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Abstract: A series of binary composites Bi4O5Br2/BiPO4 (PBX) was fabricated through a simple
mechanical ball milling protocol. Relevant microstructural, morphological, and optical properties
were thoroughly analyzed via various techniques. The integration of both components was confirmed
to produce heterojunction domains at the phase boundaries. Upon exposure to visible light irradia-
tion, the as-achieved PBX series possessed the reinforced photocatalytic NOx removal efficiencies
and the weakened generation of toxic intermediate NO2 in comparison to both bare components,
chiefly attributed to the efficient transport and separation of carriers and boosted production of
superoxide radicals (·O2

−) through the combination of a wide-bandgap ornament BiPO4 as an elec-
tron acceptor. In particular, the composite PB5 with the optimal phase composition exhibited the
highest NOx removal of 40% with the lowest NO2 formation of 40 ppb among all tested candidates.
According to the band structures’ estimation and reactive species’ detection, a reasonable mecha-
nism was ultimately proposed to describe the migration of charge carriers and the enhancement of
photocatalytic performance.

Keywords: Bi4O5Br2; BiPO4; ball milling; photocatalytic; NOx removal; mechanism

1. Introduction

With the mushrooming growth of industrialization and the economy, resource short-
ages and environmental deterioration have become increasingly grave worldwide and need
to be addressed. Nitrogen oxides (NOx), as a class of the main culprits of air pollution, not
only destroy the atmospheric environment, but also seriously endanger human health [1,2].
Generally, traditional industrial treatments are merely suitable for treating NOx in a rela-
tively high concentration rather than a quite low concentration at the ppb level considering
the high cost and low efficiency [3], whereas semiconductor-based photocatalysis is an
appealing technology and an effective means to deal with NOx at the ppb level, considering
the low energy consumption and facile operation under moderate conditions [4,5]. There
are three methods for photocatalytic removal of NOx: photocatalytic reduction, photo-
catalytic oxidation, and photo-selective catalytic reduction. As reported, photocatalytic
reduction is able to convert NOx to N2 or other harmless compounds; however, it suffers
from a quite low catalytic efficiency [6]. Photo-selective catalytic reduction requires addi-
tional proper reductive reagents. In contrast, photocatalytic oxidation with increate suitable
oxidants O2 gas is a general and practical treatment with satisfactory removal capability.
Moreover, an appropriate catalytic system is pivotal to the deep oxidation of NO to nitrate
anions, which is conductive to nitrogen cycle chemistry and crops’ growth as well [7,8].

Because of the favorable physicochemical property and unique lamellar morphology,
bismuth oxybromides with different stoichiometric ratios, such as Bi3O4Br [9], Bi4O5Br2 [10],

Molecules 2022, 27, 8474. https://doi.org/10.3390/molecules27238474 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27238474
https://doi.org/10.3390/molecules27238474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-2927-1544
https://doi.org/10.3390/molecules27238474
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27238474?type=check_update&version=1


Molecules 2022, 27, 8474 2 of 13

Bi5O7Br [11], and Bi12O17Br2 [12], have been elaborately designed and constructed for a
wide variety of purposes, especially in the field of photocatalysis [13,14]. Lamellar struc-
tures are good for light acquisition through multiple reflection, effective separation of
carriers by an internal electric field, and mass transfer of reactants and products via a suit-
able porous structure, ensuring satisfactory photocatalytic performance [14,15]. Moreover,
the band structures of these compounds can be tuned through regulating the stoichiometric
ratios, and the abatement of the Br/O atomic ratio elevates the valence band position
(EVB), thereby shrinking the bandgap and improving light acquisition [16]. Among the
compounds described above, the semiconductor Bi4O5Br2 has attracted much attention
due to its suitable bandgap, relatively negative conduction band position (ECB), and good
photocatalytic performance [17]. However, the photocatalytic capability of bare Bi4O5Br2 is
restrained due to the slow transfer and severe recombination of charge carriers and needs to
be boosted by structural modifications. The establishment of heterojunctions by combining
different semiconductors is a fascinating strategy with apparent advantages, such as the
integration of superior properties from each component, boosted separation of charge carri-
ers through well-matched band structures, and varied optical properties [18–20]. Till now,
numerous Bi4O5Br2-based heterojunctions have been successfully fabricated to treat NOx,
such as Bi2S3/Bi4O5Br2 [8], TiO2/Bi4O5Br2 [21], Ti3C2/Bi4O5Br2 [22], Bi4O5Br2/WO3 [17],
and Bi4O5Br2/Bi2O2CO3 [23]. A wide-bandgap semiconductor with a relatively positive
ECB tends to play a role as a suitable electrons acceptor as soon as it couples with Bi4O5Br2,
thus benefiting charge separation and further photocatalytic outcome. In addition, the
migrated electrons may produce ·O2

− radicals by reacting with adsorbed oxygen molecules,
and resultant ·O2

− radicals easily deeply oxidize the NO, avoiding the generation of the
toxic intermediate NO2 as much as possible [24,25].

As everyone knows, BiPO4 is an outstanding wide-bandgap semiconductor featur-
ing exceptional electronic and optical properties, a strong chemical stability, and a low
price [26]. It has a notable UV photo-response and possesses excellent photocatalytic activ-
ity, which is even superior to that by traditional TiO2, mainly attributed to the sufficient
charge separation caused by the high polarity of PO4

− anions [27]. Moreover, it owns a
relatively positive ECB potential and is apt to receive electrons from other components in
heterojunction composites [28]. Mechanical ball milling is generally deemed as an energy-
saving and efficient technology to induce chemical reactions or variations of the structure,
texture, and properties of materials by using mechanical energy [29]. Moreover, such a
treatment easily constructs heterojunction composites with a closely contacted interface,
by which the migration and separation efficiency of carriers can be ameliorated [30]. As
far as we know, the modification of Bi4O5Br2 with the wide-bandgap BiPO4 via the simple
ball milling procedure, photocatalytic NOx removal, and relevant mechanism has never
been investigated.

Hence, the construction of binary composites of PBX was accomplished via a mechan-
ical ball milling route and confirmed by a battery of analyses. The combination of both
components produced heterojunction structures in the as-obtained composites. Under
visible light illumination, photocatalytic performance over NOx removal was evaluated and
correlated with the microstructural characterization, thus establishing the structure–activity
relationship of such a system. The enhancement of the photocatalytic performance of
the target composites is discussed and summarized from the aspects of the transport and
separation of the carriers and generation of superoxide ·O2

− radicals. Finally, a rational
catalysis mechanism is proposed based on the band structures’ estimation and reactive
species’ detection.

2. Results and Discussion
2.1. Microstructural and Morphological Characterization

Both components Bi4O5Br2 and BiPO4 were fabricated through facile chemical pre-
cipitation methods by selecting appropriate precursors and subsequently ball-milled with
ethanol as a dispersant to provide the target composites, as illustrated in the schematic
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diagram in Figure 1a. The chemical constitution and surface valance states of BOB, BPO,
and composite PB5 were analyzed by X-ray photoelectron spectroscopy (XPS). Full-scan
XPS spectra of both BOB and BPO contain the expected elements in Figure S1a; how-
ever, the P signal is undetectable in composite PB5. The absence of the P 2P orbital of
the P5+ species from the PO4

3− anions in composite PB5 is also exhibited in Figure S1b,
mainly attributed to the low content of BPO. In Figure S1c, two obvious peaks at 164.5
and 159.2 eV in BOB are assigned to the Bi 4f7/2 and Bi 4f5/2 orbitals of the Bi3+ cations,
respectively [31]. A significant signal in Figure S1d can be deconvoluted into both peaks at
69.6 and 68.6 eV, respectively corresponding to the Br 3d5/2 and Br 3d3/2 orbitals of the Br−

anions in the BOB lattices [32]. Similarly, the O1s signal in Figure S1e contains two peaks at
529.9 and 530.8 eV, indexed to the O atoms in Bi-O bonds and adsorbed oxygen-containing
species [33,34]. Clearly, the Bi, Br, and O signals in composite PB5 are all shifted up-field in
comparison to those in BOB, revealing the reduction of the electron cloud density in the
outermost layer caused by electron transfer from BOB to BPO across the phase interface in
the heterojunction structures [35]. The presence of the BPO phase in the composites will be
confirmed by the following analytical techniques.
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Figure 1. The preparation flow chart of target composites (a); XRD patterns of bare BOB, BPO, and
PBX series (b) and their enlarged images (c); FT-IR spectra of BOB, BPO, and composite PB5 (d).

The phase composition and crystal structures of BOB, BPO, and PBX series were
analyzed by X-ray diffraction (XRD) patterns in Figure 1b. As observed, the characteristic
diffraction peaks of BOB correlate well with the pure monoclinal Bi4O5Br2 phase (JCPDS
No. 37-0699) [36], and diffraction peaks of BPO correspond well to the hexagonal BiPO4
phase (JCPDS No. 45-1370) [37]. The PBX series shows similar XRD patterns to BOB,
indicating the good preservation of Bi4O5Br2 as a main component. However, with the
increase of the mass percentages of BPO to BOB beyond 1%, some feature peaks at 14.6◦,
20.5◦, 29.7◦, 41.9◦, and 47.2◦ are gradually strengthened and verified by enlarged patterns
in Figure 1b,c, directly proving the successful incorporation of BPO and the generation of
the expected binary composites. No other signals are recognizable in the as-synthesized
samples, confirming the successful preparation of the target compounds with high purities.
The FT-IR spectra of BOB, BPO, and composite PB5 were recorded and are exhibited in
Figure 1d. The significant absorption signals at around 1025, 592, and 529 cm−1 in BPO
were attributed to the asymmetric stretching vibration of the tetrahedron PO4

3− species [38].
The absorption band centered at 540 cm−1 is assigned to the stretching mode of the Bi-O
bonds in BOB [39]. These feature signals can be observed in composite PB5, apparently
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indicating the successful combination of both components, which is consistent with the
XRD patterns in Figure 1b,c.

The morphology and microstructure of BOB, BPO, and composite PB5 were investi-
gated by the SEM patterns, EDS elemental mapping, and TEM patterns. As observed in
Figure 2a, BOB contains three-dimensional hierarchical aggregates composed of numerous
nanosheets in a random manner. BPO in Figure 2b possesses assembled and fused rod-
shaped structures. The morphology of composite PB5 is quite close to that of BOB, except
that some rod-shaped structures marked by a yellow square are closely deposited on the
surface of BOB in Figure 2c. The EDS elemental mapping recorded from the selected area
in the SEM image of composite PB5 in Figure 2d includes four elements Bi, Br, O, and P
that coexist evenly in the tested scope, directly indicating the successful integration of both
components in the composites. For clear observation, samples were subjected to sonica-
tion in ethanol for 10 min prior to TEM measurements. The TEM image of BOB shows a
lamellar morphology in Figure 2e, which agrees well with the corresponding SEM image in
Figure 2a. Uniform lattice stripes with an interplanar distance of 0.29 nm are indexed to the
(113) crystal planes of BOB in Figure 2f. The TEM image of composite PB5 in Figure 2g is
similar to that of BOB in Figure 2e without the clear differentiation of the rod-like structures,
possibly attributed to the likeness of the wrinkles and curved edges in BOB and the fused
rods in BPO. However, two different kinds of lattice stripes with interplanar distances
of 0.29 nm and 0.28 nm, respectively, correspond to the crystal planes (113) of BOB and
the crystal planes (102) of BPO, directly demonstrating the formation of heterojunction
structures with interfaces that facilitate the efficient transport and segregation of the charge
carriers and further boosting the photocatalytic performance.
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The textural properties of BOB and PB5 were analyzed by N2 adsorption-desorption
isotherms. In Figure S2a, both BOB and PB5 have obvious type-IV curves with H3-type
hysteresis loops at the relative pressure P/P0 within the range of 0.6~1.0, suggesting
the existence of mesopores [17]. Moreover, the similarity of the N2 adsorption-desorption
isotherms in Figure S2a and pore diameter distribution in Figure S2b of both samples reveals
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the good maintenance of the original structure after modification. The specific surface areas
of BOB and PB5 are, respectively, 10.41 and 13.38 m2/g, and the slightly enlarged specific
surface area may provide more reactive sites, thus achieving better photocatalytic activity.

As everyone knows, the bandgap energy of a catalyst determines the absorption
range of incident irradiation and exerts an important effect on photocatalytic performance.
Therefore, UV-Vis diffuse reflection spectroscopy (UV-Vis DRS) was adopted to evaluate
the optical properties of BOB, BPO, and the PB series in Figure 3a. BOB in light yellow
shows a response to ultraviolet and sectional visible light, and BPO in white absorbs merely
ultraviolet light because of the quite wide bandgap [26]. The UV-Vis DRS spectra of the
PB series are close to those of BOB, revealing the main component of BOB. In addition, the
absorption edges of the PB series are gradually blue-shifted with the enrichment of BPO
content. The bandgap energy (Eg) of a semiconductor can be computed from the formula
αhν = A(hν − Eg)n/2 [40], where A, α, h, and v, respectively, refer to a constant, the optical
absorption coefficient, Planck’s constant, and the photon frequency. The value of n depends
on the electron transition type and can be determined as follows. The logarithm is taken
on both sides of the above formula, and an approximate value of Eg is chosen to plot the
ln (αhv) versus ln (hv − Eg) diagrams. The slope of the fit straight line beyond 1 means
an indirect semiconductor with the value of n as 4; otherwise, the slop of the fit straight
line below 1 reveals a direct semiconductor with the value of n as 1 [41]. As a result, both
components BOB and BPO are indirect semiconductors from Figure S3, and the Eg values
of BOB and BPO can be calculated as 2.27 and 3.59 eV from Figure 3b, respectively, by
computing the plots of (αhv)1/2 versus (hv). In addition, the Eg values of the PBX series
are estimated around 2.3 eV in Figure S4. All physiochemical properties of the relevant
samples are collected in Table S1.
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2.2. Photocatalytic NOx Removal Measurements

The photocatalytic NOx dislodging capacities were evaluated for the as-prepared
samples under visible light. For the sake of accurateness and reproducibility, each reaction
was conducted at least three times to obtain the average data with an error bar. In Figure 4a,
the blank experiment without any catalyst led to ignorable NOx removal efficiency. BPO
causes almost no decrease of the initial NOx concentration, mainly resulting from the large
Eg value and impossible excitation after accepting visible incident light. For photocatalytic
comparison, commercial P25 was also selected and possesses a low removal efficiency
lower than 5%. In contrast, BOB with a suitable bandgap induces a photocatalytic NOx
removal around 25%, which is lower than the 35%, 40%, and 34% of composites PB1,
PB5, and PB10 after 15 min. Because of the similarity of the Eg values and the absorp-
tion of visible light of BOB and the PB series, the variation of the optical properties is
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insufficient to affect the photocatalytic performance. Therefore, the strengthened NOx
removal efficiencies of the PB composites were mainly attributed to the following. First, the
slightly enlarged specific surface area in Figure S2 may provide more adsorption and active
sites [17]. Second, the heterojunction structures of the PB series own a favorable driving
force for carriers’ transport and spatial separation through the interface and further produce
abundant reactive species [8]. Third, the PB series exhibited amplified surface negative
charges in Figure S5, by which the NO molecules can be efficiently enriched because of
the electron-deficient nature [42]. Last but not the least, a suitable phase composition is
beneficial for the construction of efficient heterojunction structures [18]. As a result, the
composite BP5 with the most negative surface charges, proper phase composition, and
textural property induced the best photocatalytic NOx removal efficiency among all tested
samples under identical conditions. The comparison of the reaction parameters and NOx
removal of some recent reports and our work is collected in Table S2, demonstrating the
comparability and superiority of the current photocatalytic system. Moreover, the catalog
PB5 exhibited the best NOx dislodging capability, benefiting from the efficient formation
of the heterojunction structure in a suitable composition. A coincident capability is also
gained for the photocatalytic dislodging of NO in Figure S6a. In general, the photocatalytic
oxidation of NO may produce the intermediate NO2, which is even more toxic than NO [43].
Thus, the evolution of NO2 generation by various catalysts after 15 min of irradiation is
shown in Figure 4b. Significantly, composite PB5 produces NO2 at around 40 ppb, which is
merely half of that by BOB, elucidating the good inhibition of NO2 formation by the PB
composites. Accordingly, the selectivity for NO2 and NO3

− is respectively restrained and
promoted by the PB series in comparison to those by BOB in Figure S6b.

The promoted photocatalytic performance is closely correlated with the efficient segre-
gation and prolonged lifetime of charge carriers, which can be examined by electrochemical
and PL analyses. The electrochemical impedance spectroscopy (EIS) in Figure 4c displays
the smallest arc radius of composite PB5 among the three tested samples, revealing the
lowest interface resistance between the electrolyte and electrode [44]. Namely, the addition
of BPO with a relatively positive conduction band tends to accept electrons from BOB,
thus redistributing and lengthening the lifetime of the charge carriers. In addition, the
photocurrent response spectra in Figure 4d indicate that the current intensity of composite
PB5 is around three-times that of BOB, further demonstrating boosted charge separation
and extension of the lifetime by involving another semiconductor with a suitable band
structure. The separation and transfer ability of the charge carriers can be further analyzed
by the PL spectra. As shown in Figure S7, PB5 owns the weakest peak intensity compared
with other samples, indicating the efficiently restrained recombination of the carriers at
the interface.

The recyclability and structural stability of composite PB5 were evaluated concerning
actual applications. As shown in Figure 4e, the NOx removal capacity of composite PB5
gradually decreased from the first cycle to the fourth with gently enhanced NO2 generation,
possibly owing to the coverage of surface active sites by the produced NO3

− species and,
thus, the hindrance of continued NO oxidation. Therefore, the fifth cycle was carried out by
using the treated composite PB5, which was washed with ultrapure water. As expected, the
photocatalytic performance was partially recovered, directly suggesting the easy recovery
of the catalyst with a facile washing procedure. Besides, the XRD patterns in Figure 4f
and full-scan XPS spectra in Figure S8 before the reaction and after five cycles of BP5 are
quite similar, revealing the good conservation of the original crystal structure and phase
composition. Moreover, the TEM diagrams of PB5 after five cycles are shown in Figure S9.
The morphological structure in Figure S9a and lattice features of both phases in Figure S9b
are analogous to those of pristine PB5. All these analyses amply confirmed the sufficient
structural stability of these composites constructed by such a facile mechanical ball milling
protocol. Further modifications will be conducted to further enhance the photocatalytic
outcome and reusability as well.
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15 min caused by BOB and the PBX series (b); EIS spectra (c) and transient photocurrent response
(d) of BOB, BPO, and PB5; photocatalytic NOx removal and NO2 generation by PB5 for four successive
cycles and a fifth by washing (e); XRD patterns of PB5 before and after five cycles (f).

2.3. Photocatalytic Mechanism Deduction

In order to estimate the exact roles of the relevant active species over photocatalytic
performance, a series of capture experiments was carried out under the identical conditions
as above, except the introduction of various entrapping reagents. As depicted in Figure 5a,
the photocatalytic reaction was maintained well after adding TBA, suggesting the negligible
role of radicals ·OH. However, the involvement of KI and PBQ led to significant reduction of
the photocatalytic activity, indicating the crucial roles of h+ and ·O2

− during photocatalytic
processes. The radicals ·O2

− were further detected by recording DMPO-·O2 ESR signals
under visible light. Clearly, BOB and composite PB5 are unable to produce radicals ·O2

−

in the dark in Figure 5b. However, both samples induced the generation of radicals ·O2
−
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under visible light, identified by the presence of multiple signals [45,46]. In addition, the
signals by composite PB5 were much more strengthened than those by BOB, revealing
the boosted formation of radicals ·O2

−. It is generally realized that multi-oxygen radicals
such as ·O2

− are beneficial for deep oxidation of NO to NO3
−species, thus simultaneously

promoting NO conversion and avoiding the production of the toxic intermediate NO2 [24].
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− adducts of BOB and PB5 in dark and under visible light (b).

In order to discover the photocatalysis mechanism, the band structures were de-
termined by the flat band potentials (Efb), which were measured by the electrochemical
method. From the Mott–Schottky curves, the slopes of both BOB in Figure 6a and BPO
in Figure 6b are positive; thus, both samples are n-type semiconductors. The intersection
points of the slopes with the X axis are −0.68 V for BOB and −0.31 V for BPO versus the
saturated calomel electrode (SCE), which correspond to −0.44 and −0.07 V versus the nor-
mal hydrogen electrode (NHE) [47], respectively. Moreover, for an n-type semiconductor,
the gap between Efb and ECB is around 0.1–0.3 eV [48], and 0.2 eV was selected in this study.
Accordingly, the values of ECB of BOB and BPO are −0.64 and −0.27 V, respectively. The
EVB potentials of BOB and BPO were calculated as 1.63 and 3.32 V, thanks to the formula
ECB = EVB − Eg.
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The schematic diagram of the band-structure-based photocatalysis mechanism by the
PBX series is preliminarily conjectured in Figure 7. Upon visible light irradiation, BOB
is able to be excited to generate charge carriers after absorbing photons with sufficient
energy in the left of Figure 7. Electrons move to the conduction band (CB), and holes stay
in the valence band (VB). Electrons in the CB tend to react with adsorbed oxygen molecules
to produce radicals ·O2

− because of the more negative ECB potential (−0.64 V) than the
standard redox potential (O2/·O2

−, −0.046 V vs. NHE), which is in accordance with the
ESR result. Holes in the VB fail to produce radicals ·OH since the standard redox potentials
(OH−/·OH, 1.99 V vs. NHE, and H2O/·OH, 1.99 V vs. NHE) [49] are more positive than
the EVB potential (1.63 V). Instead, holes together with radicals ·O2

− can participate in the
photocatalytic reactions. However, the photocatalytic performance of BOB is unsatisfactory
because of the serious recombination of the carriers caused by the intrinsic nature of single-
phase semiconductors. Distinctly, the integration of a wide-bandgap semiconductor with
a relatively positive ECB is prone to modify the carriers’ distribution by accepting photo-
generated electrons. In particular, the mechanical ball milling treatment is apt to construct
composites with intimate contact and efficient interfaces between different components. As
shown in the right of Figure 7, BOB can be exited instead of BPO under visible light. With
the assistance of BPO, electrons in the CB of BOB easily transfer to the CB of BPO through
the phase interface because of the potentials’ difference, which is thermodynamically
favorable. Accordingly, electrons and holes are mainly distributed in the CB of BPO and
the VB of BOB, respectively. Therefore, the spatial segregation of the charge carriers and
further boosted generation of radicals ·O2

− in the CB of BPO is achieved. As a result, the
holes and produced radicals ·O2

− in a such system favor the enhanced NOx removal with
the avoidance of toxic NO2 generation. On the whole, Bi4O5Br2-BiPO4 composites with
well-matched band structures and regulated interface carriers can be used as alternative
candidates for deep oxidation of NOx at the ppb level, and further decorations are still
needed to further improve the photocatalytic performance and reusability in the future.
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3. Materials and Methods
3.1. Materials’ Preparation and Characterization

All chemicals and reagents involved in this work were directly used without further
purification, and the relevant information is collected in the Supplementary Materials.
Bare Bi4O5Br2 was synthesized through a facile hexadecyl-trimethyl-ammonium-bromide
(CTAB)-mediated procedure as reported [17]. BiPO4 was prepared via a simple chemical
precipitation route at room temperature [50].

Binary composites Bi4O5Br2/BiPO4 were fabricated via a facile mechanical ball milling
treatment. Specifically, Bi4O5Br2 (1.00 g) and a desirable amount of BiPO4 (0.01 g, 0.05 g,
and 0.1 g) were introduced together into a tank with ethanol (5 mL) as a dispersant in a
planetary ball miller (DECO-PBM-AD-0.4 L, Changsha Deke Instrument Equipment Co.,
Ltd., Changsha, China). The number of balls of three sizes (d = 3, 5, and 9 nm) was 15,
90, and 290, respectively. After being treated at a speed of 300 rpm for 3 h, the resulting
paste was collected, washed 3 times with ethanol, and dried at 60 ◦C for 12 h. The target
products were labeled as PBX, where X refers to the mass percentages of BiPO4 versus
Bi4O5Br2. For the comparison, bare Bi4O5Br2 and BiPO4 were treated by an identical ball
milling treatment described above and denoted as BOB and BPO.

3.2. Photocatalytic Capability Estimation and Reactive Species’ Recognition

The photocatalytic performance of the samples under visible light was evaluated by
removing ppb-level NO in a continuous flow reactor at normal temperature and pressure.
The typical photocatalytic procedure was quite similar to our previous studies [7], except
that the initial concentration of NO, the catalyst dosage, and the diameter of two glass plates
were 500 ppb, 0.2 g, and 9 cm, respectively. In addition, a xenon lamp (500 W, CEL-LAX500,
AuLight, Beijing, China) was adopted as a light source and set 40 cm above the reactor. The
gas composition at the outlet of the reactor was continuously detected by a NOx analyzer
(42ic, Thermo-Fisher, Massachusetts, MA, USA) with a sampling rate of 1.2 L·min−1. To
pursue the accuracy of the experimental results, each photocatalytic reaction was repeated
at least 3 times to gain the average value of parallel tests with the corresponding errors.

Capture experiments were accomplished to realize possible reactive species during
the photocatalytic processes. Specifically, tert-butyl alcohol (TBA, 0.2 mM), p-benzoquinone
(PBQ, 0.2 g), KI (0.2 g), or K2Cr2O7 (0.2 g) was respectively charged into the reaction
systems to entrap hydroxyl radicals (·OH), radicals ·O2

−, photo-induced holes (h+), and
electrons (e−). Except for the added reagents, these experiments were the same as the above
procedure. The electron spin resonance (ESR) signals of 5,5-dimethyl-1-pyrroline N-oxide
(DMPO)-·O2

− adducts were recorded in methanol on a JEOL JES FA200 spectrometer.

4. Conclusions

In this investigation, various binary composites of PBX were prepared by means of
mechanical ball milling, and the relevant physicochemical properties were systematically
characterized. The presence of both components was verified to generate heterojunction
domains at the phase boundaries. These as-synthesized PBX series showed increased
photocatalytic NOx removal efficiencies and decreased formation of toxic NO2, compared
with both bare components under visible light. The ameliorative catalytic outcome mainly
resulted from the effective migration and separation of the carriers and the generation
of abundant ·O2

− radicals by adopting a wide-bandgap ornament BiPO4 as an electron
acceptor. The successive recycling experiments confirmed the robust nature of these
composites. Eventually, a reasonable photocatalysis mechanism was speculated from the
analytical and experimental results.
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Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238474/s1, Figure S1: Overall XPS spectra of BOB,
BPO, and PB5 (a); high-resolution P 2p spectra of PB5 and BPO (b); Bi 4f spectra (c), Br 3d spectra (d),
and O 1s spectra (e) of BOB and PB5; Figure S2: Nitrogen adsorption–desorption isotherms (a) and
pore size distribution (b) of samples BOB and PB5; Figure S3: ln (ahv) vs. ln (hv − Eg) diagrams of
BOB and BPO; Figure S4: Bandgap energy estimation of PB1 (a), PB5 (b), and PB10 (c); Figure S5:
Zeta potentials of BOB, PB1, PB5, and PB10; Figure S6: Photocatalytic NO removal over P25, BOB,
BPO, and the PBX series under visible light (a); NO2 and NO3

− selectivity of the relevant catalysts
(b); Figure S7: PL spectra of BOB, PB5, and BPO; Figure S8: Full-scan XPS spectra of PB5 before and
after reaction; Figure S9: TEM (a) and HRTEM (b) images of composite PB5 after five cycles; Table
S1: Physicochemical properties of the as-prepared samples; Table S2: Comparison of the reaction
conditions and NOx removal of previous systems and our work. References [23,51–56] are cited in
the Supplementary Materials.
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