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Abstract: Background: The imbalance of gut microbiota, dysbiosis, is associated with various
malignant diseases. This study aimed to identify the characteristics of gut microbiota in age-matched
treatment-naïve non-small-cell lung cancer (NSCLC) patients and healthy individuals to investigate
possible gut-microbe-related pathways involved in the development of NSCLC. Methods: We enrolled
34 age-matched NSCLC patients and 268 healthy individuals. Hypervariable V3–V4 amplicons of 16S
rRNA in freshly collected fecal samples were sequenced. Diversity, microbial composition, functional
pathways, smoking history, and gut-microbe-related comorbidities were analyzed to assess the
factors associated with the risk of NSCLC. Results: Microbial alpha diversity was decreased in the
patients with NSCLC, and beta diversity was significantly different between the patients and controls
(p < 0.001). After adjustments for sex, smoking history, hypertension, diabetes mellitus, chronic
obstructive pulmonary disease, and 11 abundant microbes with significant differences between the
patients and controls, the enrichment of Anaerotruncus spp. and Bacteroides caccae was associated with
an increased risk of NSCLC (p = 0.003 and 0.007, respectively). The areas under receiver operating
characteristic curves were 71.4% and 66.9% for Anaerotruncus spp. and Bacteroides caccae, respectively
(both p < 0.001). Furthermore, the abundance of Bacteroides caccae was positively correlated with
steroid hormone biosynthesis (p < 0.001), N-glycan biosynthesis (p = 0.023), glycosaminoglycan
degradation (p < 0.001), lipoic acid metabolism (p = 0.039), peroxisome (p < 0.001), and apoptosis
(p < 0.001), but inversely related to glycerolipid metabolism (p < 0.001). Anaerotruncus spp. was
positively associated with decreased biosynthesis of ansamycin only (p = 0.001). No overlapping
signaling pathways were modulated by Bacteroides caccae or Anaerotruncus spp. Conclusions: Our
results revealed that fecal Anaerotruncus spp. and Bacteroides caccae were abundant and may be
associated with the risk of NSCLC regardless of sex, smoking history, and gut-microbe-related
comorbidities. Further investigations on the mechanism underlying the potential association between
gut dysbiosis and the development of NSCLC are warranted.

Keywords: dysbiosis; gut microbiota; microbiome; non-small-cell lung cancer

1. Introduction

Lung cancer remains the leading cause of cancer deaths in most countries, including
Taiwan [1]. Non-small-cell lung cancer (NSCLC) is the most common histological type,
accounting for 85% of all lung cancer cases. More than 70% of patients with NSCLC present
with locally advanced or metastatic disease (Stage III or IV). Despite advances in lung
cancer treatment, including targeted therapy and immunotherapy, the overall prognosis
is still poor, with a median 5-year overall survival rate of only 25%, and lower than 10%
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in patients with metastatic disease [2]. Understanding the risk factors and pathways
associated with NSCLC is crucial to make an early diagnosis and improve treatment
strategies and outcomes.

Emerging evidence has shown associations between microbial dysbiosis and the patho-
genesis of various diseases, including cancers and common chronic diseases [3,4]. Gut
microbiota may contribute to a shift in the human host microbiome, thereby modulating
immuno-inflammatory responses and the development of diseases [5]. Previous studies
have demonstrated that several microbiota subpopulations can expand via pathological
dysbiosis and that this can affect the production of bacteriotoxins, genotoxicity, and a viru-
lence effect to trigger both inflammation and tumorigenesis [4]. A previous animal study
established a link between microbiota–immune crosstalk and lung cancer development [6],
and a cohort study showed that the increased use of antibiotics was associated with an
increase in lung cancer incidence [7]. Despite extensive evidence linking gut microbiota
with lung diseases [8–11], the spectrum of gut microbiota related to the risk of lung cancer
remains largely unknown.

In the setting of lung cancer, most studies have focused on the impact of lung microbes
because of their direct contact. However, the association between the gut microbiome
and lung cancer is increasingly being explored. The enrichment of Enterococcus spp. and
decreased abundances of Bifidobacterium spp. and Actinobacteria spp. have been associated
with lung cancer. Furthermore, functional impairment of the gut microbiome has been
shown to contribute to the progression of lung cancer [12]. The gut microbiota has also
been shown to modulate responses to immunotherapy in lung cancer and possibly to serve
as a predictor of immunotherapy outcomes [13–15]. In addition, differences in microbial
composition have been associated with smoking [16,17], a well-established lung cancer risk
factor [18]. Intriguingly, tobacco smoking has been associated with increased microbial
diversity [19]. In general, microbial diversity is decreased in patients with diseases. For
example, decreased microbial diversity has been associated with reduced lung function
in patients with cystic fibrosis [20]. Because of the inconsistent results in previous studies,
further investigations into the role of gut microbiota in the development, progression, and
treatment of lung cancer are warranted.

Accordingly, the purpose of this study was to identify and compare the core microbes
in the gut between treatment-naïve NSCLC patients and age-matched healthy individuals.
In addition, we investigated the associations and potential pathways through which gut
microbes may contribute to the development of NSCLC.

2. Materials and Methods
2.1. Subjects and Sample Collection

Thirty-four patients diagnosed with NSCLC were recruited from September 2015 to
July 2016 at E-Da Cancer Hospital. Clinical data of all NSCLC patients were recorded
including age, sex, smoking status, cancer staging at diagnosis, epidermal growth factor re-
ceptor (EGFR) mutation status and subtype, and comorbid diseases at baseline. The patients
who had a history of antibiotic use as well as the consumption of probiotics, prebiotics,
or symbiotics in the previous month were excluded. We randomly selected 268 healthy
individuals (age-matched controls: 64.1 ± 5.9 years; males, n = 113; females, n = 155) with
normal chest radiographs as the control group from 1491 people who participated in health
examinations in 2018, and those who had known diseases or medical records that may
have affected gut microbiota composition (i.e., type II diabetes [1], hypertension [2], and
cardiovascular diseases [3]) were excluded. The protocol and procedures of the current
study were reviewed and approved by the Institutional Review Boards (IRBs) of Fooyin
University Hospital (IRB number: FYH-IRB-107-03-01) and E-Da Hospital (IRB number:
EMRP36107N). Informed consent was obtained from all participants. Fecal samples were
collected using a standard collection kit (Cat. No. 21250. Iron Will Biomedical Technol-
ogy, Taiwan) with stool DNA stabilizer (SKU: 1038111100, Invitek, Berlin, Germany) and
preserved at −80 ◦C before further analysis.
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2.2. DNA Extraction, Polymerase Chain Reaction (PCR), and Targeting Sequencing

The DNA contents of feces collected from the NSCLC patients and healthy controls
were extracted using a Qiagen stool DNA kit (QIAmp DNA Stool Mini Kit, Hilden, Ger-
many) according to the manufacturer’s instructions. DNA samples with optical density
(OD) 260/280 nm in the range of 1.8–2.0 were stored at −20 ◦C before targeting sequence
analysis. The V3 and V4 regions of 16S rDNA were amplified with bacterial-specific
primers [21]. The primer sequences were: Forward (5′-TCG TCG GCA GCG TCA GAT
GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC AG-3′) and Reverse (5′-GTC TCG
TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3′)
with Illumina adaptor overhang sequence labeling in bold and an amplicon size of about
550 bp. The amplified DNA size was checked using a Fragment Analyzer (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA). Sequencing was carried out using an Illumina Miseq
platform. DNA samples were attached with indices and Illumina sequencing adapters us-
ing a Nextera XT Index Kit (Nextera XT DNA Library Preparation Kit, Illumina, San Diego,
CA, USA). After library construction (amplicon size about 630 bp), the samples were mixed
with MiSeq Reagent Kit v3 (600-cycle) at a final concentration of 20 pM, loaded onto a Miseq
cartridge, and then onto the instrument. Sequences were binned into operational taxonomic
units (OTUs) using QIIME2 (2020.11) and matched with the Greengenes database (v.13.8).
From Greengenes, data were extracted on genus level, and a total of 392 genera were
identified. Some genera are presented within hard brackets, which indicate a proposed
taxonomy by the Greengenes database. Chao1, ACE, Fisher, and Shannon indices were
chosen to characterize alpha sample diversity. For beta diversity estimation, weighted
UniFrac measures were used [22]. OTUs that differed between treatments were selected
based on linear discriminant analysis (LDA) effect size (LEfSe) and an LDA score above
3.0 for further analysis [23]. A p value less than 0.05 was considered statistically significant.

2.3. Bioinformatics Analysis

Bioinformatic analysis was performed using the CLC Microbial Genomics Module.
Alpha diversity was measured using Shannon index (richness and evenness), Chao1 (OTU
richness), ACE (OTU richness including less than 10 reads), and Fisher (relationship
between the numbers of species and individuals) methods, which calculate the overall di-
versity of each group including the number of observed species (richness) and the evenness
of observed taxonomy. Beta diversity was measured using PCoA-Weighted UniFrac, which
determines the difference in microbial composition between groups. Hierarchical clustering
of the top 25 OTU taxonomic abundances was performed using a heatmap to determine
patterns between groups. An OTU table was generated using the CLC Microbial Genomics
Module and further analyzed using LEfSe for core microbiota analysis and Phylogenetic In-
vestigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt 2) analysis
for functional pathway analysis. LEfSe was performed using the Galaxy/HutLab website
(http://huttenhower.sph.harvard.edu/galaxy/, accessed on 24 July 2014) to identify spe-
cific microbial markers between groups with an alpha value for the factorial Kruskal–Wallis
test/pairwise Wilcoxon test of 0.05 and LDA score cutoff of 2.0. PICRUSt 2 prediction was
performed using the Galaxy website according to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional pathways database and analyzed using Statistical Analysis of
Metagenomic Profiles (STAMP) software. The STAMP criteria were set up with the removal
of unclassified reads, p < 0.01, and effect size of 0.2. The results revealed a significantly
different abundance in functional pathways at level 3 between groups. Spearman’s correla-
tion and principal component analysis (PCA) in R language software (v4.0.2) were used
where appropriate.

2.4. Statistical Analysis

Statistical analysis was performed using IBM SPSS software (v25, IBM SPSS, Inc.,
Chicago, IL, USA) and GraphPad Prism 8 (v8.2.1, GraphPad software, San Diego, CA,
USA). Comparisons between groups were performed using two-tailed t tests. A multivari-
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ate regression model was used to assess the risk of NSCLC with adjustments for age, sex,
smoking status, and medical history (i.e., hypertension, chronic obstructive pulmonary
diseases (COPD), and diabetes). Areas under the curve (AUCs) for specific microbial candi-
dates were analyzed using receiver operating characteristic (ROC) curves. A p value < 0.05
was considered to be statistically significant.

3. Results
3.1. Microbial Diversity in the NSCLC Patients and Controls

To investigate the involvement of the gut–lung axis in the risk of lung cancer, fecal
microbiota from the treatment-naïve NSCLC patients (n = 34; age, 64.5 ± 8.9 years; males,
n = 20 (58.8%); females, n = 14 (42.25%)) and normal controls (n = 268; age, 64.1 ± 5.9 years;
males, n = 113 (42.2%); females, n = 155 (57.8%)) were analyzed after matching for age
between the two groups. In addition, those with factors that could affect the gut microbiota
(i.e., type 2 diabetes, hypertension, cardiovascular diseases, and associated comorbidities)
were recorded. Clinical information of the NSCLC patients (i.e., age, sex, smoking history,
genetic background, and disease status) are summarized in Table 1. To identify the microbial
communities, the V3–V4 regions of the 16S ribosomal RNA (rRNA) bacterial gene were
sequenced using the Illumina MiSeq platform. After quality filtering and contaminant
removal, roughly 100,000 quality sequences per case were retained for OTU (I) clustering
and downstream analysis.

Table 1. Demographic characteristics of the lung cancer patients and normal controls.

Normal (N = 268) Lung Cancer (N = 34)

Sex, n (%)
Male 113 (42.1) 20 (58.8)
Female 155 (58.9) 14 (41.2)

Age (years) 64.1 ± 5.9 64.5 ± 8.9
Smoking, n (%)

No 223 (83.2) 23 (64.7)
Yes 45 (16.8) 11 (35.3)

Current 22 (8.2) 5 (14.7)
Former 23 (8.6) 6 (17.6)

Lung cancer, n (%)
Non-Small-Cell Lung

Cancer
Adenocarcinoma 26 (76.5)
Squamous 3 (8.8)
Mixed 2 (5.9)
Others 3 (8.8)

Stage, n (%)
I 2 (5.9)
II 0 (0)
III 5 (14.7)
IV 27 (79.4)

EGFR Mutation, n (%)
Exon 19 (del) 7 (20.6)
Exon 21 (L858R) 9 (26.5)
Mixed * 2 (5.9)
Non-detected 16 (47.0)

* Mixed: Exon19: Deletion & Exon 20: T790M: n = 1; Exon 18: G719X & Exon 21: L861Q: n = 1.

To explore whether there were changes in the gut microbiota of the NSCLC patients,
the commonly used Shannon diversity index (including richness and evenness) was first
used to analyze the alpha diversity of the microbial composition. The results showed that
the alpha diversity was decreased in the NSCLC patients, but without statistical significance
(p = 0.087, Figure 1A). However, the Chao1, ACE, and Fisher methods showed that the
alpha diversity was significantly decreased in the NSCLC patients compared with the
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controls (p = 0.016, 0.032, and 0.005, respectively, Figure S1). Furthermore, the beta diversity
was significantly different between the NSCLC patients and controls (p < 0.001, Figure 1B).
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Figure 1. Gut dysbiosis in the patients with NSCLC. The alpha diversity in the NSCLC cases and
healthy controls is illustrated using (A) Shannon diversity and (B) principal coordinates analysis (PCoA)
derived from unweighted and weighted analysis of two populations (p < 0.0001 by PERMANOVA).

3.2. The Core Gut Microbiome in the NSCLC Patients

To identify critical gut microbes associated with the risk of lung cancer, the top 10
relative abundances at the phylum (Figure 2A) and genus (Figure 2B) levels were analyzed.
The results showed that Bacteroidetes at the phylum level was significantly increased in the
NSCLC patients (p = 0.039, Figure S2A). At the genus level, Lactobacillus and Oribacterium
spp. were significantly increased in the NSCLC patients (p = 0.035 and 0.002, respectively,
Figure S2B), whereas Coprococcus spp. was decreased in the NSCLC patients (p = 0.049,
Figure S2B). The relative abundances of the gut microbes at the genus level in the NSCLC
patients were further analyzed using a heatmap (Figure 2C). A total of 11 bacterial species
were identified in the heatmap, all of which were significantly enriched in the NSCLC
patients compared with the controls (Figure S3).

The taxonomic abundance table for the core bacteria using LEfSe analysis (LDA
score >3) is illustrated in Figure 3. Both Bacteroides caccae and Anaerotruncus spp. were
significantly increased in the patients with NSCLC. LEfSe analysis (Figure 3A) showed that
the NSCLC patients had significantly increased abundances of Parabacteroides distasonis,
Anaerotruncus spp., Schwartzia spp., Morgenella spp., Bacteroides caccae, Clostridium hathewayi,
Clostridium symbiosum, and Eubacterium dolichum (p < 0.001, <0.001, 0.005, 0.014, <0.001,
<0.001, 0.005, and p < 0.001, respectively, Figure 3B). The abundances of Coprococcus spp.
and Roseburia faecis were significantly decreased in the NSCLC patients compared with the
normal controls (p = 0.049 and 0.019, respectively, Figure 3C).

Smoking has been reported to be an initiating factor in lung cancer development.
In addition, metabolic disorders and COPD have also been reported to influence the
composition of the gut microbiota and to play a role in the development of lung can-
cer [24–27]. Accordingly, the abundances of Parabacteroides distasonis (nonsmokers, p < 0.001;
smokers, p = 0.002, Figure 4), Anaerotruncus (nonsmokers, p < 0.001; smokers, p = 0.005,
Figure 4), Bacteroides caccae (nonsmokers, p < 0.001; smokers, p = 0.018, Figure 4), and
Clostridium hathewayi (nonsmokers, p < 0.001; smokers, p = 0.037, Figure 4) were signif-
icantly increased in the NSCLC patients regardless of their smoking status (Figure 4).
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Furthermore, the abundances of Prevotella spp. (p = 0.025) and Coprococcus spp. (p = 0.030)
were reduced, but those of Morganella spp., Clostridium symbiosum, and Eubacterium dolichum
were increased in the NSCLC patients compared with the control group (p = 0.044, <0.001,
and <0.001, respectively, Figure 4). At the species level, there were no significant differences
among the NSCLC patients, regardless of the presence of metabolic disorders (i.e., diabetes
mellitus, hypertension, cardiovascular diseases; n = 12, Figure S4A) or COPD (n = 5, Figure
S4B). We also found that these three species of bacteria were not affected by metabolic
disorders or COPD (Figure S4).
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3.3. The Risk-Associated Gut Microbes and Related Functional Pathways in the NSCLC Patients

To identify which microbial biomarkers were associated with the risk of NSCLC,
multivariate regression analysis was performed. The results revealed that Anaerotruncus
spp. and Bacteroides caccae were related to the risk of NSCLC after adjusting for sex,
smoking, hypertension, diabetes mellitus, COPD, and 11 core microbes (p = 0.003 and 0.007,
respectively, Table 2). Furthermore, the AUCs derived from ROC curves were 71.4% and
66.9% for Anaerotruncus spp. and Bacteroides caccae, respectively, using the respective values
of 0.019 and 0.006 (both p < 0.001, Figure 5). The AUC did not improve when combining
these two bacteria in ROC analysis (Figure 5C). However, random forest analysis showed
that Bacteroides caccae and Anaerotruncus spp. were most strongly associated with the risk of
NSCLC (Figure S5, first two rows).
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Figure 4. Comparisons of the abundances of core gut microbes in smokers vs. non-smokers.

To explore how these two bacteria contribute to the development of NSCLC through
related functional pathways, PICRUSt 2 analysis based on the KEGG pathways database
was used (Figure 6A). The results showed that 12 signaling pathways were significantly
correlated with the abundances of these two bacteria, as determined by Spearman’s correla-
tion analysis (Figure 6B), and showed significant differences between the NSCLC patients
and controls (Figure 6B). Steroid hormone biosynthesis, apoptosis, N-glycan biosynthe-
sis, glycosaminoglycan degradation, lipoic acid metabolism, biosynthesis of siderophore
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non-ribosomal peptide, and peroxisome were significantly increased (p < 0.001, 0.020,
<0.001, <0.001, <0.001, and 0.002, respectively, Figure 6C), whereas beta-lactam resistance,
glycerolipid metabolism, chloroalkane and chloroalkene degradation, the sulfur relay
system, and biosynthesis of ansamycin were significantly decreased in the NSCLC pa-
tients (p = 0.017, 0.006, <0.001, 0.004, and 0.009, respectively, Figure 6C). The abundance of
Bacteroides caccae was positively correlated with steroid hormone biosynthesis, N-glycan
biosynthesis, glycosaminoglycan degradation, lipoic acid metabolism, apoptosis, and per-
oxisome (p < 0.001, 0.023, <0.001, 0.039, <0.001, and <0.001, respectively, Figure 6D), but was
inversely correlated with glycerolipid metabolism (p < 0.001, Figure 6D). Anaerotruncus spp.
was positively and only correlated with the biosynthesis of ansamycin. No overlapping sig-
naling pathways were modulated by Bacteroides caccae and Anaerotruncus spp. (Figure 6E).

Table 2. Multivariate regression analysis for lung cancer risk.

Factors S.E. p Value Exp(B)/Odds Ratio 95% CI

Sex (Male/Female) 0.669 0.843 1.141 0.307 4.239
Smoking
(Never/Former/Current) 0.414 0.090 2.016 0.895 4.54

Hypertension (No/Yes) 9501.83 0.998 10,591,695,380 0 .
COPD (No/Yes) 11,322.247 0.998 718,2119,898 0 .
DM (No/Yes) 9565.13 0.998 1,141,677,983 0 .
Parabacteroides spp. 0.275 0.654 1.131 0.66 1.94
Coprococcus spp. 0.104 0.920 0.99 0.807 1.214
Anaerotruncus spp. 10.741 0.003 6.25588 × 1013 45,003.321 8.69625 × 1022

Morganella spp. 1.358 0.257 4.667 0.326 66.826
Bacteroides caccae 0.172 0.007 1.586 1.132 2.222
Parabacteroides distasonis 0.363 0.898 1.048 0.514 2.134
Clostridium hathewayi 6.825 0.560 53.513 0 34,524,785.61
Clostridium symbiosum 3.882 0.904 1.598 0.001 3221.089
Roseburia faecis 0.18 0.561 0.900 0.632 1.282
Eubacterium dolichum 1.673 0.853 1.364 0.051 36.222
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caccae-associated pathways showed no overlapping (E).

4. Discussion

Recent studies have reported differences in the gut microbiota of patients with lung
cancer [28,29]. Even though these studies have provided notable examples of pathogenic
microbiota capable of promoting oncogenesis and regulating immune cells and the effi-
cacy of cancer therapy, no strong bacterial oncogenic drivers have been identified, and a
consensus on the underlying mechanisms or interactions has yet to be reached [3,29–31].
The fecal microbiome is highly dynamic and influenced by factors including age, sex,
probiotics, comorbid diseases, host genetics, and certain medications such as anti-acid
agents. After adjusting for potential confounding factors and comorbidities reported in
previous studies [3,31], multivariate regression analysis confirmed the association of spe-
cific gut microbial biomarkers with the risk of lung cancer. We found that Anaerotruncus
spp. and Bacteroides caccae were abundant gut microbes in the treatment-naïve NSCLC
patients, and that they could potentially serve as predictive biomarkers for the risk of
NSCLC. This is consistent with previous studies which have also reported the enrichment
of Anaerotruncus spp. and Bacteroides caccae in lung cancer patients [28–30,32]. Intriguingly,
Clostridium symbiosum is significantly enriched in people with lung cancer who are “non-
smokers” in comparison to their composition in lung cancer patients who are classified
as “smokers”. Significant stepwise increase in C. symbiosum abundance has been found
in CRA, early CRC, and advanced CRC [4]. In addition, C. symbiosum colonization from
coronary artery disease (CAD) patients in mice modulated the secondary bile acids pool,
potentially upregulating a systemic IFN-γ response, pro-inflammatory factor production,
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and the Th17/Treg cell ratio [3]. Studies by Zhou et al. [5] have shown that there is a
significant increase in Tregs expression and a decrease in Th17 cells in the peripheral blood
of NSCLC patients compared to that of healthy patients. In particular, the Th17/Treg
ratio is negatively correlated with the TNM stages [5,6]. Therefore, a relative decrease
in lung cancer patients who are classified as smokers compared to non-smokers might
mean a lower Th7/Treg ratio, which might contribute to advanced development. Further
investigations of their interplay are required.

The biosynthesis of ansamycin was the only and slightly enriched pathway with
Anaerotruncus spp., which has previously been reported in patients with lung [33], gastric,
and ovarian cancers [34,35]. Ansamycins such as rifamycin, ansamitocin, and geldanamycin
are an important class of polyketide natural products. Ansamycin antibiotics [36,37]
include important antibacterial agents, such as rifamycin, and anticancer agents such
as ansamitocin [38]. Previous studies have shown high expressions of Hsp90 in lung
cancer specimens and that this is associated with a poor survival rate and lymphatic
metastasis in lung cancer patients [39–42], indicating that the upregulation of Hsp90
can potentially facilitate the proliferation and metastasis of lung cancer. Ansamycins
have also been shown to be able to bind to a conserved pocket in the NH2-terminal
adenosine triphosphate (ATP)-binding domain of Hsp90, inhibiting its activity [43]. A
positive correlation between the biosynthesis of ansamycin and Anaerotruncus spp. may
represent a compensatory impact on lung cancer formation. However, the biosynthesis
of ansamycin was not significantly different between the lung cancer and normal groups
in this study. Although the role of Anaerotruncus spp. in the development of lung cancer
requires further investigation, the enrichment of Anaerotruncus colihominis has been found
in PD-1 blockade non-responders [44]. Moreover, an in vivo study by Faith et al. using
mice mono-colonized by specific bacterial strains indicated that some Bacteroides species,
one Parabacteroides species, and one Escherichia species could significantly increase levels of
regulatory T (Treg) cells [45]. In addition, a prospective study collected microbiome samples
from 78 patients with NSCLC or renal cell carcinoma and found that abundances of gut
microbiomes including Bacteroides caccae were associated with a longer progression-free
survival with anti-PD-1 treatment. Moreover, an increased level of Anaerotruncus spp. was
associated with worse progression-free survival [15]. These results provide crucial evidence
to support the role of Anaerotruncus spp. in regulating host immune cells, and a possible
role in the risk of NSCLC. In this study, the abundance of Bacteroides caccae was positively
correlated with steroid hormone biosynthesis, N-glycan biosynthesis, glycosaminoglycan
degradation, lipoic acid metabolism, apoptosis, and peroxisome. The effects of sex steroid
hormones on the risk of lung cancer explain the sex differences in the incidence of lung
cancer. Increasing epidemiological evidence has shown that increased exposure to sex
steroid hormones (according to age at menarche, age at menopause, parity, and hormone
use) plays a role in the development of lung cancer in women, even though the findings
remain generally inconsistent [46–48]. Glycosylation is an enzymatic process in which
carbohydrate chains called glycans are conjugated to target molecules, typically proteins
and lipids [49,50]. Aberrant protein glycosylation has been demonstrated in malignant
tumors, including lung cancer [51]. The positive association of enriched Bacteroides caccae
with increased N-glycan biosynthesis and glycosaminoglycan degradation may be due to
aberrations in enzymatic substrate leading to the development of lung cancer. In the present
study, glycerolipid (e.g., triglycerides) metabolism was decreased and the only negatively
correlated functional pathway with the abundance of Bacteroides caccae in the NSCLC
patients. Decreased glycerolipid metabolism may result in high serum triglyceride levels,
and this was associated with an increased risk of lung cancer in a large cohort study [52].
Taken together, these findings suggest that Bacteroides caccae may be associated with certain
pathways involved in lipid metabolism, including steroid hormone biosynthesis, lipoic
acid metabolism, and glycerolipid metabolism. Lipid metabolism occurs as a network
of pathways with flexibility, feedback loops, and crosstalk which may increase metabolic
requirements in cancer cells. Cancer cells generate many metabolic intermediates which
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can be used in anabolic processes for membrane building blocks or as extra- or intracellular
signaling molecules to activate oncogenic cascades, eventually leading to tumor malignant
progression [53–55]. Taken together, the association of Bacteroides caccae with the risk of
NSCLC may be through interplay with lipid-related metabolism.

There are several limitations to this study. First, the number of lung cancer patients
was limited, and our results need to be further validated in a larger cohort study. Second,
although the gut microbiota of our patients was obtained at the time of diagnosis (treatment
naïve), a single time point of bacterial detection may not reflect the entire range of bacterial
communities in lung cancer patients. Dynamic monitoring in a longitudinal study could
help to better understand the changes in gut microbiota and associations with lung cancer
development and treatment. Third, microbial dysbiosis in different body fluids such as
saliva or bronchoalveolar fluid has also been shown to play a crucial role in lung cancer [56].
However, we did not investigate microbial dysbiosis in different body fluids in this study.
Further analysis of microbial dysbiosis as well as the lipid-related profile in different body
fluids may improve our understanding of the gut–lung axis in lung cancer development
and treatment.

5. Conclusions

We assessed compositional changes in the gut microbiota between age-matched
NSCLC patients and healthy subjects. Analysis of the associated KEGG pathways re-
vealed cross-link between gut dysbiosis and related mechanisms of oncogenesis in the
NSCLC patients. The identification of these gut microbes and associated signaling path-
ways may provide insights into the underlying mechanisms, which could facilitate the
clinical development of biotherapeutic approaches including dietary interventions with
probiotics, therapeutic administration of bacterial species or their metabolites, and selective
antibiotic therapy or fecal microbial transplantation.
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