

efficiently capture long memory (without relying on long-lag specifications) appears to 

be particularly useful. This result validates many findings in the literature where LSTMs 

outperform autoregressive MLPs. An interesting facet of these results, however, is that the 

impressive performance gains are achieved in a limited data scenario and on a task where 

the goal is recovery of interpretable structure. This is in contrast to the standard story of 

prediction on large datasets. To achieve these results, the regularization and induced sparsity 

of our penalties is critical.

8 DEPENDENCIES IN HUMAN MOTION CAPTURE DATA

We next apply our methodology to detect complex, nonlinear dependencies in human 

motion capture (MoCap) recordings. In contrast to the DREAM3 challenge results, this 

analysis allows us to more easily visualize and interpret the learned network. Human 

motion has been previously modeled using both linear dynamical systems [62], switching 

linear dynamical systems [37], [63] and also nonlinear dynamical models using Gaussian 

processes [64]. While the focus of previous work has been on motion classification 

[62] and segmentation [37], our analysis delves into the potentially long-range, nonlinear 

dependencies between different regions of the body during natural motion behavior. We 

consider a data set from the CMU MoCap database [36] previously studied in [37]. The data 

set consists of p = 54 joint angle and body position recordings across two different subjects 

for a total of T = 2024 time points. In total, there are recordings from 24 unique regions 

because some regions, like the thorax, contain multiple angles of motion corresponding to 

the degrees of freedom of that part of the body.

We apply the cLSTM model with H = 8 hidden units to this data set. For computational 

speed ups, we break the original series into length 20 segments and fit the penalized cLSTM 

model from Equation (15) over a range of λ values. To develop a weighted graph for 

visualization, we let the edge weight wij between components be the norm of the outgoing 

cLSTM weights from input series j to output component series i, standardized by the 

maximum such edge weight associated with the cLSTM for series i. Edges associated with 
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more than one degrees of freedom (angle directions for the same body part) are averaged 

together. Finally, to aid visualization, we further threshold edge weights of magnitude 0.01 

and below.

The resulting estimated graphs are displayed in Figure 9 for multiple values of the 

regularization parameter, λ. While we present the results for multiple λ, one may use cross 

validation to select λ if one graph is required. To interpret the presented skeleton plots, it 

is useful to understand the full set of motion behaviors exhibited in this data set. These 

behaviors are depicted in Figure 8, and include instances of jumping jacks, side twists, arm 
circles, knee raises, squats, punching, various forms of toe touches, and running in place. 

Due to the extremely limited data for any individual behavior, we chose to learn interactions 

from data aggregated over the entire collection of behaviors. In Figure 9, we see many 

intuitive learned interactions. For example, even in the more sparse graph (largest λ) we 

learn a directed edge from right knee to left knee and a separate edge from left knee to right. 

This makes sense as most human motion, including the motions in this dataset involving 

lower body movement, entail the right knee leading the left and then vice versa. We also 

see directed interactions leading down each arm, and between the hands and toes for toe 

touches.

9 CONCLUSION

We have presented a framework for nonlinear Granger causality selection using regularized 

neural network models of time series. To disentangle the effects of the past of an input series 

on the future of an output, we model each output series using a separate neural network. 

We then apply both the component multilayer perceptron (cMLP) and component long-

short term memory (cLSTM) architectures, with associated sparsity promoting penalties on 

incoming weights to the network, and select for Granger causality. Overall, our results show 

that these methods outperform existing Granger causality approaches on the challenging 

DREAM3 data set and discover interpretable and insightful structure on a human MoCap 

data set.

Our work opens the door to multiple exciting avenues for future work. While we are the first 

to use a hierarchical lasso penalty in a neural network, it would be interesting to also explore 

other types of structured penalties, such as tree structured penalties [31].

Furthermore, although we have presented two relatively simple approaches, based off MLPs 

and LSTMs, our general framework of penalized input weights easily accommodates more 

powerful architectures. Exploring the effects of multiple hidden layers, powerful recurrent 

and convolutional architectures, like clockwork RNNs [65], and dilated causal convolutions 

[66], open up a wide swath of research directions and the potential to detect long-range 

and complex dependencies. Further theoretical work on the identifiability of Granger non-

causality in these more complex network models becomes even more important.

Finally, while we consider sparse input models, a different sparse output architecture would 

use a network, like an RNN, to learn hidden representations of each individual input series, 

and then model each output component as a sparse nonlinear combination across the hidden 
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states of all time series, allowing a shared hidden representation across component tasks. 

A schematic of the proposed architecutre that combines ideas from our cMLP and cLSTM 

models is shown in Figure 10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(left) Schematic for modeling Granger causality using cMLPs. If the outgoing weights for 

series j, shown in dark blue, are penalized to zero, then series j does not Granger-cause series 

i. (center) The group lasso penalty jointly penalizes the full set of outgoing weights while 

the hierarchical version penalizes the nested set of outgoing weights, penalizing higher lags 

more. (right) Schematic for modeling Granger causality using a cLSTM. If the dark blue 

outgoing weights to the hidden units from an input x(t−1)j are zero, then series j does not 

Granger-cause series i.
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Fig. 2. 
Example of group sparsity patterns of the first layer weights of a cMLP with four first layer 

hidden units and four input series with maximum lag k = 4. Differing sparsity patterns are 

shown for the three different structured penalties of group lasso (GROUP) from Equation 

(9), group sparse group lasso (MIXED) from Equation (10) and hierarchical lasso (HIER) 

from Equation (11).
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Fig. 3. 
Example of the group sparsity patterns in a sparse cLSTM model with a four dimensional 

hidden state and four input series. Due to the group lasso penalty on the columns of W, the 

Wf, Win, Wo, and Wc matrices will share the same column sparsity pattern.
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Fig. 4. 
Example multivariate linear (VAR) and nonlinear (Lorenz, DREAM, and MoCap) series that 

we analyze using both cMLP and cLSTM models. Note as the forcing constant, F, in the 

Lorenz model increases, the data become more chaotic.
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Fig. 5. 
Qualitative results of the cMLP automatic lag selection using a hierarchical group lasso 

penalty and maximal lag of K = 5. The true data are from a VAR(3) model. The images 

display results for a single cMLP (one output series) and a VAR model using various penalty 

strengths λ. The rows of each image correspond to different input series while the columns 

correspond to the lag, with k = 1 at the left and k = 5 at the right. The magnitude of each 

entry is the L2 norm of the associated input weights of the neural network after training. 

The true lag interactions are shown in the rightmost image. Brighter color represents larger 

magnitude.
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Fig. 6. 
(Top) AUROC and (bottom) AUPR (given in %) results for our proposed regularized cMLP 

and cLSTM models and the set of methods—OKVAR, LASSO, and G1DBN presented in 

[33]. These results are for the DREAM3 size-100 networks using the original DREAM3 

data sets.
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Fig. 7. 
ROC curves for the cMLP (—) and cLSTM (—) models on the five DREAM datasets.
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Fig. 8. 
(Top) Example time series from the MoCap data set paired with their particular motion 

behaviors. (Bottom) Skeleton visualizations of 12 possible exercise behavior types observed 

across all sequences analyzed in the main text.
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Fig. 9. 
Nonlinear Granger causality graphs inferred from the human MoCap data set using the 

regularized cLSTM model. Results are displayed for a range of λ values. Each node 

corresponds to one location on the body.
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Fig. 10. 
Proposed architecture for detecting nonlinear Granger causality that combines aspects of 

both the cLSTM and cMLP models. A separate hidden representation, htj, is learned for 

each series j using an RNN. At each time point, the hidden states are each fed into a sparse 

cMLP to predict the individual output for each series xti. Joint learning of the whole network 

with a group penalty on the input weights of the individual cMLPs would allow the network 

to share information about hidden features in each htj while also allowing interpretable 

structure learning between the hidden states of each series and each output.
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TABLE 3

AUROC comparisons between different cMLP Granger causality selection penalties on simulated Lorenz-96 

data as a function of the input model lag, K. Results are the mean across five initializations, with 95% 

confidence intervals.

Lag K 5 10 20

GROUP 88.1 ± 0.8 82.5 ± 0.3 80.5 ± 0.5

MIXED 90.1 ± 0.5 85.4 ± 0.3 83.3 ± 1.1

HIER 95.5 ± 0.2 95.4 ± 0.5 95.2 ± 0.3
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