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Abstract: Green propolis may represent a promising therapeutic alternative against dental anaerobic
pathogens because of its antimicrobial action. This study aimed to evaluate the antimicrobial and
antibiofilm actions of Brazilian green propolis aqueous extract (BGP-AqExt) against dental anaerobic
bacteria. The minimum inhibitory concentration (MIC) and minimum microbicide concentration
(MMC) of the extract were determined against the standard strains (ATCC) of Fusobacterium nucleatum,
Parvimonas micra, Prevotella intermedia, Porphyromonas gingivalis and Porphyromonas endodontalis. BGP-
AqExt was chemically characterized by high-performance liquid chromatography with diode-array
detection (HPLC-DAD) analysis. Antibiofilm action was measured by MTT and crystal violet tests.
The data were statistically analyzed by ANOVA and Tukey (5%) tests. The extract had antimicrobial
action against all tested anaerobic bacteria, with an MIC value of 55 mg/mL for all bacteria, an
MMC of 27.5 mg/mL for F. nucleatum and P. micra and 55 mg/mL for P. intermedia. Chemically,
BGP-AqExt is composed of quercetin, gallic acid, caffeic and p-coumaric acid, drupani, kaempferol
and Artepillin C. Significant reductions in biomass and metabolic action of biofilms were found after
BGP-AqExt application. Therefore, BGP-AqExt has an antimicrobial and antibiofilm effect against
dental anaerobic bacteria.

Keywords: green propolis; antimicrobial action; anaerobic bacteria

1. Introduction

The oral cavity is subjected to endodontic and periodontal infections, among others [1–3],
in which diverse dental anaerobic microorganisms are involved in these infections, in-
cluding Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas
endodontalis and Prevotella intermedia [4–6]. Conventionally, sodium hypochlorite, chlorhexi-
dine and calcium hydroxide are used as antimicrobial agents to combat the microorganisms
that cause such infections [1,7–9]; however, there is a continuous need for research for more
effective and less toxic natural compounds [10].

Additionally, there is an increased need for new antibiotics and antimicrobial agents
to treat systemic infections [11] because of the irresponsible consumption and overuse of
conventional antibiotics [12]. The emergence of new multidrug-resistant microorganisms is
related to the uncontrolled use of antibiotics, making the disinfection of these microorgan-
isms a challenge that reinforces the need for natural antimicrobial products [13–15].

Phytotherapy is making great efforts in this aspect, in which diverse medicinal plants
were presented recently as alternative antimicrobials to treat diverse infections because of
their antimicrobial action and biocompatibility [16–19]. Propolis is a resinous substance
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enriched by biologically active molecules and is produced by Apis mellifera through the
collection of different plant parts [20]. This complex substance has numerous proprieties
such as antibacterial, antifungal and immunomodulatory action [21]. Its antimicrobial
mechanism is achieved by reducing the ATP synthesis, decreasing the microbial mobility,
increasing th cell membrane permeability, disturbing the cell membrane potential and
inducing the host immune response [22].

The chemical composition of propolis varies according to the bees’ geographic location
and habitat conditions, such as food and lighting [23]. There are different types of propolis,
in accordance with the botanic origin and bee species, including green, brown, red and
yellow propolis [20] originating from different geographic regions [24]. The Brazilian
green propolis botanic source is Baccharis dracunculifolia’s DC, popularly known as ‘wild
rosemary’, a plant from the Asteraceae family [20]. The green propolis from Taiwan and
Brazil was tested against Listeria monocytogenes, Ruminococcus albus, Ruminococcus flave-
faciens, Staphylococcus aureus and was found bacteriostatic with a potent antimicrobial
action [25,26].

To the best of our knowledge, the Brazilian green propolis antibiofilm action was
not tested against some dental anaerobic bacteria, including P. gingivalis, F. nucleatum,
P. micra, P. endodontalis and P. intermedia. Therefore, the aim of this study was to evaluate
the antimicrobial and antibiofilm action of the Brazilian green propolis aqueous extract
(BGP-AqExt) against these bacteria. The null hypothesis was that the Brazilian green
propolis has no antibiofilm action against dental anaerobic bacteria.

2. Results
2.1. BGP-AqExt Characterization

The characterization of BGP-AqExt showed that it has the characteristic chemical
fingerprint of green propolis, obtained from the Baccharis dracunculifolia botanical source
(Figure 1).
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Figure 1. Chemical fingerprint obtained using C18-RP column for BGP-ExtAq. Peak 1 = caffeic acid,
peak 2 = p-coumaric acid, peak 3 = drupanin, peak 4 = kaempferide and peak 5 = Artepillin C.

The extract was composed of 1.178 ± 0.006 mg/g of caffeic acid, 0.451 ± 0.001 mg/g of p-
coumaric acid, 0.680± 0.004 mg/g of kaempferide (expressed in kaempferol), 0.899 ± 0.004 mg/g
of drupanin and 3.773 ± 0.079 mg/g of Artepillin C as shown in Table 1.
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Table 1. Chemical characterization of BGP-AqExt (Propomax—0030 015 17) according to colorimetric
and High-performance liquid chromatography (HPLC) methods.

Parameters/Samples Mean ± Standard Deviation (mg/g)

Caffeic acid 1.178 ± 0.006

p-Coumaric acid 0.451 ± 0.001

Drupanin 0.899 ± 0.004

Kaempferide (as kaempferol) 0.680 ± 0.004

Artepillin C 3.773 ± 0.079

Total Flavonoids as quercetin 5.816 ± 0.110

Total Phenol Content as gallic acid 17.026 ± 0.109

2.2. Antibacterial Action of BGP-AqExt on Planktonic Strains

The minimum inhibitory concentration (MIC) value of the BGP-AqExt was 55 mg/mL
for all the tested microorganisms. However, the minimum microbicidal concentration
(MMC) value was 27.5 mg/mL for F. nucleatum and P. micra and 55 mg/mL for P. intermedia.
Conversely, it was not possible to determine the MMC value of BGP-AqExt for P. gingivalis
and P. endodontalis (Table 2).

Table 2. MIC and MMC values of BGP-AqExt against the tested anaerobic microorganisms.

Microorganism
BGP-AqExt (mg/mL)

MIC MMC

F. nucleatum 55 27.5

P. micra 55 27.5

P. intermedia 55 55

P. gingivalis 55 abs

P. endodontalis 55 abs
Legend: BGP-AqExt—Brazilian green propolis aqueous extract; Abs—Absent; MIC—Minimum Inhibitory Con-
centration; MMC—Minimum Microbicidal Concentration.

2.3. Crystal Violet Assay

BGP-AqExt (110 mg/mL) was the most effective concentration in which the biomass
was reduced to 37.1, 75.9, 73.8, 59.6 and 54.0% of F. nucleatum, P. micra, P. intermedia,
P. gingivalis and P. endodontalis, respectively, after of contact for five minutes. This reduction
has a statistically significant difference when compared to the saline solution group. The
antibiofilm action of BGP-AqExt (110 mg/mL) was more effective than chlorhexidine
against P. intermedia and as effective against F. nucleatum, P. micra and P. gingivalis (Figure 2).
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2.4. Analysis of Cell Viability of Microorganisms by MTT

Again, BGP-AqExt (110 mg/mL) was the most effective concentration in which the
biomass was reduced to 59.7, 47.6, 47.0 and 54.5% of F. nucleatum, P. intermedia, P. gingivalis
and P. endodontalis, respectively, after contact for 5 min, except against P. micra, in which
BGP-AqExt (55 mg/mL) was more effective than BGP-AqExt (110 mg/mL). BGP-AqExt
(110 mg/mL) antibiofilm action has a statistically significant difference when compared to
the saline solution group (Figure 3).
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statistically significant difference (ANOVA, Tukey, p < 0.05).
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3. Discussion

There is no doubt about the efficacy of chlorohexidine as an antimicrobial agent [27,28];
thus, it was used in this study as a positive control group. In this study, the antibiofilm ac-
tion of BGP-AqExt (110 mg/mL) was more effective than chlorhexidine against P. intermedia
and as effective as chlorhexidine against F. nucleatum, P. micra and P. gingivalis. Therefore,
the null hypothesis of this study was rejected.

In the literature, the BGP-AqExt was tested against multidrug-resistant aerobic strains
of Klebsiella pneumoniae and Pseudomonas aeruginosa, in which the extract was effective
and presented a rapid onset against the tested microorganisms [29]. Similarly, in the
present study, it was effective against all the tested anaerobic bacteria. BGP-AqExt showed
bactericidal action, with MIC 55 mg/mL for all the tested microorganisms and MMC value
of 27.5 mg/mL for F. nucleatum and P. micra and 55 mg/mL for P. intermedia.

In another study, the antimicrobial action of Pakistani propolis was tested against
35 clinical isolates of pigmented anaerobic periodontal pathogens, namely Porphyromonas
asaccharolytica, P. gingivalis, P. intermedia and Prevotella melaninogenica, by means of an agar
diffusion assay, and it was observed that all the strains were significantly sensitive to
the ethanol extract of propolis [30]. These results indicate that this propolis has a potent
antimicrobial action against such anaerobic bacteria, corroborating our study carried out
with Brazilian green propolis, which evaluated the antimicrobial action against anaerobic
strains but using the microdilution test in broth. Furthermore, ethanol extracts of propolis,
collected from four different regions of Turkey and Brazil, had their antimicrobial action
analyzed against nine anaerobic strains. All strains were susceptible, and MIC values
ranged from 4 to 512 µg/mL for propolis action [31].

The reduction of P. gingivalis biofilm using a honey-propolis (Manuka honey) com-
pound was evaluated after contact for 24 h with the compound; it reduced the concentration
of viable bacteria when compared to controls without the addition of honey and propo-
lis [32], proving the antibiofilm action of propolis against P. gingivalis, as found in the
present study. Furthermore, the ethanol extract of propolis from southern Brazil was eval-
uated against different endodontic bacteria, including Prevotella nigrescens, F. nucleatum,
Actinomyces israelii, Clostridium perfringens and E. faecalis by macrodilution. As a result,
P. nigrescens was the most susceptible, F. nucleatum and C. perfringens had intermediate
results and A. israelii and E. faecalis were the most resistant [33]. Similarly, in the present
study, an intermediate reduction was observed in the biomass of the pathogen F. nucleatum
when submitted to contact with BGP-AqExt.

More recently, the Brazilian red propolis was tested against P. melaninogenica, Acti-
nomyces viscosus, Prevotella nigrescens, P. endodontalis, V. parvula, P. gingivalis, P. intermedia,
P. micra and F. nucleatum, in which the red propolis was effective against these pathogens
involved in primary endodontic infections, the study indicated the use of the red propolis
as endodontic irrigant or intracanal medication in a concentration ranging from 6.25 to
200 mg/mL [34]. Differently, in the present study, lower concentrations of the BGP-AqExt
were effective against the same pathogens.

BGP-AqExt characterization showed that it has the characteristic chemical fingerprint
of green propolis, obtained from a Baccharis dracunculifolia botanical source, as reported by
an anterior study [35]. Caffeic and p-coumaric acid, kaempferide, drupanin and Artepillin
C have been found. Despite being aqueous, the BGP-AqExt (Propomax- Apis flora, Brazil)
has a high number of flavonoids and total phenols due to the differentiated extraction
protocol [29]. The presence of total flavonoids and phenols may explain the antimicrobial
effect of the BGP-AqExt [36], as the flavonoids’ antimicrobial mechanism makes it effective
against a wide range of microorganisms, including dental ones [37].

Another compound identified was caffeic acid, which has several pharmacological
effects, including anticariogenic potential [38]. Artepillin C (3,5-diprenyl-p-coumaric acid),
which was also identified, is one of the phenolic compounds (prenyl derivative of p-
coumaric acid) present in propolis [22]. This compound has bacteriostatic action with
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membrane bubbles against P. gingivalis, agreeing with our study that did not find the value
of MMC in this species, considering it as bacteriostatic.

The antibiofilm of BGP-AqExt proved in the present study of five dental anaerobic
bacteria, encourages its use as an endodontic irrigant, intracanal medication, mouthwash,
toothpaste component, or as a medicament for clinical use to combat endodontic, periodon-
tal and oral cavity infections.

4. Materials and Methods
4.1. Brazilian Green Propolis (BGP) Aqueous Extract (AqExt) Characterization

The use of plant parts in the present study complies with international, national and/or
institutional guidelines. BGP-AqExt (110 mg/mL of propolis—Propomax, Batch: 0030 015 17)
from Apis Flora (Ribeirão Preto, Brazil) was used in antimicrobial and antibiofilm tests.
BGP-AqExt was obtained from a blend of Brazilian green raw propolis types. This blend
was frozen and triturated to be extracted by maceration and percolation with ethanol
and purified water solution 70:30% w/w. The extract obtained suffered a concentration
process to eliminate the ethanol content, according to a previously published study [39].
The BGP-AqExt obtained was chemically characterized according to the available method-
ology for propolis extract evaluation, as will be described below. The used propolis raw
material was obtained from Apis mellifera Africanized bees, a poly-hybrid obtained from
both exogenous species (Europe and Africa) introduced to Brazil; thus, according to the
Brazilian Regulations, this material is dispensed of CGEN approval (Genetic Heritage
Management Council).

Total phenolics and flavonoids were determined using solvents of analytical purity.
Phosphoric acid, sodium carbonate and methanol supplied by Synth® (São Paulo, Brazil);
aluminum chloride (Cinética®, Brazil), sodium tugstate (Química Moderna®, Mogi das
Cruzes, Brazil), phosphomolybdic acid (Nuclear®) and purified water (Milli-Q®, Darmstadt,
Germany) was employed. The chemical reference substances used for this evaluation were
gallic acid and quercetin, supplied by ChormaDex (Irvine, AB, Canada). The testing
was performed using spectrophotometer (Shimadzu, Barueri, Brazil), analytical balance
(Mettler Toledo, Columbus, OH, USA), automatic micropipettes (LabMate, St Albans, UK),
centrifuge and ultrasound bath. BGP-AqExt was characterized according to total flavonoid
content using quercetin as chemical reference standard with colorimetric method using
aluminum chloride as reagent and 425 nm wavelength [29,40]. Total phenolic content was
quantified using gallic acid as chemical reference standard using Folin–Denis colorimetric
method with some adjustments [29,39]. For the high-performance liquid chromatography
(HPLC) analysis, proper HPLC purity solvents were used, such as methanol, ultrapure
water (resistivity 18 MΩ) and formic acid.

High-performance liquid chromatography with diode-array detection (HPLC-DAD)
analysis was performed according to previously developed and validated method for
propolis water extract [39], using C18 reverse column, with the chemical references’ sub-
stances caffeic acid, p-coumaric acid, kaempferol (Sigma-Aldrich, St. Louis, MO, USA),
drupanin and Artepillin C, which were isolated and identified by Prof. Dr. Jairo Kenupp
Bastos (Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo–
FCFRP/USP) and kindly donated by him.

4.2. Bacterial Strain Isolation

Five different strains of bacteria were reactivated in enriched in Brucella broth
(BD—Heidelberg, Germany) with 1% hemin and 1% vitamin K (menadione) (Sigma-
Aldrich, St. Louis, MO, USA), then were seeded in enriched Brucella agar at 37 ◦C for 48 h
in anaerobic chamber Whitley DG250 Workstation (Don Whitley Scientific Limited, Shipley,
West Yorkshire, UK).

The susceptibility of F. nucleatum (ATCC 25586), P. micra (ATCC 23195), P. endodontalis
(ATCC 35406), P. gingivalis (ATCC 33277) and P. intermedia (ATCC 33563) was determined
in planktonic culture by broth microdilution assay accordingly to Clinical and Laboratory
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Standards Institute (CLSI), standard M11-A7 (2012), to determine the minimum inhibitory
concentration (MIC) and minimum microbicide concentration (MMC).

4.3. Bacterial Inoculum Preparation

Bacterial inocula were prepared in sterilized saline solution (NaCl 0.9%) and stan-
dardized at (1 × 108 CFU/mL) according to the MacFarland scale in a spectrophotometer
(Micronal, São Paulo, Brazil). Then, the extract was diluted (1:2) in 100 µL Brucella broth
(Himedia, Mumbai, Índia) in microtiter plate wells (TPP, Switzerland). Later, 100 µL of
standardized inoculum was added to each well. After incubation (48 h/37 ◦C), MIC values
were determined in the first well with absence of microbial turbidity, next to the well
with apparent microbial growth. MMC values were determined, and 10 µL of MIC and
a concentration above and below MIC were seeded in Brucella agar. After incubation
(48 h/37 ◦C), MMC corresponded to the well with no grown bacteria and with the lowest
concentration of BGP-AqExt [4,41].

4.4. Antibiofilm Action

After biofilm formation, as detailed in anterior study [29], the supernatant was dis-
carded, and the biofilms were treated with BGP-AqExt for 5 min at concentrations of
110, 55 and 27.5 mg/mL. Sterilized NaCl 0.9% and chlorohexidine 0.12 mL were used as
control groups. A total of 12 replicates were performed per experimental group. Finally,
to remove the affected bacterial cells, the wells were washed with sterilized NaCl 0.9%.
Posteriorly, the biofilm mass and metabolic activity were evaluated by crystal violet and
MTT assays, respectively.

4.5. Crystal Violet (CV) Assay

The treated bacteria were fixed with 200 µL/well of methanol for 20 min. Then, it
was removed, and the microplates were incubated for 24 h at 37 ◦C. After incubation,
200 µL/well of 1% (v/v) CV solution was added for 5 min. Subsequently, CV solution
was discarded, and the wells were washed with sterilized NaCl 0.9%. After, 33% (v/v)
acetic acid was added, and the plate was subjected to agitation for 10 min. Finally, a
spectrophotometer (Bio-Tek Instruments, Winooski, GU, USA) was used to measure the
absorbance of the wells at 570 nm, and data generated were converted to cell viability
percentage [4].

4.6. MTT Assay

The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) (Sigma-
Aldrich, Saint Louis, MO, USA) was suspended in phosphate-buffered saline (PBS) at
0.5 mg/mL. MTT solution (100 µL/well) was added to microtiter plate wells. After 1-h
incubation at 37 ◦C, covered from light, the supernatant was discarded, and 100 µL/well of
dimethyl sulfoxide (DMSO) was added. Immediately after, the microplates were incubated
for 10 min at 37 ◦C and then were agitated in vortex for additional 10 min at room tempera-
ture. Finally, a spectrophotometer (Bio-Tek Instruments, Winooski, VT, USA) was used to
measure the absorbance of the wells at 570 nm, and data generated were converted to cell
viability percentage [41].

4.7. Statistical Analysis

Data were submitted to a normality test and then were analyzed by one-way ANOVA
and Tukey test considering significance level α ≤ 0.05 using GraphPad Prism 6 (La Jolla,
CA, USA).
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5. Conclusions

The Brazilian green propolis aqueous extract at 110 mg/mL has effective antibiofilm
action against P. gingivalis, F. nucleatum, P. micra, P. endodontalis and P. intermedia after
contact for five minutes, encouraging its use as an endodontic irrigant, intracanal medi-
cation, mouthwash, toothpaste component or as a medicament for clinical use to combat
endodontic, periodontal and oral cavity infections. Further studies in animals and clinical
studies should be carried out to evaluate the antibiofilm action of Brazilian green propolis.
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