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Abstract: Background and aim: We analyzed an inclusive gradient boosting model to predict hospital
admission from the emergency department (ED) at different time points. We compared its results to
multiple models built exclusively at each time point. Methods: This retrospective multisite study
utilized ED data from the Mount Sinai Health System, NY, during 2015–2019. Data included tabular
clinical features and free-text triage notes represented using bag-of-words. A full gradient boosting
model, trained on data available at different time points (30, 60, 90, 120, and 150 min), was compared
to single models trained exclusively at data available at each time point. This was conducted by
concatenating the rows of data available at each time point to one data matrix for the full model,
where each row is considered a separate case. Results: The cohort included 1,043,345 ED visits. The
full model showed comparable results to the single models at all time points (AUCs 0.84–0.88 for
different time points for both the full and single models). Conclusion: A full model trained on data
concatenated from different time points showed similar results to single models trained at each time
point. An ML-based prediction model can use used for identifying hospital admission.

Keywords: machine learning; healthcare; clinical decision support

1. Introduction

Emergency departments (ED) are overcrowded in the United States and internationally,
hindering patient care and system efficiency. ED overcrowding has been associated with
increased mortality and morbidity, longer wait times, and length of stay. Overcrowding has
also increased hospital expenses and generated poorer patient perceptions of care [1–4].

The ED admission process is aimed to expedite patient disposition, as EDs are becom-
ing overcrowded. Typically, ED admission is started by a triage nurse that performs the
triage process. The nurse records the patient’s demographic data and measures vital signs.
The nurse also records the patient’s visit reason in a free-form text note [4]. Other clinical
data accumulate as the patient is in the ED. This mainly includes laboratory results that can
infer essential clues to the patient’s clinical condition. For example, leukocytosis (WBC)
may signal an infection, and increased troponin may signal myocardial infarction.

In hospitals with EHRs, where patient data are recorded at the point of care, EHR
data can be utilized to generate short-term predictions of hospital admissions and thus bed
demand. These would help control teams, responsible for allocating beds, to make best use
of available capacity and reduce cancellations of elective admissions [5]. Secondly, patients
can anticipate hospitalization, which could increase patient satisfaction. Thirdly, it may
have prognostic value as patients who need hospitalization are often the sickest and will
benefit most from time-sensitive ED treatment [6].
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Increases in digital electronic health records (EHR) data volume [7] are driving machine
learning use in healthcare processes [8,9]. Previous works utilized ED data [10,11] for
building models for predicting hospital admission.

It is important to note that triage is not the same as the hospital admission prediction
(also known as patient disposition). ED data include multiple features that stream at
different progressive time points. Thus, different predictions can be made depending
on the time from the patient’s arrival at the ED. Yet, previous works presenting decision
support tools for predicting disposition from the ED did not describe a full gradient
boosting model that handles multiple time points. Such a model may be easier to train and
implement than multiple models trained exclusively at each time point. However, it should
be tested whether such a model remains stable, as it aggregates multiple time points.

This study aimed to develop an inclusive tabular–free–text gradient boosting model
for predicting hospital admission and compare its results to multiple time points models.

2. Methods
2.1. Data Sources

The model is built using patient data from Mount Sinai Health System (MSHS), an
urban health system in New York City. Emergency Department data were obtained from
five hospitals within the MSHS in New York City: The Mount Sinai Hospital (MSH), located
in East Harlem, Manhattan; Mount Sinai Morningside (MSM), located in Morningside
Heights, Manhattan; Mount Sinai West (MSW) located in Midtown West, Manhattan;
Mount Sinai Brooklyn (MSB) located in Midwood, Brooklyn; and Mount Sinai Queens
(MSQ) located in Astoria, Queens. The data set was obtained from different sources using
the Epic EHR software (Epic Systems, Verona, WI, USA) and aggregated by the Clinical
Data Science team.

An institutional MSHS ethical board committee approval was granted for this retro-
spective study. The committee waived informed consent.

2.2. Study Design

Using the MSHS data warehouse, we identified patients who presented to our ED
between January 2015 to December 2019. We extracted tabular clinical and demographic
data from this cohort, including all free-text triage notes. Figure 1A presents the data
collection method.

For all ED patients within the extracted cohort, the models were designed considering
tabular EHR data and triage notes. The single models were developed on five different
time points data (30, 60, 90, 120, and 150 min), and the full model was developed using
all time points data concatenated. All models’ testing sets results were compared using
confusion matrix metrics and the area under the receiver operating characteristic (ROC)
curves (AUC).

2.3. Study Population

We retrospectively included patients who presented to the ED between 2015 and 2019.
All patients over 18 years of age and admitted to the EDs of five MSHS hospitals. We
excluded all patients younger than 18. We also excluded erroneously created or duplicated
patient records.

2.4. Study Data

We extracted clinical and demographic data, including sex and age, hospital facility,
admission time, vital signs, and laboratory results, as described in Figure 1C. Within the
same data source, we also extracted all triage notes. Upon a patient’s arrival in the Mount
Sinai ED, the first clinical documentation recorded in a patient’s chart is a triage note
consisting of an abbreviated patient history written by a triage nurse. All included recorded
data was time stamped.
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Figure 1. Study design and workflow. (A) Procedure for patient inclusion in our study. (B) Time
horizon of prediction on multiple time frames after patient’s admission (C) Strategy and design of
the experiments. Emergency Department patient data from the Mount Sinai Health System data
warehouse were used to train and validate the XGBoost model. Data include demographic, lab, and
vital signs. They also include triage notes from the emergency department written by nurses from all
five hospitals: The Mount Sinai Hospital (MSH) located in East Harlem, Manhattan; Mount Sinai
Morningside (MSM) located in Morningside Heights, Manhattan; Mount Sinai West (MSW) located in
Midtown West, Manhattan; Mount Sinai Brooklyn (MSB) located in Midwood, Brooklyn; and Mount
Sinai Queens (MSQ) located in Astoria, Queens.

2.5. Outcome Definition

The primary outcome was a prediction of hospitalization. The average disposition
time from ED presentation is usually ≥3 h. This model can reduce hospitalization time and
predict hospitalization starting from 30 min of patients’ admission to the ED.

2.6. Model Development

For this study, we selected Extreme Gradient Boosting (XGBoost) implementation of
gradient boosting decision trees [12]. The XGBoost algorithm provided robust prediction
results through an iterative process of prediction summation in decision trees that fit the
residual error of the prior ensemble. Both tabular and free-text data were used to build
the model to predict patients’ admission from the ED. Table 1 presents the list of tabular
features used in the models. The prediction is updated every 30 min from the patient’s ED
arrival time. Model development and how the dataset moves from epic to XGBoost model
for prediction are described with an architecture diagram in Figure 2.

The bag-of-words (BOW) model was implemented on triage free-text notes. BOW
is a representation that turns arbitrary text into fixed-length vectors by counting word
frequencies, and this process is often referred to as vectorization. A statistical classifier
is then trained to classify each paragraph based on word frequency and number. To
implement the BOW model, we preprocess the data by converting text to lower case and
removing all non-word characters and punctuations. The BOW Vector and tabular EHR
data were combined using sparse vector representation.

Multiple models were developed to ensure its performance in the form of Experiments.
In Experiment 1, multiple single models were developed and trained on multiple time
points data with 30, 60, 90, 120, and 150 min timeframes. In Experiment 2, we developed a
full model trained on the concatenated entire time points data and tested on the multiple
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time points (30, 60, 90, 120, and 150 min). This was done by concatenating the rows of
data available at each time point to one data matrix for the full model, where each row is
considered a separate case. Thus, at each time point, the full model gives predictions based
on the data available at that time.

Table 1. List of tabular features used in the models.

Demographics and Presentation Vital Signs Laboratory

Sex Temperature WBC

Age Respirations HGB

ESI PainScale PLT

Month PulseOximetry NEUT

Year Pulse LYMPH

Day SystolicBP CR

Hour DiastolicBP BUN

DayOfWeek GLC

NA

K

CHLORIDE

CALCIUM

LACTATE

ALT

AST

BILIRUBIN

ALK PHOS

ALBUMIN

CRP

D-DIMER

BNP

CPK

TROPONIN

Figure 2. Diagram of how the XGBoost model was developed with a concatenation of the BOW
model representing free-text triage notes and tabular structured EHR data.
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2.7. Models Training and Testing

Data were split chronologically. Data from the years 2015–2018 were used for training
and validation, and the 2019 data were used for testing. The default XGBoost hyper-
parameters were used for all the models: eta = 0.3, max depth = 3. We set n_estimators = 200.
The XGBoost model handled imputations of missing values. Scale balancing of the XGBoost
was set to the default scale pos weight = 1.

2.8. Models Interpretation

We evaluated the performance of the full vs. single models for each time point (30,
60, 90, 120, and 150 min). Single feature analysis was also performed for the structured
variables. SHapley Additive exPlanations (SHAP) summary plots were constructed to
assess the full XGBoost model feature importance. Finally, using the full dataset, we
compared a structured data only model to a free-text-only model.

2.9. Statistical Analysis

All development and statistical analysis were done using Python (Version 3.6.5). Con-
tinuous variables are reported as the median, with the spread reported as the Interquartile
range (IQR). Categorical variables are reported as percentages. Categorical variables were
compared using the χ2 test, and continuous variables were compared using Student’s t-test.
Statistical significance was established at a two-sided p-value of p < 0.05.

We constructed receiver operating characteristic (ROC) curves for all models and
evaluated the AUC. We determined sensitivity (recall), specificity, and precision (pos-
itive predictive value, PPV) for a default cut-off probability of 0.5. Confusion matrix
values (true positive, false positive, true negative, false negative) are also reported for this
cut-off probability.

3. Results
3.1. Cohort Characteristics

1,043,345 ED visits in five years (2015–2019) were included. Of those, 19.3% were
hospitalized (n = 201,520). The median time from ED entrance to ED disposition time
was 194 min (IQR 113–314 min). Table 2 represents the cohort’s characteristics. Patients
admitted to the hospital had an average age of 64. They were more likely to have higher
systolic blood pressure, higher respiratory rate, and higher heart rate (Table 1).

Table 2. Presents clinical and demographic characteristics of the patients’ cohort, stratified by
admission to the emergency department.

Discharged
(n = 841,825, 80.7%)

Hospitalized
(n = 201,520, 19.3%) p Value

Age, median (IQR), y 43.0 (29.0–59.0) 64.0 (49.0–77.0) <0.001

Female, N. (%) 465,178 (55.3) 103,030 (51.1) <0.001

SBP, median (IQR), mmHg 130.0 (118.0–145.0) 134.0 (117.0–153.0) <0.001

DBP, median (IQR), mmHg 76.0 (68.0–85.0) 74.0 (65.0–85.0) <0.001

Heart rate, median (IQR), beats/min 82.0 (73.0–93.0) 87.0 (75.0–101.0) <0.001

Temperature, median (IQR), Celsius 36.7 (36.4–36.9) 36.7 (36.4–37.0) <0.001

Respirations, median (IQR), breaths/min 18.0 (17.0–19.0) 18.0 (18.0–20.0) <0.001

O2 saturation, median (IQR)% 98.0 (97.0–99.0) 98.0 (96.0–99.0) <0.001

WBC, median (IQR), ×103/uL 7.8 (6.1–9.9) 8.8 (6.6–11.9) <0.001

NEUT, median (IQR), ×103/uL 5.0 (3.6–7.0) 6.2 (4.2–9.3) <0.001
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Table 2. Cont.

Discharged
(n = 841,825, 80.7%)

Hospitalized
(n = 201,520, 19.3%) p Value

HGB, median (IQR), g/dL 13.1 (11.9–14.3) 12.3 (10.5–13.8) <0.001

BUN, median (IQR), mg/dL 13.0 (10.0–17.0) 17.0 (12.0–27.0) <0.001

Cr, median (IQR), mg/dL 0.8 (0.7–1.0) 0.9 (0.7–1.4) <0.001

3.2. Experimental Results

To evaluate an inclusive tabular-free-text gradient boosting model which predicts
hospitalization, we have tested two experiments on multiple progressive time points.

3.2.1. Experiment 1

Five single models (T30, T60, T90, T120, and T150) were developed on the ED dataset
at multiple time points (30, 60, 90, 120, and 150 min from presentation to the ED), as
described in Figure 3. The AUC metrics for experiment 1 were generated for each single
model (T30, T60, T90, T120, and T150) and are presented in Figure 3 and the ROC curves
are presented in Figure 4. The metrics of the single models are presented in Table 3.

Figure 3. Multiple single models were developed on multiple time point data sets and evaluated on
multiple time point data to check their performance.

3.2.2. Experiment 2

The full model is developed using the ED patients dataset with all-time points data
concatenated as one dataset, as presented in Figure 5. The full model was tested individ-
ually on multiple progressive time point datasets (30, 60, 90, 120, and 150 min from ED
presentation), as described in Figure 6. The metrics for the full model on different time
points are presented in Table 4.
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Figure 4. Single Model ROC Curve analysis.

Table 3. Derived metrics of the single models.

Minutes True Positive False Positive True Negative False Negative Sensitivity Specificity Precision (PPV)

30 21,221 9224 255,897 39,829 0.348 0.965 0.697

60 21,887 9252 255,869 39,163 0.359 0.965 0.703

90 23,247 9575 255,546 37,803 0.381 0.964 0.708

120 25,172 9731 255,390 35,878 0.412 0.963 0.721

150 27,473 10,367 254,754 33,577 0.450 0.961 0.726

Figure 5. The full model was developed on single large data sets and evaluated on multiple time point
data to check its performance. The figure presents the AUCs of the model at the different time points.
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Figure 6. Full Model ROC Curve analysis.

Table 4. Derived metrics of the full model at multiple time points.

Minutes True Positive False Positive True Negative False Negative Sensitivity Specificity Precision (PPV)

30 19,352 7810 257,311 41,698 0.317 0.971 0.712

60 21,342 8850 256,271 39,708 0.350 0.967 0.707

90 23,000 9345 255,776 38,050 0.377 0.965 0.711

120 25,147 9991 255,130 35,903 0.412 0.962 0.716

150 27,708 11,197 253,924 33,342 0.454 0.958 0.712

For all time points, AUC confidence intervals (CI) overlapped between the single
models and the full model. Thus, no significant statistical difference was shown (Table 5).

Table 5. Comparison of full model and single models AUC confidence intervals (CI) at different
time points.

Full Model AUC Single Models AUC

30 min 0.845 (95% CI: 0.843–0.847) 0.847 (95% CI:0.845–0.849)

60 min 0.849 (95% CI: 0.848–0.851) 0.850 (95% CI:0.849–0.852)

90 min 0.856 (95% CI: 0.855–0.858) 0.857 (95% CI:0.855–0.858)

120 min 0.866 (95% CI: 0.864–0.867) 0.867 (95% CI:0.865–0.868)

150 min 0.875 (95% CI: 0.874–0.877) 0.877 (95% CI:0.876–0.879)

For the full model, for all time points, we’ve also compared structured data only model
vs. free-text data only model. For structured data only, the AUC was 0.84; for free-text data
only, the AUC was 0.79.

We also trained the full model (tabular + text) without the ESI feature. For this model,
the AUC was 0.86. This is comparable to the full model (tabular + text) with the ESI feature,
which showed a similar AUC of 0.87.

3.3. Single Feature Analysis

In the single feature matrix analysis, the tabular variables with the highest AUC were
Age (AUC 0.726), followed by ESI (AUC 0.722), sodium (AUC 0.621), and calcium (AUC
0.618). The single feature analysis is presented in Table 6.
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Table 6. Tabular variables with the highest AUC contributions for admission to the hospital from ED.

Feature AUC

Age 0.726

ESI 0.722

Na+ 0.621

Ca++ 0.619

K+ 0.618

Hgb 0.611

Glucose 0.603

Lactate 0.603

Cl- 0.602

White Blood Cell Count 0.595

Neutrophil Count 0.595

Platelet Count 0.594

Lymphocyte Count 0.591

Pulse Rate 0.591

Sytolic BP 0.581

3.4. SHAP Plot Analysis:

Figure 7 shows the SHAP plot of the full model analyzed at all time points. Our
analysis of ED notes suggests that certain features are highly associated with hospitalization.
Based on the SHAP graph, the top three terms were “admission”, “surgery”, and “crohn”.
Similarly, the structured feature “ESI”, which is nurse assessment of severity (scale 1–5),
was also a high predictor of hospital admission.

Figure 7. SHAP Plot of the full model at all time points.

Figure 8 shows the SHAP summary plot of the tabular data full model analyzed at all
time points. For tabular data-only analysis, ESI, age, pulse, temperature and sex were the
features with the highest importance.



J. Clin. Med. 2022, 11, 6888 10 of 12

Figure 8. SHAP summary plot of tabular features.

4. Discussion

In this study, we developed a machine learning model based on free-text triage notes
and EHR tabular data to predict hospital admission from the ED. For this task, a full
gradient boosting model, trained on the entire structured and free-text data at different time
points, showed stability compared to multiple single models trained on various time-frame
points. Using a full model may be easier to train and implement.

Several previous works presented models for the prediction of hospital admission. For
example, Hong et al. compared gradient boosting (XGBoost) to deep neural networks for
predicting hospital admission with demographics and triage features. Both models showed
similar results [10]. Their models showed AUCs of 0.87, which is comparable to the current
AUC of 0.85–0.88. However, Hong et al. used previous patient data (medication, past medical
history), while we used more current HER data (labs). Their approach has benefits, although
it requires the patient to be seen in the same health system before to have these data recorded
and also to maintain an updated hashed data lake for instant access for each patient.

Raita et al. predicted both hospitalization and critical care outcomes, and their features
included demographics, vital signs, chief complaints, and comorbidities. They’ve shown
that machine learning models (lasso logistic regression, random forest, gradient boosting,
neural networks) outperformed logistic regression [13]. Their neural network model
showed similar results to our model (AUC 0.86) while again using previous medical history
data (comorbidities). Unlike the previous examples that evaluated a single model at triage
time, Lee et al. used logistic regression to predict admission at three different positions.
They built single models using three data sets (demographics, triage vitals, and laboratory
results) [14]. Lee’s model predicted different disposition endpoints, including ICU, but
general practice and observation units showed similar AUCs to our model (0.89, 0.86).
Barak et al. also evaluated single logistic regression models at three progressive time stops,
using demographics, triage, and laboratory data [15]. Barak’s et al. model showed an AUC
of 0.97, which is higher than all other cited models and our model. We cannot explain this
difference based on available data.

While the previous studies evaluated only structured data, several studies used free-
text. For example, Lucini et al. utilized provider notes available several hours after
triage to train several machine learning models (for example, random forest and logistic
regression) [16]. Sterling et al. used the single data source of triage notes using neural
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network regression models with bag-of-words (BOW) [4]. Sterling’s model, which utilized
triage notes as a single feature, showed an AUC of 0.73.

Our previous study trained a single triage data gradient boosting model (demographics,
vital signs, and triage notes) to predict admission to the neurosurgical intensive care unit [17].

In the current study, we evaluated the use of one full gradient boosting (XGBoost + BOW)
model at multiple progressive time points (every 30 min after the patient presented to the
ED) using both structured and free-text data. We compared the full model to single models
trained at each time position.

While the full model demonstrated satisfactory results and performed well within
30 min of the patient’s admission to ED, by using continually aggregated data from the ED,
the models showed increased sensitivity of 15% from 30 min to 150 min while maintaining
the same PPV. Such a solution is simple to train and easy to deploy.

A machine learning model like the one presented could be used by hospital care
experts and clinical stakeholders, such as ED clinicians and nursing managers, to identify
patients that might need hospitalization early in the ED triage process. This could also
allow providers to administer timely care specialists, accelerate patient movement into the
hospitals, and potentially reduce ED boarding time.

Implementing the model presented here could be a clinical decision support tool
that identifies patients requiring hospital admission and delivers a notification to the
specialized care team. In such implementation, selecting an optimal alert threshold ne-
cessitates a careful evaluation of model performance and likely depends on multiple fac-
tors, including healthcare institution needs, clinical stakeholder preferences, and hospital
resource availability.

It should be noted that ESI showed a high AUC in a single feature matrix. To compare
the functional value of our model to triage by humans (ESI), we evaluated the AUC of
the full model without the ESI feature. This showed an AUC of 0.86. Thus, although
ESI by itself has high prediction capability, by utilizing multiple features, the model can
“overcome” the loss of ESI as a feature.

To summarize, in this study, we used ED features (demographics, vital signs, ESI,
triage note, and laboratory data) to develop a model for predicting hospital admission at
different time points from ED presentation. Our model is based on the gradient boosting
algorithm, with a BOV approach for free-text notes. We compared a single full model,
trained at all time points, to multiple single models, trained at each time point. We have
shown that for each time point the full model achieves similar results to the single models.
Thus, potentially making it easier to be trained and implemented.

Our study has several limitations. First, this is a retrospective study. Second, while we
experimented with the widely used gradient boosting algorithm, other approaches, such
as deep learning transformer models, may show better results. Third, it is important to
note that each hospital has its own admission policy. Thus, our model serves as a proof of
concept, and cannot be implemented as is in a new site, but needs to be adjusted according
to the site’s setting and policy. Fourth, our model is not intended for the triage setting, as it
uses out-of-triage features, mainly laboratory data.

In conclusion, using tabular and free-text data, a model trained at different time points
can predict hospital admission from the ED. A full model trained on data from all time
points showed similar results to single models trained exclusively at different time points.
This may simplify the training and implementation of such a model.
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