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Abstract: Dryopteris sp. is known for its various pharmacological effects and is used as a tradi-
tional medicine in Asia. The present study investigated the chemical composition and antimi-
crobial activity of Dryopteris sp. distributed in Korea. The chemical compounds in the ethanolic
extracts of Dryopteris lacera and Dryopteris bissetiana were investigated by ultra-high performance
liquid chromatography–quadrupole time-of-flight–mass spectrometry analysis and identified by
exploring the UNIFI traditional medicine library. Flavonoids such as juglanin, 6-hydroxyluteolin
7-O-laminaribioside, peltatoside, kaempferitrin, hyperoside, and astragalin were identified in both
D. lacera and D. bissetiana. Neochlorogenic acid was identified as a caffeoylquinic acid in D. bissetiana.
Both extracts of D. lacera and D. bissetiana exhibited antibacterial activity against Gram-positive
pathogens, Staphylococcus aureus and Streptococcus mutans. The minimum inhibitory concentration of
D. bissetiana against S. aureus was less than 625 ppm. The antibacterial activity was attributed to the
identified phenolic compounds, juglanin, 6-hydroxyluteolin 7-O-laminaribioside, kaempferitrin, as-
tragalin, and neochlorogenic acid. Therefore, D. lacera and D. bissetiana can be used as Gram-positive
selective antibiotics for further investigation.

Keywords: Dryopteris species; flavonoids; terpenoids; antibacterial activity; Gram-positive bacteria

1. Introduction

Flavonoids are an important group of natural products with polyphenolic structures.
They belong to a class of plant secondary metabolites widely found in fruits, vegetables,
grains, flowers, tea, and wine. Flavonoids demonstrate various biological activities in
plants, animals, and bacteria. These natural compounds protect plants from different biotic
and abiotic stresses and play functional roles as signal molecules, antimicrobial defensive
compounds, and resistance to environmental conditions that are harmful to growth [1].
In particular, flavonoids have beneficial effects on human and animal health. They are
considered essential components in several nutraceutical, pharmaceutical, medicinal, and
cosmetic applications due to their anti-oxidative, anti-inflammatory, anti-mutagenic, and
anti-cancer properties, combined with their ability to modulate critical cellular enzyme
functions [2]. Recently, antibiotic resistance has emerged as a major global problem, and
new therapeutic agents are urgently required. Among many studies, flavonoids in the
field of anti-infective compounds have been reported to exhibit antibacterial, antiviral, and
antifungal properties [3,4]. Furthermore, flavonoids are natural compounds extracted from
plants and have potentially available activities such as direct antibacterial activity, synergis-
tic effects with antibiotics, and inhibition of bacterial toxicity. Therefore, flavonoids can be
effective in the treatment and prevention of various infectious and toxic-mediated diseases.

Terpenoids, also known as isoprenoids or terpenes, are generally considered plant or
fungal metabolites and are a large class of natural products ubiquitous in nature. Terpenoids
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have ring structures and exhibit a wide range of biological activities. The biological activity
of certain terpenoids is often assumed to interact with their membrane-binding proteins or
to be lipophilic. Aromatic plants and wood resins, such as turpentine, produce terpenoids
that are the main ingredient of essential oils. Moreover, many plants containing terpenoids
are used in traditional medicine because of their anti-inflammatory and pain-relieving
properties [5]. Several species belonging to the Asteraceae family have been traditionally
used to treat inflammatory conditions. These plants produce sesquiterpene lactones that
contribute to their therapeutic activities [6]. Many essential oils have been tested for their
anti-inflammatory and analgesic activities in various cellular and in vivo animal models. A
recent study has also reported the anti-diabetic properties of terpenoids because of their
ability to lower blood glucose levels by regulating glucose metabolism in humans and
animals. In addition, they have a range of biological activities, including antimalarial
and antimicrobial activities [7–9]. There are approximately 200 types of triterpenoids
with different structural characteristics, a majority of which have antiviral, antitumor,
antioxidant, and anti-inflammatory activities [10,11].

Dryopteris is a perennial herb distributed worldwide, which is estimated to contain
300 species with the highest diversity in eastern Asia [12–14]. Dryopteris lacera (Thunb.)
Kuntze and Dryopteris bissetiana (Baker) C. Chr. are among the plants that belong to the
Dryopteris genus of the Dryopteridaceae family. The extract of Dryopteris sp. has been
reported to have antimicrobial [15], cytoprotective [16], antioxidant [17], and anticancer
effects [18], and has been used as a traditional medicine in Asia [19]. Moreover, the
rhizome of Dryopteris sp. has been reported to contain various chemical compounds such
as phloroglucinols, flavonoids, and triterpenes [20].

In this study, we investigated the chemical compounds, flavonoids and terpenoids, of
D. lacera and D. bissetiana through ultra-high-performance liquid chromatography– quadrupole
time-of-flight–mass spectrometry (UPLC–QTOF–MS) analysis. The components were iden-
tified the UNIFI traditional medicine library. Additionally, the antimicrobial activity of the
ethanolic extracts of D. lacera and D. bissetiana against Gram-positive and Gram-negative
bacteria and fungal pathogens was performed.

2. Results and Discussion

The bioactive components of D. lacera and D. bissetiana were identified by UPLC–
QTOF–MS analysis. The natural product analysis was performed using the LC–QTOF MSE

mode. In this mode, the main precursor ion was detected using a low collision energy value,
which was then exposed to stronger collision energy to analyze the pattern of the product
ions. Figures 1 and 2 shows the UPLC-QTOF-MS base peak ion (BPI) chromatogram and
component confirmed plot chromatogram. The relevant data, including retention time
(min), experimental m/z [M−H]− or [M+HCOO]−, theoretical mass, predicted chemical
formula, and tentatively identified compound are listed in Tables 1 and 2. The retention
times, mass spectra, and fragment information were compared, and compounds were
identified by exploring the UNIFI traditional medicine library containing over 600 herbs
and over 6000 compounds. Therefore, it was possible to identify flavonoids and terpenoids
compounds containing glucose.
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Figure 1. Base peak ion(BPI) chromatogram of D. lacera (A), and D. bissetiana (B) extracts by UPLC-

QTOF-MS analysis. 

Figure 1. Base peak ion(BPI) chromatogram of D. lacera (A), and D. bissetiana (B) extracts by UPLC-
QTOF-MS analysis.

Table 1. The bioactive components of D. lacera based on the UPLC-QTOF-MS analysis.

RT
(min)

Experimental
m/z [M−H]−

or [M+HCOO]−
Theoretical

Mass
Mass Error

(ppm)
Molecular
Formula Tentatively Identified Compound Metabolite

Class

3.37 255.0876 210.08921 0.7 C11H14O4 Diethyl 2-hydroxy-5-oxo-1-
cyclohexene-1,4-dicarboxylate Terpenoid

7.24 593.152 594.15847 1.4 C27H30O15

4′,5,7-Trihydroxy-3-
methoxyflavone-7-O-alpha-L-

arabinofuranosyl
(1→6)-beta-D-glucopyranoside

Flavonoid

7.58 463.0883 464.09548 0.2 C21H20O12 6-Hydroxykaempferol-3-O-
glucoside Flavonoid

7.74 579.1364 580.14282 1.5 C26H28O15 Kaempferol 3-Lathyroside Flavonoid

8.11 563.141 564.14791 0.7 C26H28O14
Kaempferol

3-O-alpha-L-arabinopyranosyl-7-O-
alpha-L-rhamnopyranoside

Flavonoid

8.19 577.1566 578.16356 0.5 C27H30O14 Puerarin-4′-O-glucoside Flavonoid

8.54 447.093 448.10056 −0.5 C21H20O11 3′-Hydroxypuerarin Flavonoid

9.27 489.1036 490.11113 −0.4 C23H22O12
1,3,6-Trihydroxy-2-hydroxymethyl-

9,10-anthraquinone-3-O-(6′-O-
acetyl)-beta-D-glucopyranoside

Quinone

9.4 417.0826 418.09000 −0.3 C20H18O10 Juglanin Flavonoid

9.76 431.0983 432.10565 −0.1 C21H20O10 Kaempferol-7-rhamnoside Flavonoid
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Figure 2. The confirmed component plot of UPLC-QTOF-MS analysis of D. lacera (A), and D. bisse-

tiana (B) extracts. 

 

Figure 2. The confirmed component plot of UPLC-QTOF-MS analysis of D. lacera (A), and D. bissetiana
(B) extracts.

The chemical compound determined from the D. lacera UPLC–QTOF–MS analysis at a
retention time of 9.4 min was identified as juglanin, which presented [M−H]− ion at m/z
417. The product ions were formed at m/z 284 and m/z 255, with the main peak at m/z 284
attributed to the loss of glucose moiety (Figure 3A). Juglanin is a natural product found
in many plants. It has various biological activities, including antimicrobial, anticancer,
antioxidant, and anti-inflammatory effects, as well as protecting skin from ultraviolet B
exposure [21–25].
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Table 2. The bioactive components of D. bissetiane based on the UPLC-QTOF-MS analysis.

RT (min)
Experimental
m/z [M−H]−

or [M+HCOO]−
Theoretical

Mass
Mass Error

(ppm)
Molecular
Formula Tentatively Identified Compound Metabolite

Class

3.96 353.0873 354.09508 −1.5 C16H18O9 Neochlorogenic acid Caffeoylquinic
acid

5.02 625.1402 626.1483 −1.3 C27H30O17 6-Hydroxyluteolin 7-O-laminaribioside Flavonoid

5.84 579.1371 580.14282 2.7 C26H28O15

(1S)-1,4-Anhydro-1-[8-(beta-D-
galactopyranosyloxy)-5,7-dihydroxy-2-(4-

hydroxyphenyl)-4-oxo-4H-chromen-6-
yl]-D-arabinitol

Flavonoid

6.50 625.1413 626.1483 0.5 C27H30O17 Quercetin 3-O-gentiobioside Flavonoid

6.78 349.1505 350.15768 0.3 C15H26O9 Eucommioside II Terpenoid

6.84 595.1307 596.13773 0.4 C26H28O16 Peltatoside Flavonoid

7.37 609.1462 610.15338 0.2 C27H30O16 Quercetin 3-O-neohesperidoside Flavonoid

7.41 577.1565 578.16356 0.4 C27H30O14 Kaempferitrin Flavonoid

7.58 463.0881 464.09548 −0.2 C21H20O12 Hyperoside Flavonoid

8.54 447.0936 448.10056 0.8 C21H20O11 Astragalin Flavonoid

9.27 489.1044 490.11113 1.2 C23H22O12
1,3,6-Trihydroxy-2-hydroxymethyl-9,10-
anthraquinone-3-O-(6′-O-acetyl)-beta-D-

glucopyranoside
Quinone

Flavonoids, 6-hydroxyluteolin 7-O-laminaribioside, peltatoside, kaempferitrin, hy-
peroside, and astragalin from D. bissetianai were detected by UPLC–QTOF–MS analysis
(Table 2). The [M−H]− ion at m/z 625 with two glucose moieties attached was identified as
6-hydroxyluteolin 7-O-laminaribioside. The fragment ions were formed at m/z 429 without
glucose moieties and at m/z 301 with only one glucose moiety. The main peak at m/z 301
indicated the loss of two glucose moieties. Peltatoside was identified at m/z 595 [M−H]−,
with its fragment ions at m/z 300 and m/z 151. The main peak at m/z 300 was suggested the
structure without the glucose moiety. Kaempferitrin confirmed at m/z 577 [M−H]−, with
its fragment ions at m/z 413 and m/z 285. The main peak at m/z 285 was formed due to the
loss of the glucose moiety. Hyperoside was detected at m/z 463 [M−H]−, with fragment
ions at m/z 300 and m/z 151. The main peak at m/z 300 indicated the loss of glucose moiety.
Astragalin was determined at m/z 447 [M−H]−, and the fragment ions were confirmed
at m/z 284 and m/z 227. The main peak at m/z 284 suggested the loss of glucose moiety
(Figure 3B). Phenolic compounds, including 6-hydroxyluteolin 7-O-laminaribioside of the
medicinal plant Globularia alypum, exhibits antioxidant and antimicrobial activities [26].
Peltatoside isolated from Annona crassilora, used in folk medicine, is known to inhibit acute
local inflammation and demonstrate analgesic activity [27,28]. Kaempferitrin from many
plants shows antimicrobial, antitumor, and antioxidant activities [29–31]. It has also been
suggested as a putative therapeutic agent for diabetic nephropathy by suppressing the
mitochondrial/cytochrome c-mediated apoptosis pathway [32] and rheumatoid arthritis
(RA) by ameliorating inflammation in RA fibroblast-like synoviocytes [33]. Hyperoside is
a quercetin 3-D-galactoside derived from plants that is known to have anti-cancer effects.
It inhibits the cervical cancer HeLa and C-33A cell proliferation [34], A549 and H1975
lung cancer cell proliferation [35], and induces apoptosis in HT-29 colon [36], SKOV3 and
HO-8910 ovarian [37], and MCF-7 and 4T1 breast cancer cells [38]. Astragalin is kaempferol-
3-O-ß-D-glucoside, a bioactive natural flavonoid that is known for its medicinal importance
such as antimicrobial, antioxidant, anti-inflammatory, anti-cancer, and neuroprotective
activities [39–44]. It is also applied in cosmetics to inhibit melanin secretion and protect against
UV damage [45,46]. Neochlorogenic acid was identified as a caffeoylquinic acid in D. bissetiana
(Table 2) at m/z 353 [M−H]−. The fragments ions were confirmed at m/z 191 and m/z 179.
The main peak at m/z 191 suggested the loss of the caffeic acid group, while the peak at m/z
179 indicated the loss of the quinic acid group (Figure 3B). Neochlorogenic acid is a natural
polyphenolic compound found in plants, known for its antioxidant, antibacterial, antitumor, and
anti-inflammatory properties [47,48]. Furthermore, neochlorogenic acid shows anti-photoaging
effects and is an effective agent for skin wrinkle formation and dehydration [49].
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Figure 3. UPLC-QTOF-MS analysis of the major components in terms of matching scores of D. lacera
(A), and D. bissetiana (B) extracts.
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The antibacterial assay revealed that D. lacera and D. bissetiana exhibits antibacterial
activity against the selected indicator pathogenic strains, as summarized in Table 3. A clear
zone of inhibition of S. aureus NCCP14560 and S. mutans KCTC3065 was observed using
D. lacera and D. bissetiana extracts. The MIC of D. lacera extract was 5 mg/mL against S.
aureus and S. mutans, and the MIC of D. bissetiana extract was 0.625 mg/mL and 5 mg/mL
against each pathogen, respectively (Table 3). Conversely, D. lacera and D. bissetiana ex-
tracts were inactive against E. coli KCTC2617, S. Enteritidis NCCP14546, and C. albicans
NCCP31077. Phenolic compounds identified in D. lacera and D. bissetiana are known for
their antimicrobial activity. It has been reported that ethanol extracts of plants contain
various chemical compounds that affect multiple sites of bacterial cell walls [50]. How-
ever, the ethanolic extracts of D. lacera and D. bissetiana only had antimicrobial effects on
S. aureus and S. mutans, which are Gram-positive bacterial pathogens among the tested
microorganisms. Moreover, the D. bissetiana extract showed antibacterial activity against
S. aureus at very low concentrations of less than 0.625 mg/mL suggesting further study
of its clinical use. In particular, the emergence of antibiotic-resistant strains of S. aureus,
such as methicillin-resistant S. aureus and vancomycin-resistant S. aureus, is a global risk in
clinical medicine.

Table 3. Antibacterial activity of the plant extract against the indicator strains.

Test Pathogenic Strain

Antibacterial Activity

D. lacera D. bissetiana Positive Control

Inhibition a MIC
(mg/mL) Inhibition MIC (mg/mL) Antibiotics Inhibition

Escherichia coli KCTC2617 - - Gentamycin ++
Salmonella enterica
serovar Enteritidis

NCCP14546
- - Gentamycin ++

Staphylococcus aureus
NCCP14560 +++ 5 +++ 0.625 Gentamycin ++

Streptococcus mutans
KCTC 3065 +++ 5 +++ 5 Gentamycin ++

Candida albicans
NCCP31077 - - Hygomycin ++

a The inhibition zone (mm) around the paper disc containing the microbial cell-free supernatant was classified
as +++, >13 mm; ++, 10–12 mm; +, less than 9 mm; -, no inhibition zone. All microbial pathogens showed no
inhibition against the negative control (DMSO:EtOH = 1:1, v/v).

3. Materials and Methods
3.1. Plant Materials and Preparation of Plant Extract

The leaves of D. lacera (Thunb.) Kuntze and D. bissetiana (Baker) C. Chr were collected
from Mt. Jiri of Gyeongsang-do, South Korea, and identified by an experienced taxonomist.
The collected specimens of D. lacera Kuntze and D. bissetiana C. Chr were deposited in
the Natural Products Bank, Wildlife Genetic Resources Center at the National Institute of
Biological Resources. The collected leaves were dried in a drying oven at 40 ◦C for 2 d for
preparing the crude extract. Approximately 500 g of dried leaves were extracted from 70%
ethanol (analytical grade, Sigma-Aldrich, St. Louis, MI, USA), four times the volume of the
leaves, for 48 h. The ethanol crude extracts from the leaves were centrifuged at 4000× g
for 5 min, filtered using a Bückner funnel, and all ethanol was removed using a rotary
evaporator. The extract was stored at −80 ◦C in a freezer until further use.

3.2. UPLC-QTOF-MS Analysis of Dryopteris Plants

The chemical profile of the 70 % EtOH extract of plants was analyzed using a Waters
ACQUITY UPLC I-Class PLUS equipped with a Waters ACQUITY UPCL HSS T3 column
(100 mm × 2.1 mm, 1.8 µM), maintained at an isothermal temperature of 40 ◦C. A binary
pump delivered the mobile phase at flow rate of 0.2 mL/min under a gradient elution using
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two mobile phases, water containing 0.1 % (v/v) formic acid (solvent A) and acetonitrile
containing 0.1 % (v/v) formic acid (solvent B). The following were the gradient conditions:
0–1 min, 95 % solvent A; 1–17 min, 60 % solvent A; 17–21 min, 40 % solvent A; 11–22 min, 0
% solvent A; 22.9–25 min, 95 % solvent A. The auto-sampler was set to an injection volume of
5 µL. Mass spectrometric analysis was performed using a Waters Xevo-G2-XS QTOF LCMS
equipped with an electrospray ionization source. The analysis was conducted in negative
ion mode, set for detecting mass-to-charge ratio (m/z) in the range of 50–1500. The source
temperature was set at 120 ◦C with a capillary voltage 2.5 kV. Ar (g) was used as the collision
gas. Data acquisition and analysis were controlled using the traditional medicine library of
Waters’ UNIFI software 1.9 version. In addition, the identification of the components was
performed by checking the quality allowable error range ± 5 ppm fragmentation pattern.
If the fragment ion pattern did not match, it was finally identified using a Chemspider
(http://www.chemspider.com/, accessed on 5 November 2021) online database.

3.3. Antibacterial Analysis

The antibacterial activities of plant extracts against well-known pathogenic microor-
ganisms were evaluated using a previously described disk diffusion method [51], with
slight modifications. The following five microbial pathogens were used as indicators of
antibacterial activities: E. coli KCTC2617, Salmonella enterica serovar Enteritidis NCCP14546,
Staphylococcus aureus NCCP14560, Streptococcus mutans KCTC3065, and Candida albicans
NCCP31077. Initially, these pathogenic strains were grown on suitable media at 30–37 ◦C
for 20 h. E. coli and S. aureus were grown on nutrient agar, S. Enteritidis on tryptic soy
agar, S. mutans on brain heart infusion agar, and C. albicans on Sabouraud dextrose agar.
Diffusion disks with a diameter of 8 mm were placed on the agar, and the plant extract
with a concentration of 20 mg/mL using a diluent solvent (DMSO:EtOH = 1:1, v/v) was
dispensed onto the disks. The plates were incubated at 30–37 ◦C for 24 h, and the diameters
of the inhibition zones around each disk were measured for positive and negative controls,
gentamycin (2.5 mg/mL), hygromycin (10 mg/mL), and a diluent solvent were used as,
respectively. Further, different concentrations of plant extract (20, 5, 2.5, 1.25, and 0.625
mg/mL were prepared by five-fold serial dilution to determine the minimum inhibitory
concentrations (MIC). MIC is regarded as the lowest concentration that inhibits the micro-
bial pathogen growth. Each prepared extract was applied to pathogen-inoculated agar
media and then incubated under the required growth conditions [52]. All antimicrobial
assays were conducted in triplicates.

3.4. Statistical Analysis

Data were analyzed using One-way ANOVA Tukey post hoc test for multiple compar-
isons by IBS SPSS Statistics 20 software. All experiments were conducted in three replicates
per treatment.

4. Conclusions

In conclusion, we identified the chemical compounds of D. lacera and D. bissetiana by
UPLC–QTOF–MS and presented various biological phenolic compounds, such as juglanin,
6-hydroxyluteolin 7-O-laminaribioside, peltatoside, kaempferitrin, hyperoside, astragalin,
and neochlorogenic acid. Both Dryopteris plants in this study showed antibacterial activity
against the Gram-positive pathogens. However, the extracts of D. lacera and D. bissetiana
did not exhibit antimicrobial activity against the Gram-negative. Therefore, D. lacera and
D. bissetiana can be used as Gram-positive selective antibiotics for further investigation.

http://www.chemspider.com/
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