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Abstract: T cell-based immunotherapy has demonstrated great therapeutic potential in recent decades,
on the one hand, by using tumor-infiltrating lymphocytes (TILs) and, on the other hand, by engi-
neering T cells to obtain anti-tumor specificities through the introduction of either engineered T cell
receptors (TCRs) or chimeric antigen receptors (CARs). Given the distinct design of both receptors
and the type of antigen that is encountered, the requirements for proper antigen engagement and
downstream signal transduction by TCRs and CARs differ. Synapse formation and signal transduc-
tion of CAR T cells, despite further refinement of CAR T cell designs, still do not fully recapitulate
that of TCR T cells and might limit CAR T cell persistence and functionality. Thus, deep knowl-
edge about the molecular differences in CAR and TCR T cell signaling would greatly advance the
further optimization of CAR designs and elucidate under which circumstances a combination of
both receptors would improve the functionality of T cells for cancer treatment. Herein, we provide
a comprehensive review about similarities and differences by directly comparing the architecture,
synapse formation and signaling of TCRs and CARs, highlighting the knowns and unknowns. In the
second part of the review, we discuss the current status of combining CAR and TCR technologies,
encouraging a change in perspective from “TCR versus CAR” to “TCR and CAR”.

Keywords: immunotherapy; tumor immunology; adoptive T cell therapies; immune synapse; signaling;
endosomal trafficking; T cell engineering; chimeric antigen receptor; T cell receptor

1. Introduction

The beginning of adoptive T cell-based immunotherapies goes back to the 1980s
when Rosenberg and colleagues successfully demonstrated the anti-cancer potential of
tumor-infiltrating lymphocytes (TILs) [1]. Although TILs have shown encouraging results
in several clinical trials [2–5], difficulties were reported in regard to the isolation and
manufacturing of tumor-specific TILs [6]. This led to the approach of engineering T
cells to express defined tumor-specific receptors, which are generally classified into T
cell receptors (TCRs) and chimeric antigen receptors (CARs) [7]. CAR T cell therapy
has led to great success in the treatment of hematological malignancies, resulting in the
approval of several CAR products by the US Food and Drug Administration (FDA) [8].
However, antigen escape, therapy-associated toxicities and poor efficacy in solid tumors
are some of the currently faced challenges in CAR T cell immunotherapy [9]. While
transgenic TCRs have shown encouraging results in the treatment of solid tumors [10–16],
the restriction to human leukocyte antigens (HLAs) constitutes a major constraint [17]. In
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this review, we outline the similarities and differences between TCRs and CARs in regard to
architecture, immunological synapse formation and signaling, in order to establish a better
understanding of the thereof resulting advantages and limitations. The main differences
are summarized in Table 1 and illustrated in Figure 1.

Table 1. Summary of similarities and differences between TCR and CAR.

TCR CAR
Receptor
clustering

One pMHC potentially
enough [18,19] Clustering required [20–22]

ITAM
number

10 ITAMs provided by
the CD3 complex [23] Up to 3 ITAMs per CAR [23]

Affinity/
Sensitivity

Lower affinity,
higher sensitivity

Higher affinity [24],
lower sensitivity [25]St

ru
ct

ur
e

Phosph. of
CD3 subunits Phosph. of CD3 ζ, γ, δ, ε [26] Phosph. of only CD3 ζ [25]

Phosph. of
signaling
molecules

Stronger phosph. of ZAP-70,
ITAMs and PLCγ1 than

in CAR [27,28]

Stronger phosph. of Lck and
ERK than in TCR [29]

Recruitment
of signaling
molecules

More efficient recruitment of
ZAP-70, CD2 and LFA-1 than

in CAR [27,28]

Less dependent on
LFA-1:ICAM-1 interaction

and LAT [21,25,29]

Upon increased antigen
exposure

Maintain an earlier
differentiation phenotype

upon strong stimulation [30]

Higher levels of co-inhibitory
molecules upon activation [30]Si

gn
al

in
g

IS structure

Classical “bull’s eye” structure
[29] or multifocal structures

formed by Th2 cells [31] or at
the interface with DCs [32]

Non-classical, disorganized IS
with multifocal pattern [29]

SMACs
Conventional IS consisting

of cSMAC, pSMAC
and dSMAC [33]

Merged cSMAC and pSMAC,
no adhesion molecule ring

[21,29]
Lck One central Lck cluster [29] Disorganized Lck patches [29]

Duration

Usually slower/weaker
effector function [29,30]; longer

IS duration, slower
off-rate from target [29]

Faster cytotoxic
granule secretion and

faster resolution of IS [29]

Im
m

un
ol

og
ic

al
Sy

na
ps

e

Resting state

Constitutive internalization
of TCR complex through

clathrin-dependent
endocytosis (CDE) [34]

Unknown

Tr
af

fic
ki

ng

Upon
activation

Engaged TCRs: Clathrin-
independent endocytosis (CIE)
for internalization, recycling or
lysosomal degradation [34,35]

Bystander TCRs: CDE for
internalization and recycling

[34,35]

Engagement of antigens
induced rapid lysosomal

ubiquitination [36]
High-affinity CAR T cells
demonstrated enhanced

trogocytosis [37]
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Figure 1. Interface of TCR and CAR, illustrating differences in immunological synapse formation
and essential signaling elements (created with BioRender.com).

2. Part I—TCR versus CAR
2.1. TCR versus CAR: Structure

T cells recognize intracellularly processed peptides [38–40] that are presented on
major histocompatibility complexes (pMHCs) [41] through their endogenous T cell receptor
(TCR) [42]. The majority of TCRs in humans are characterized by their heterodimeric
architecture, assembled by an alpha and a beta chain (αβTCR), both consisting of a constant
and a variable region. A minority of T cells express TCRs composed of a gamma and
delta chain (γδTCR) which are not further addressed in this review. The variable region of
an αβTCR (in the following only TCR) contains the three loop-forming complementary-
determining regions CDR1, CDR2 and CDR3, being the main determinant for binding
specificity [43]. Those structurally hypervariable CDRs are flanked by framework regions,
which were reported to support CDR conformation. T cells are generally subdivided into
CD8+ and CD4+ T cells and bind with their TCR to antigens displayed on class I and class
II MHC molecules, respectively [41,44]. In humans, MHC class I and class II are referred
to as HLA class I and HLA class II and are further subdivided into different HLA allele
groups: HLA-A/-B/-C and HLA-DR/-DQ/-DM/-DP, respectively [45]. Hence, ligand
recognition through the TCR is therefore restricted to both a specific peptide sequence and
the peptide-presenting HLA molecule [46].

The extracellular domain of a CAR consists most often of an antibody-derived single-
chain variable fragment (scFv) [47] but can also be composed of a natural ligand or receptor
domain [48]. Similar to TCRs, the scFv variable heavy and light chains both also contain
three CDRs flanked by framework residues. Despite the general similarities in terms of
architecture and formation through genetic rearrangement of the variable portion of both
scFv-based CARs and TCRs [46,49], more detailed studies pointed out that compared to
antibodies, TCRs display longer CDR3 loops [50], a higher number of negatively charged
amino acids in CDR1 and CDR2 [51] and structurally more variable loops [49]. Besides
this, conventional CARs do not target processed proteins presented via MHC molecules
but instead bind to unprocessed antigens expressed on the cell surface, including proteins,
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glycolipids and carbohydrates. With the goal to broaden the range of CAR targets by also
including intracellular proteins, some work was also focused on generating pMHC-directed
CARs, so-called TCR-mimicking CARs [52–56]. Moreover, several approaches aimed at
engineering TCRs attached to antibody-derived antigen-binding domains to achieve HLA
independence [57–59]. This underlines the steady interchange of new learning between
TCRs and CARs, allowing for the implementation of advantageous features at both ends.
TCR signaling requires not only engagement with the pMHC but also, with rare excep-
tions, interaction with the co-receptor CD4 or CD8 [60–62] and always an intracellular
association with the CD3 complex [63], consisting of the three dimers CD3εδ, CD3εγ
and CD3ζζ [64,65]. The cytoplasmic tails of CD3ε,γ,δ and CD3ζ contain one and three
immunoreceptor tyrosine-based activation motifs (ITAMs), respectively [26]. ITAM phos-
phorylation upon TCR engagement with pMHC leads to intracellular signal amplification
(more detailed in Section 2.3.1 Proximal Signaling) [26]. Except for CARs harboring a CD3ζ
transmembrane domain [66], CARs are usually unable to associate with the endogenous
CD3 complex and are therefore equipped with a single CD3ζ signaling domain in their
intracellular part. This means that a conventional CAR only displays 3 ITAMs, whereas the
TCR/CD3 complex contains a total of 10 ITAMs [26]. It has been postulated that increas-
ing the number of ITAMs can lead to higher sensitivity and potency, thereby minimizing
the required number of engaged receptors for an equivalent response [26,67]. However,
in vivo studies demonstrated that CD19 CARs harboring a mutated CD3ζ signaling domain
with only one functional ITAM located proximally to the membrane and ablation of the
second and third ITAMs (1XX) outperformed the standard CARs containing a full CD3ζ
chain, while inactivation of the two N-terminal ITAMs (XX3) demonstrated decreased
efficiency [68,69]. Despite those advances regarding optimal ITAM positioning and number
in the CD3ζ chain, the diverse roles of the other CD3 chains are currently extensively
studied, not only in regard to the TCR but also as additional or alternative domains in
the CAR [70]. Additional incorporation of the CD3ε chain was, for instance, reported to
allow for a more balanced CAR response with enhanced persistence and reduced cytokine
secretion, tonic signaling and exhaustion [70].

The first generation of CARs is characterized by an extracellular scFv, linked to a
transmembrane domain via a spacer region, followed by the intracellular CD3ζ signaling
domain [71]. This build-up was insufficient to produce potent and persistent T cell re-
sponses and was further optimized and step-wise extended through additional domains to
increase in vivo efficacy. Integration of a co-stimulatory domain derived, e.g., from CD28 or
4-1BB led to the development of second-generation CARs (here referred to as 28ζ and BBζ
CAR, respectively) with the ability to produce IL-2 and remain functional upon repeated
antigen encounter [72]. Second-generation CARs were the first format approved by the
FDA in 2017 [73,74]. Third-generation CARs are characterized by a combination of two
co-stimulatory domains, while fourth- and fifth-generation CARs additionally incorporate a
transgene for pro-inflammatory cytokine production or a JAK-STAT3/5 pathway-activating
domain, respectively [75–77]. The idea of providing a CD3ζ domain, a co-stimulatory
domain and also cytokines was adopted from natural T cell signaling, which requires
three signals for full activation and effector function: first, stable pMHC binding, second,
co-stimulation and, third, signaling through cytokine receptors [78].

Up to now, each of the domains in the previously described second-generation CAR
has been exchanged or modified, displaying certain characteristics and different effects
on functionality [79]. However, one optimal composition or the “magic bullet”, which
would be suitable in all settings, has not yet been found [80]. Despite modifications of
the CAR endodomains, it was shown that CAR functionality is strongly affected by the
length and type of the spacer, linking the transmembrane domain and scFv [81]. Depending
on scFv affinity, target epitope location or distance to the cell surface, it was shown that
linker length influences CAR T cell activation, tonic signaling, phenotype, migration and
overall potency [82–85]. This leads to the conclusion that every CAR molecule needs to
be constructed individually and all of the CAR domains should consequently be adjusted
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to one another while considering tumor cell type as well as the target antigen size and
density [81,82,86,87].

2.2. TCR versus CAR: Activation upon Stimulation
2.2.1. Antigen Engagement for Initiation of Activation

T cell signaling through TCRs is initiated upon recognition of antigenic peptides pre-
sented on MHC molecules and is further strengthened through the binding of co-receptors
CD4 or CD8 to MHC [88,89]. In contrast, CAR signaling is induced after the engagement
of unprocessed antigens in an MHC-independent manner [47]. However, how the anti-
gen recognition by TCRs and CARs is transmitted into intracellular signaling remains
incompletely understood. There are three main theories describing signaling mechanisms
triggered by the TCR: (1) nanoclustering, (2) kinetic segregation model and (3) mechanosens-
ing. First, despite the fact that a single TCR complex can act as a predominant receptor
driving ligand recognition [90], it has been observed that the nanoclustering of TCR is a
process of antigen discrimination [91]. This is regulated by the differentiation state of T cells,
as memory T cells, which have increased antigen sensitivity compared to naïve T cells and
tend to form dense signaling-competent TCR clusters [92]. Second, the kinetic segregation
model describes a size-dependent protein segregation mechanism. After T cells encounter
a high-affinity cognate antigen, molecules containing shorter ectodomains such as TCRs
and co-receptors can still diffuse to the “close-contact zone” at the interface between the T
cell and antigen-presenting cell (APC), whereas molecules with longer ectodomains, such
as CD45 tyrosine phosphatase, are excluded from the interface. This leads to a change in
the kinase:phosphatase balance in the proximity of the TCR complex, thereby initiating
TCR phosphorylation [93–95]. Third, increasing evidence indicates that the TCR acts as an
anisotropic mechanosensor, which can discriminate antigens in a force-dependent manner.
TCR:pMHC binding exerts force leading to structural transitions of the TCR complex and
local cytoskeleton rearrangement, eventually leading to downstream signaling [96–99].
These three theories have shed light on different aspects and are not necessarily mutu-
ally exclusive. Instead, they could all contribute to kinetic proof-reading, a process of
signaling accumulation to discriminate self from foreign ligands prior to dissociation of the
TCR:pMHC complex [100]. Compared to TCRs, knowledge about signaling initiation upon
CARs still remains to be elucidated. There is evidence suggesting that receptor clustering is
an important step to initiate signaling [101] and supporting that the proof-reading kinetics
of CARs resemble those of TCRs [102].

The sensitivity of TCRs was described to be up to 100-fold higher than that of
CARs [25,103]. Although TCRs are generally characterized by low-affinity binding, it was
shown that already a single pMHC complex was enough to trigger TCR signaling [18,19].
In contrast, CAR signaling requires clustering, which consequently means that a higher and
sufficient number of antigens needs to be expressed on the target cell surface [20,24,57,104].
Hence, CAR and TCR signaling both depend on the optimal balance between affinity
and antigen density. The comparison of CARs and transgenic HLA-independent TCRs,
generated to target the same surface antigen, demonstrated that the structure of the TCR
and its association with the complete CD3 complex is indeed the key to the higher sen-
sitivity [58,59,105]. More precisely, it is thought that several structural features, such as
the number and positioning of ITAMs [26,67], the interaction with the co-receptor CD4 or
CD8 [106] and the interaction with co-stimulatory and adhesion molecules such as CD2
and LFA-1 [27], account for the more efficient signal transduction in TCRs [28], resulting in
higher sensitivity and a lowered activation threshold [28].

2.2.2. Formation of the Immunological Synapse

The immunological synapse (IS) is the structure at the interface between the T cell and
its target cell or the APC, and is formed within minutes of TCR:pMHC or CAR:antigen bind-
ing. Upon IS formation, molecular interactions, cytoskeletal rearrangement and dynamic
regulation take place, and they are essential for subsequent cell activation.
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Typically, the TCR-IS is characterized as a well-organized structure. Kupfer and
colleagues named this radially symmetric compartment the supramolecular activation
cluster (SMAC), and it consists of three parts. The central part (cSMAC) includes TCR-MHC,
intracellular signaling molecules and co-stimulatory (CD28, ICOS, 4-1BB, etc.)/co-inhibitory
(PD-1/TIM-3/LAG-3, etc.) interaction clusters. The peripheral ring (pSMAC) surrounds
the cSMAC and is formed by adhesion molecules. Finally, the distal ring (dSMAC) contains
molecules with larger ectodomains such as CD45 [33]. This “bull’s eye” pattern has been
observed in certain T cell subsets including cytotoxic T lymphocytes (CTLs) [107,108],
naïve CD4 [109], Th1 cells and when contacting B cells, tumor cells and the artificial planar
lipid bilayer. However, “non-classical ISs”, as well as motile kinapse (a transient and
dynamic structure at the interface), have also been observed under various conditions [110].
For instance, “multifocal ISs”, characterized by adhesion molecules dispersed among
multiple TCR:MHC accumulations, have been reported in Th2 cells [111,112] at the interface
between T cells and dendritic cells [32] or upon contact between immature double-positive
thymocytes and the artificial lipid bilayer [113]. Thus, the formation of the bull’s eye
structure with well-defined cSMACs and pSMACs is not a requirement for T cell activation.
Initially, it was proposed that the proper accumulation of TCR-proximal molecules in the
cSMAC is required to initiate signaling [114], yet the variations on SMACs indicate that this
is not the case. Moreover, phosphorylated signaling proteins such as lymphocyte-specific
protein tyrosine kinase (Lck) and Zeta-chain-associated protein kinase 70 (ZAP-70) are
found prior to the formation of mature ISs, and the majority of phosphorylated signaling
proteins are localized in the pSMAC [33,115]. Using an artificial planar lipid bilayer
has demonstrated that small TCR microclusters were firstly found at the periphery of
the interface, which was associated with signaling molecules including Lck, ZAP-70,
the linker for activation of T cells (LAT) and SH2 domain containing leukocyte protein
of 76 kDa (SLP-76). Meanwhile, tyrosine phosphorylation and calcium signaling also
take place in pSMAC. However, as TCR microclusters migrate toward the cSMAC, TCR-
proximal signaling molecules including CD28 and protein kinase C-θ dissociate from
the microclusters [116,117], indicating that TCR signaling is initiated and sustained in
the pSMAC. In addition, rearrangement of the actin cytoskeleton also occurs during IS
formation [118,119], which is required for the centripetal movement of microclusters, as
interfering with actin rearrangement through myosin IIa inhibition led to diminished
proximal TCR signaling including the phosphorylation of ZAP-70 and LAT, indicating that
actin polymerization is essential for proximal signaling [120]. Thus, cSMAC may rather
play a role in the downregulation of signaling. Cemerski and colleagues’ study revealed
that, depending on the stimulation strength, both signaling initiation and downregulation
can occur in cSMAC [121]. Upon stimulation of weak agonists, signaling from cSMAC can
be detected shortly after signaling events from pSMAC occur [121]. Indeed, accumulating
evidence supports the idea that cSMAC plays a dual role in both sustaining and terminating
the TCR-dependent signaling [119,122]. Cbl-b, a ubiquitin ligase and strong ubiquitin
signal were found to concentrate in the cSMAC, supporting that cSMAC is associated
with the internalization and degradation of the TCR complex [123]. Moreover, cSMAC
formation is important for the cytolytic function of CTLs, meaning site-directed secretion
of cytolytic granules to target the membrane through the polarization of the microtubule
cytoskeleton [108,124].

It has been proposed that the quality of CAR-IS can predict CAR T cell efficiency [125].
However, in contrast with TCR-IS, CAR-IS is not well studied along with a lot of open
questions needed to be addressed. Davenport and colleagues performed a cell-based
side-by-side comparison of IS formation between HER2-28ζ CAR and OTI-TCR on CD8+

CTLs [29]. They observed a disorganized CAR-IS structure with a multifocal pattern, where
elements of cSMAC and pSMAC are not separated but rather merged together, and no
ring structure of adhesion molecules surrounding CAR clusters was detected in CAR-IS.
This might be due to the fact that the ectodomain is larger in CARs than in TCRs [126].
In addition, both proximal (Lck and ZAP-70) and distal (ERK, cytotoxic granule delivery)
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signaling was induced and decreased faster in CAR-IS than TCR-IS, and the CAR-IS
formation was less dependent on LFA-1:ICAM-1 interaction as compared to the TCR. The
non-classical CAR-IS structure was further confirmed using an artificial planar lipid bilayer
and a third-generation CAR (CD19-28-BBζ) [21], where segregation of CD45 from CAR
clusters was observed. Moreover, they showed that LAT, an essential scaffold protein for
TCR signaling, is not necessarily required for the downstream SLP-76 phosphorylation. In
addition, the overall binding strength, or the avidity between the CAR and its target, is a
critical factor determining CAR T cell response. Differential requirement of avidity has been
demonstrated by comparing a liquid tumor (CD19+ or BCMA+) and glioblastoma. Unlike a
liquid tumor, engagement of the IFNγ receptor was required for treating a solid tumor [127],
indicating that a certain avidity threshold needs to be reached for sufficient CAR T cell
response. However, it is still not clear whether these findings are unbiased or based on
certain bias introduced by model selection and assay design. Indeed, further investigation is
needed to elucidate how other molecules such as co-stimulatory/co-inhibitory elements are
involved in CAR-IS formation or stabilization, whether different IS structures are formed
in certain T cell subsets and how the cytoskeleton is regulated and its consequence. As
the cSMAC of TCR-IS plays a dual role in both sustaining and terminating signaling, it is
important to study the impact of cSMAC absence in CAR-IS.

2.3. TCR versus CAR: Signaling Cascade

Signaling events are triggered upon antigen engagement and during immunological
synapse/kinapse formation. The subsequent signaling cascades then lead to the activation
of T cells. The utilization of TCR intracellular pathways to drive T cell activation is the
fundament of CAR design. As the TCR/CD3 complex and the conventional CARs both
have the CD3ζ intracellular domain, it is expected that some signaling cascades are shared
for T cell activation and to induce a desired anti-tumor response. However, differences in
signaling prevail due to the artificial constitution of CARs [23,128].

2.3.1. Proximal Signaling

TCR signaling is largely initiated by a set of protein tyrosine kinases (PTKs) including
the Src family tyrosine kinases Lck and Fyn. Lck is basally active [129], and it exists in
soluble, membrane-anchored and coreceptor-bound forms [130,131]. After antigen en-
gagement, Lck is recruited to the TCR complex and phosphorylates the ITAMs of CD3
subunits [129,132]. ITAM phosphorylation leads to the recruitment of ZAP-70 and subse-
quently phosphorylation and activation of ZAP-70. Once phosphorylated, ZAP-70 is able
to initiate a series of phosphorylation cascades resulting in the assembly and activation
of signaling complexes, which are important for propagating the TCR/PTK signal into
late signaling outcomes. Two adaptor proteins are the most important targets of phospho-
rylated ZAP-70: the LAT and SLP-76 [133]. When phosphorylated by ZAP-70, LAT and
SLP-76 can bind to specific signaling proteins through SH2 domains and form oligomeric
signalosomes [134,135]. Multiple signaling proteins can be recruited to phosphorylated
LAT, including phospholipase C gamma (PLCγ), the adapter growth factor receptor-bound
protein 2 (GRB2) and GRB2-related adapter downstream of Shc (Gads). In addition, SLP-76
is indirectly associated with phosphorylated LAT through Gads. Recruitment of PLCγ
activates the calcium and Ras/MAPK pathway [136], whereas the multivalent interactions
between LAT, Gads and SLP-76 enable the reversible assembly of a protein cluster or the
LAT signalosome, which enhances actin polymerization [137–139] and triggers Ras, Rac
and Rho GTPas activation. In addition, TCR and CD28 co-stimulatory molecules activate
the PI3K pathway, which is also associated with LAT and SLP-76 [140] and leads to calcium
(Ca2+) influx and subsequent activation of the NFAT pathway.

Although signaling elements for proximal signaling of CARs and TCRs are similar,
they differ in some aspects due to their artificial design in combining activating and co-
stimulatory elements in one construct. Furthermore, there is a different requirement in
antigen engagement, since TCRs have higher sensitivity to antigens than CARs, even
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though CARs have significantly higher affinity to antigens than TCRs [24], which has
been shown to be associated with less efficient Lck recruitment and recycling to CARs
than to TCRs [28]—probably due to the high redundancy of ITAMs in the TCR complex
and less efficient CD4/CD8 coreceptor recruitment to CARs. Conventional CARs have
the CD3ζ intracellular domain containing three ITAMs to transduce the signal for T cell
activation. However, whether this finding can be translated to other systems remains
to be elucidated. Upon the antigen binding of CARs, ZAP-70, SLP-76 and PLCγ are
phosphorylated [126,141]. In contrast with TCRs, LAT might not be essential for CAR
signaling as the loss of LAT had no impact on microcluster formation, actin remodeling
and downstream signaling [21]. Depending on the CAR design, differences in kinetics
and signaling magnitude have been observed. By comparing 28ζ and BBζ CARs targeting
CD19 and ROR1, 28ζ CARs induced more rapid and intense phosphorylation of signaling
intermediates and demonstrated a more effector-cell-like phenotype than BBζ CARs, which
can be explained by the increased basal phosphorylation of the CD3ζ domain as well as
greater Lck recruitment to 28ζ CARs [141]. Moreover, BBζ CARs have been shown to recruit
the Themis-SHP1 phosphatase complex, which attenuates phosphorylation signaling [142].

2.3.2. Downstream Signaling and Outcome

In principle, TCR and CAR downstream signaling is supposed to be similar, since
the goal of introducing CARs is to redirect T cell specificity against the tumor and induce
T cell effector function including proliferation, differentiation, and cytotoxicity through
lytic granules and production of cytokines to achieve tumor clearance and sustained
control [143]. However, optimal T cell activation requires not only signaling from the TCR
receptor (signal 1) but also signaling from co-stimulatory molecules such as CD28 (signal 2)
to prevent anergy, as well as soluble molecules such as cytokines to obtain full effector
function (signal 3). Cell response is a consequence of signaling interplay across different
pathways. Given the modular architecture of CARs and depending on the signaling
domains integrated into the CAR, the signaling outcome can be remarkably different. It
has been confirmed by different studies that changes in the signaling domain can lead to
various CAR T cell responses with the mechanisms not fully understood to date. Here, we
summarize the main downstream signaling pathways for T cell activation and modulation
of the TCR and the corresponding knowledge about CARs.

2.3.3. Calcium/NFAT Pathway

The second messenger Ca2+ plays an important role in T cell activation. Phospho-
rylated PLCγ cleaves phosphatidylinositol bisphosphate into inositol triphosphate (IP3)
and diacylglycerol. IP3 then binds to the IP3/Ca2+ channel on the endoplasmic reticulum
leading to Ca2+ release from the endoplasmic reticulum to the cytosol and promoting Ca2+

influx from extracellular through calcium-release-activated Ca2+ channels (CRAC) with a
process termed store-operated Ca2+ entry (SOCE). The elevated Ca2+ can enable variable T
cell effector functions in a magnitude- and duration-dependent manner [144]. Upon tran-
sient cytosolic Ca2+ increase, T cell motility, release of cytolytic granules by CTLs [145,146]
and mitochondria translocations are induced [147]. Prolonged Ca2+ signaling can lead
to the activation of the nuclear factor of activated T cells (NFAT), a key transcriptional
regulator of the IL-2 gene and other cytokine genes, as well as subsequent cellular response
including proliferation, cytokine production and differentiation [148–151].

A recent study on CD19-BBζ CAR T cells revealed the benefit of inhibiting calcium
influx by using SOCE inhibitor BTP-2 both in vitro and in vivo. As calcium signaling was
hyperactivated via sustained tonic signaling in these CAR T cells, treatment with BTP-2
rendered CAR T cells less exhausted and terminally differentiated with a metabolic profile
of downregulated glycolysis [152].
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2.3.4. Ras/ERK/AP-1 and NF-κB Pathway

Diacylglycerol and cytosolic Ca2+ induce the activation of protein kinase C. Diacylglyc-
erol can activate Ras guanyl-nucleotide-releasing proteins (RasGRPs) either directly through
recruitment mechanisms or indirectly through PKC-mediated phosphorylation [153]. Sub-
sequently, RasGRPs and SOS activate the MAPK/ERK pathway which then induces the
activation of the transcription factor activator protein-1 (AP-1), a transcriptional complex
formed by c-Jun and c-Fos, as well as B-cell lymphoma 2 (Bcl-2), which are involved in the
cell cycle, cytokine production and cell apoptosis [154].

On the other hand, activated protein kinase C-ζ phosphorylates caspase recruitment
domain-containing membrane-associated guanylate kinase protein-1 (CARMA1) leading
to the recruitment of B cell lymphoma 10 (BCL10), mucosa-associated lymphoid tissue lym-
phoma translocation gene 1 (MALT1) and tumor necrosis TNF receptor associated factor 6
(TRAF6) and the formation of the CARMA1-BCL10-MALT1 complex [155,156]. This com-
plex activates the IκB kinase (IKK) complex and leads to subsequent phosphorylation and
ubiquitination of IκB and release of nuclear factor-κB (NF-κB), which regulates numerous
genes critical for survival, proliferation, differentiation and cytokine production [157,158].

CARs with 4-1BB as a co-stimulatory domain have outperformed CD28 co-stimulated
CARs in persistence and enrichment in a central memory-like state, indicating that distinct
proliferation and survival signals are mediated by these two molecules [159,160]. Indeed, it
has been shown only BBζ CARs activated noncanonical NF-κB (ncNF-κB) signaling after
ligand engagement, and interfering with this pathway resulted in the reduced expansion
and survival of CD19-BBζ T cells as well as accumulation of pro-apoptotic protein Bim [161],
providing new possibility in manipulating CAR T cell responses.

2.3.5. PI3K/AKT/mTOR Pathway

The phosphoinositide 3 kinase (PI3K)/Akt/mammalian (or mechanistic) target of the
rapamycin (mTOR) pathway is a key regulator of cell proliferation. P85 is a subunit of PI3K,
which can associate with both LAT and SLP-76 [162,163] and triggers activation of the PI3K
pathway [140]. In addition, upon ligation of CD28 to B7.1 and B7.2 molecules, CD28 is
phosphorylated by Src family tyrosine kinase, leading to the binding and activation of AKT
by p85 and subsequent mTOR activation [164]. In addition, PI3K and Akt pathways are
required for T cells to increase their glycolytic rate upon stimulation [165].

Studies on CAR signaling have demonstrated a more rapid and stronger early re-
sponse of 28ζ CARs associated with PI3K signaling and signal transducer and activator
of transcription 3 (STAT3) as compared to BBζ CARs [126,141], which might be due to
differentiation of 28ζ CAR T cells to the short-lived, terminally differentiated effector state.
In addition, in solid tumors, IL-2 secretion from 28ζ CAR T cells has been shown to promote
Treg proliferation and thereby suppress the CAR T cell response. Modification on the Lck
binding moiety in the intracellular part of CD28 demonstrated reduced IL-2 production
and enhanced antitumor activity in the presence of Tregs [166]. 28ζ CAR bearing this
modification outperformed BBζ CAR against prostate cancer [167], suggesting that exces-
sive CD28-derived proximal signaling limited CAR T cell persistence, but adequate CD28
signaling could be a better option compared to 4-1BB in specific cases.

2.3.6. Endosomal Trafficking and Lysosomal Degradation

Maintenance of a certain surface expression level of TCR complexes and CARs is
critical for a sustained T cell response and is regulated by endocytosis, a process by which
cells absorb external material by engulfing it with the cell membrane and is involved in
the recycling and degradation of receptors. Coordinated by different Rab GTPases, sev-
eral mechanisms of endocytosis have been characterized, which can be divided into two
categories: clathrin-dependent endocytosis (CDE) and clathrin-independent endocytosis
(CIE) [168]. The CDE pathway has been comprehensively analyzed with clathrin and its
adaptor AP2 as major players [169]. Five CIE-independent pathways have been proposed
including FEME (fast endophilin-mediated endocytosis), caveolae-associated endocytosis,
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CLIP/GEEC endocytosis and Arf6-mediated and flotillin-mediated endocytosis [34]. In
contrast with CDE, processes involved in CIE remain to be fully elucidated. The internal-
ized vesicles undergo homotypic fusion to form early endosomes (EEs); the EEs accumulate
and subsequently form the sorting endosome, where the cargos are selected for recycling,
lysosomal degradation or the trans-Golgi network [34]. Depending on the condition, the
same receptor often conducts several internalization pathways at once [170,171]. Inter-
nalization is an essential process to regulate T cell response, as its deficiency could lead
to hyperactivation and rapid exhaustion of T cells [123]. The molecular mechanisms of
TCR endocytosis have been under intensive investigation, whereas studies about CARs
are emerging.

In the resting state, constitutive internalization and recycling of the TCR complex take
place, with CDE as the main mechanism. AP-2 is recruited and binds to AP-2 binding motifs
on the ITAMs of CD3 subunits, with higher efficiency to CD3δ [172], or to the di-leucine
motif present on the intracellular domain of the CD3γ chain [173,174]. Upon activation,
internalization of both antigen-engaged and bystander TCRs is induced. Bystander TCRs
convey CDE for internalization and recycling [175], where the cargos are delivered to
recycling endosomes for return to the plasma membrane. On the other hand, CIE has
been identified as the main pathway of internalization for engaged TCRs, which guides
engaged TCRs to late endosomes (LEs), at least partially, for lysosomal degradation [35,176].
Thus, it has been proposed that the balance between recycling and degradation seems
to be regulated by the strength of activation [34]. However, which CIE mechanisms are
specifically involved in TCR internalization remains unclear. It has been demonstrated
that TC21 (Rras2) is associated with TCR and is necessary for TCR internalization from the
IS through a RhoG-dependent mechanism [177]. Lysosomal degradation of the receptor
is carried out through TCR ubiquitination, which requires two RING finger E3 ubiquitin
ligases c-Cbl and Cbl-b, ubiquitous Rab GTPases, and recruitment of endosomal sorting
complexes required for transport (ESCRT) [177]. In addition, TC21 and RhoG have also
been shown to play a role in TCR trogocytosis [177], a process by which plasma membrane
fragments from target cells or APCs are transferred to lymphocytes [178]. Initially, TCR
internalization was considered to terminate TCR signaling. However, increasing evidence
support the notion that the internalized receptor continues to signal from specialized
endosomes and is critical to sustain TCR signaling [179,180] suggesting a dual role of TCR
endocytosis [181].

The trafficking of CARs during activation has been investigated by Li et al. on the
CD19-BBζ CAR, and it was shown that engagement of tumor antigens induced rapid
ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation.
By mutating all lysine in the cytoplasmic domain of the CAR to arginine, they could
successfully repress CAR degradation while enhancing the recycling of internalized CARs
to the plasma membrane. This approach has demonstrated both in vitro and in vivo to
promote long-term killing capacity and persistence, and to maintain CAR T cells in a less
differentiated state with a metabolic profile enriched in oxidative phosphorylation. This
finding also underscores the difference between TCRs and CARs in endosomal trafficking
and regulation of signaling. A very recent study has shed light on the relevant mechanism,
and a correlation between scFv affinity and trogocytosis has been demonstrated, where
low-affinity CAR T cells seemed to be more beneficial as compared to high-affinity CAR T
cells for prolonged persistence, as antigen transfer by trogocytosis and subsequent fratricide
was reduced by low-affinity CAR T cells [37].
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3. Part II—A Change in Perspective: From “TCR versus CAR” to “TCR and CAR”

While the previous section was focused on side-by-side comparing TCRs and CARs
in order to better understand their mechanism of action and to find possible solutions for
current challenges and limitations, the following section serves as a change in perspective:
from “TCR versus CAR” to “TCR and CAR”. Indeed, during the last five years, more
and more studies aimed at combining TCR and CAR technologies, on the one hand, to
understand potential interactions and dependencies between TCR and CAR and, on the
other hand, as an approach to strengthen the overall anti-cancer T cell response. The latter is
based on the hypothesis that in a combinatorial approach, TCR and CAR could counteract
their limitations and eventually harmonize through a synergistic interplay.

3.1. Combination of an Endogenous TCR and a CAR

The crucial role of the native TCR for CAR T cell signaling and efficacy was already
discussed more than ten years ago [66]. More recent studies have shown that knock-
out of the endogenous TCR resulted in reduced persistence of CD19-BBζ CAR T cells
in vivo, although early CAR T cell response and signaling were not affected by the lack
of the native TCR [182]. On a side note, other studies demonstrated that a lack of the
endogenous TCR upon CAR knock-in into the TCR locus even resulted in improved
functionality [183]. It was hypothesized that stimulation of the endogenous TCR through
xenogeneic mouse tissue (displayed by clinical signs of GvHD) or infectious stimuli, might
cause physiological activation of the TCR-positive CAR T cell, thereby prolonging survival
and tumor control [182]. Instead of removing the native TCR, Cliona M. Rooney’s group
aimed for the opposite: actively engaging and activating the native TCR in CAR T cells by
using virus-specific T cells as a source for CAR T cell manufacturing [184–187]. After it was
shown that in vitro stimulation of virus-specific TCRs in CAR T cells prolonged survival
and was superior compared to polyclonal activation through CD3-specific antibodies [184],
this combination of native TCR plus CAR stimulation was soon implemented in several
clinical trials (NCT00085930 [188], NCT00840853 [186,189]). Multi-virus-specific CD19-
28ζ CAR T cells were shown to rapidly expand in a virus-load-dependent manner, and
CAR T cell proliferation was significantly lower in patients without pre-existing EBV,
CMV or adenovirus infection [186]. On a side note, this clinical study was successfully
realized without prior lymphodepletion, and not even the two HLA-mismatched patients
experienced GvHD, which was explained by the strongly reduced TCR repertoire of the
infused CAR T cells. The presence of virus infection and stimulation of the native, virus-
specific TCR were hence key to therapeutic success, and instead of leaving it to chance,
subsequent approaches aimed at controlled, vaccination-induced native TCR activation
in CAR T cells [185,186]. It was reported that in vitro vaccination with VZV peptide mix-
loaded DCs even helped to partially recover third-generation GD2-28-OX40ζ CAR T cells,
which were already exhausted through a previous CAR target antigen encounter [185].
This is particularly surprising given the fact that repetitive signaling via the native TCR or a
CAR is generally thought to cause chronic exhaustion, caspase activation and programmed
cell death [190]. The most obvious approach to achieve recovery of exhausted CAR T
cells would consequently be to reduce signaling, instead of adding a second stimulus
such as via the endogenous TCR. In line with that, the FDA-approved Src kinase inhibitor
dasatinib was, for instance, successfully applied to enforce a transient rest in CAR signaling,
thereby inducing epigenetic reprogramming and restoring functionality of exhausted CAR
T cells [191]. Recent work has shown that the revival of exhausted CAR T cells via the
endogenous TCR seems to be dependent on several factors:

First, it was observed that the outcome of native TCR activation was dependent on
the CAR structure. Native TCR engagement in virus-specific 4-1BB-bearing CAR T cells
led to stronger activation marker expression than in CD28 co-stimulated CAR T cells,
ultimately causing TCR downregulation and apoptosis [187]. In accordance with this,
several studies showed the beneficial effect of stimulating the virus-specific endogenous
TCR in CAR T cells containing a CD28 co-stimulatory domain, verified for different scFvs
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and also for second- and third-generation constructs [185–187]. This is especially surprising
as CD28 co-stimulated CARs are generally linked to stronger and more rapid effector
function, while 4-1BB is thought to promote more durable CAR T cell response and long-
term persistence [159,160,192]. Nonetheless, expression of transgenic full-length CD28
was shown to inhibit activation-induced cell death (AICD) through the upregulation of
anti-apoptotic proteins and suppression of CD95L [193,194]. This anti-apoptotic effect was
also reported for CARs, co-stimulated through CD28 [195].

The second factor, which seems to influence CAR T cell re-activation during con-
comitant native TCR stimulation, is the level of TCR antigen and the type of stimulus.
In two different syngeneic mouse models, it was observed that dual activation of a CAR
and endogenous TCR, led to the upregulation of pro-apoptotic and inhibitory receptor
genes in CD8+ T cells, consequently resulting in exhaustion and strongly reduced tumor
clearance. The CD4+ subset demonstrated increased expansion, although persistence of
CAR T cells was not increased [196]. Before jumping to conclusions regarding the role
of the T cell subset, it is important to have a closer look into the type of TCR stimulus.
Since this in vivo work was performed using CD19-28ζ CAR T cells with TCR specificity
for HY (male minor histocompatibility antigen) or ovalbumin [196], it was hypothesized
that the continuous expression of those non-viral TCR antigens might have caused more
repetitive stimulation and consequently the observed exhausted phenotype [196,197]. On
the contrary, the previously mentioned studies [184–187] aimed at engaging the native TCR
through vaccination, e.g., via virus-peptide-pulsed DCs or pre-existing virus, instead of
endogenous antigen. The very latest study in this context demonstrated that also oncolytic
viruses can be used for the stimulation of CD8+ CAR T cells via the native TCR. CAR
T cells loaded with vesicular stomatitis virus or reovirus exhibited enhanced trafficking,
infiltration, persistence and functionality in vivo [197]. Additionally, epitope spreading
was stated to cause further expansion of the endogenous tumor-specific potential, thereby
protecting against re-challenge with CAR target-negative tumor cells. Similar findings
were reported in the context of extensive in vivo studies with transgenic mice, express-
ing HER2-28ζ CAR and gp100 TCR [198]. The latter was specifically activated through
gp100-encoding vaccinia virus, thereby significantly increasing the CAR T cell expansion,
persistence and the cytotoxic potential against HER2-expressing target cells. Furthermore,
long-term surviving mice also developed immunity against tumor antigens other than
HER2, which was attributed to epitope spreading and memory formation.

Finally, recent studies indicate that the early-differentiation status during CAR T cell
manufacturing might exhibit a determining factor, as native TCR stimulation through
pre-existing virus infection has been shown to be advantageous only in virus-specific CAR
T cells displaying a central memory but not an effector memory phenotype [186,189]. This
is in line with the generally accepted characteristics of central memory T cells, namely
the robust proliferative potential and the long-term persistence [199–201]. However, as
previously described, functional recovery of already exhausted, and consequently termi-
nally differentiated, CAR T cells was also successfully achieved in vitro using peptide
mix-loaded DCs [185]. This contradictory result might have again been influenced through
the type of TCR stimulus used.

The discussed studies (summarized in Table 2) underline the potential of dual stim-
ulation through CARs and native TCRs, not only raising the question of whether CAR T
cells could also be activated through vaccination targeting a transgenic TCR but also, in
general, whether there is a beneficial or even synergistic effect of combining a CAR with a
tumor-cell-targeting transgenic TCR.
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Table 2. Overview of studies combining endogenous TCR and CAR.

Combination of Endogenous TCR and CAR

CAR TCR
Specificity

TCR
Stimulus Study Main Result Citation

GD2-ζ
EBV-

specific
TCR

Patients with EBV
pre-infection

NCT000
85930

Prolonged survival and
expansion compared to

anti-CD3 antibody activation

Pule et al., 2008 [184]
Louis et al., 2011 [188]

CD19-28ζ
EBV-

specific
TCR

EBV-transformed
lymphoblastoid B

cell lines

NCT008
40853

Stimulation of native TCR
increased CAR T cell

expansion; T cells were
donor-derived after allogeneic

HSCT (no GVHD)

Cruz et al., 2013 [189]

GD2-28-OX40ζ
VZV-

specific
TCR

VZV peptide
mix-loaded DCs In vitro

Exhausted and dysfunctional
CAR T cells recovered upon
stimulation of native TCR

Tanaka et al., 2017 [185]

CD19-28ζ
HY-

specific
TCR

Male bone-
marrow-derived

cells (HY)
In vivo

Dual stimulation led to
exhaustion and apoptosis in
CD8+ (not in CD4+) CAR T

cells

Yang et al., 2017 [196]

Her2-28ζ
gp100-
specific

TCR

Recombinant
vaccinia virus

encoding gp100
In vivo

Increased expansion,
persistence, tumor infiltration
and functionality upon native

TCR stimulation

Slaney et al., 2017 [198]

(1) GD2-ζ
(2) GD2-28ζ
(3) GD2-BBζ

VZV-/EBV-
specific

TCR

VZV or EBV
peptide

mix-loaded DCs
In vitro

TCR stimulation led to
increased expansion and

functionality in GD2-28ζ (but
not in GD2-BBζ) CAR T cells

Omer et al., 2018 [187]

CD19-28ζ
EBV-

specific
TCR

Patients with EBV
pre-infection

NCT008
40853

Virus load-dependent increase
in CAR T cell

expansion
Lapteva et al., 2019 [186]

EGFRvIII-28-
BBζ

Oncolytic
VSV or
reovirus

Oncolytic virus
co-administered
with CAR T cell

In vivo

Enhanced trafficking,
infiltration and functionality;

long-term effects through
in vivo reactivation with

TCR-directed oncolytic virus

Evgin et al., 2022 [197]

3.2. Combination of a Transgenic TCR and a CAR

As reviewed in the previous section, the approach of dual native TCR and CAR
stimulation primarily aimed at increasing efficacy and persistence of the CAR T cells, while
the paramount objective of combining a transgenic TCR and a CAR has been targeting
multiple antigens and hence reducing the risk for immune escape [202,203]. The relevance
of this is underlined by the fact that although CD19-targeting CAR T cell therapy has led
to extremely promising responses, relapse was observed in half of the patients, primarily
due to loss of CD19 surface expression [7]. As hypothesized by Carl June, the likelihood
of tumor escape through both downregulation of the MHC and loss of the CAR target
antigen is expected to be very low, which ultimately means that in dual-specific T cells at
least either one, transgenic TCR or CAR, would still work [204]. In 2016, it was shown
for the first time that a CAR and a transgenic TCR can be functionally co-expressed in
the very same T cell [202]. The CD8+ T cells, which were transiently transfected with a
CSPG4-28ζ CAR and a gp100 TCR, led to antigen-specific cytokine secretion and target cell
lysis in vitro. The functionality was similar to CAR- or TCR-only T cells, suggesting that
co-expression of the CAR and the transgenic TCR did not cause reciprocal inhibition. It is
important to highlight that simultaneous stimulation of the CAR and the transgenic TCR
resulted in increased cytotoxicity. Interestingly, this effect was shown to be dependent on
the co-existence of both receptors on the very same T cells, as this was not achieved with
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a 1:1 mixture of CAR T cells and TCR T cells (normalized to the total cell count). On the
contrary, subsequent work with dual-specific T cells expressing the very same receptors
demonstrated reduced cytolytic activity compared to T cells only expressing CSPG4 CAR
or gp100 TCR [203]. It is not clear whether this opposed outcome was due to the different
types of TCR delivery (lentiviral transduction instead of transient-electroporation-based
transfection) or to general variations in the experimental set-up such as the use of another
target cell line. However, both studies showed that dual-specific CAR- and transgenic-TCR-
expressing T cells specifically recognized and lysed single- and double-positive target cells,
representing a potential solution against tumor escape.

Furthermore, several studies demonstrated the beneficial effects of combining a trans-
genic TCR with a non-classical, modified CAR [205–207]. In vivo experiments, for example,
displayed that expansion and efficacy of NY-ESO-1 TCR-transduced T cells can be en-
hanced through co-expression of scFv-lacking 4-1BBζ CAR [205]. In this regard, it was
hypothesized that the CAR, albeit not engaging any target antigen, induced a certain trans
co-stimulation, thereby enhancing transgenic TCR signaling. Another study demonstrated
that the serial killing potential and in vivo anti-tumor response through both native or
transgenic TCR was increased by co-expression of CD19 CARs with 4-1BB co-stimulation
but lacking the CD3ζ signaling domain [207].

To sum this up, the conclusion can be drawn that a CAR and a transgenic TCR cannot
only be functionally co-expressed in the very same T cell, thereby enabling dual specificity
and counteracting tumor escape, but might also synergize in a mutually reinforcing way. To
this end, further studies evaluating the combination of a transgenic TCR and a CAR (sum-
marized in Table 3) will be crucial to deepen the understanding in regard to the influence on
signaling, activation, exhaustion and persistence. While therapy-associated toxicities such
as cytokine release syndrome and immune effector-cell-associated neurotoxicity syndrome
are major risks in CAR T cell immunotherapy, such strong immune activation is generally
not expected during treatment with TCR T cells [208,209]. This explains why additive
effects of cytokine-related toxicity are unlikely, although the combination of a transgenic
TCR and a CAR results in dual and potentially simultaneous stimulation. Therefore, fur-
ther studies should rather be focused on exhaustion and persistence, instead of abnormal
immune activation. However, clinical guidelines for the management and prevention
of cytokine storms are well established [210]. Off-target effects due to the mispairing of
transgenic and endogenous TCR chains and the potential risk for uncontrolled formation
of new specificities were described as safety problems during TCR gene therapy [211].
Knock-out or replacement of the endogenous TCR by the transgenic TCR represent pos-
sible solutions, which might also be applied in a combinatorial approach with CARs and
transgenic TCRs [183,212,213].
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Table 3. Overview of studies combining transgenic TCR and CAR.

Combination of Transgenic TCR and CAR

CAR TCR
Specificity

CAR/TCR
Stimulus Study Main Result Citation

CSPG4-28ζ
(transient)

gp100
(transient) Target cell line In vitro

Functionally co-
expressed, without

reciprocal inhibition
Uslu et al., 2016 [202]

CSPG4-28ζ
(transient)

gp100
(stable) Target cell line In vitro

Functionally co-
expressed; reduced

cytotoxicity compared
to TCR T cells

Simon et al., 2019 [203]

BBζ
(lacking scFv) NY-ESO-1

TCR-target-
expressing

cell line

In vitro/
in vivo

Increased proliferation and
tumor regression upon

single and repeated TCR
stimulation

Miyao et al., 2018 [205]

(1) CD19-28
(2) CD19-BB

(3) CD19-28-OX40
(lacking signaling

domain)

Survivin Target cell line In vitro/
in vivo

Enhanced apoptosis with
CD19-BB CAR;

CD19-28-OX40 (not
CD19-28) increased

repeated killing
and prolonged

tumor control in vivo

Omer et al., 2022 [206]

4. Conclusions

Adoptive T cell therapies represent a powerful tool in modern medicine with a so
far unrivaled potential to cure patients suffering from advanced hematological malignan-
cies and solid cancer as shown in several clinical trials (CAR T cell trials NCT02228096,
NCT02445248, NCT02348216, NCT03391466; TCR T cell trials NCT03159585, NCT02280811,
NCT02992743). Interestingly, in the context of this clinical success, a clear trend emerged
quite early demonstrating that inherent features of TILs and TCR-engineered T cells re-
sulted in durable and complete responses when treating solid cancer [11,15,214–216], while,
for instance, the “poster child for CAR therapies” [217], the CD19-directed CAR, led to
complete remissions of >88% when treating leukemia and lymphoma in clinical trials.
Therefore, aiming to better understand this discrepancy among both technologies, we
specifically discussed the current knowledge about TCR and CAR signaling and encour-
aged a change in perspective from “TCR versus CAR” to “TCR and CAR” as a next step to
further ameliorate the potential of genetically modified T cell therapies by counteracting
the limitations of CARs and TCRs, respectively. The generation of such T cell products,
however, still requires a deeper understanding of T cell signaling and T cell biology, espe-
cially in the context of genetically engineered T cells. Accordingly, further dedicated studies
including advanced multi-omics analyses are indispensable to further evolve adoptive T
cell therapies toward successful treatment of a broad range of cancers.
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