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Kljusurić, J.; Tušek, A.J. Analysis of

Hepatic Lipid Metabolism Model:

Simulation and Non-Stationary

Global Sensitivity Analysis. Nutrients

2022, 14, 4992. https://doi.org/

10.3390/nu14234992

Academic Editor: Carlo Agostoni

Received: 19 October 2022

Accepted: 21 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Analysis of Hepatic Lipid Metabolism Model: Simulation and
Non-Stationary Global Sensitivity Analysis
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Abstract: Lipid metabolism is a complex process and it is extremely helpful to simulate its perfor-
mance with different models that explain all the biological processes that comprise it, which then
enables its better understanding as well as understanding the kinetics of the process itself. Typically,
kinetic parameters are obtained from a number of sources under specific experimental conditions,
and they are a source of uncertainty. Sensitivity analysis is a useful technique for controlling the
uncertainty of model parameters. It evaluates a model’s dependence on its input variables. In
this work, hepatic lipid metabolism was mathematically simulated and analyzed. Simulations of
the model were performed using different initial plasma glucose (GB) and plasma triacylglyceride
(TAG) concentrations according to proposed menus for different meals (breakfast, lunch, snack and
dinner). A non-stationary Fourier amplitude sensitivity test (FAST) was applied to analyze the effect
of 78 kinetic parameters on 24 metabolite concentrations and 45 reaction rates of the biological part of
the hepatic lipid metabolism model at five time points (tf = 10, 50, 100, 250 and 500 min). This study
examined the total influence of input parameter uncertainty on the variance of metabolic model
predictions. The majority of the propagated uncertainty is due to the interactions of numerous factors
rather than being linear from one parameter to one result. Obtained results showed differences in the
model control regarding the different initial concentrations and also the changes in the model control
over time. The aforementioned knowledge enables dietitians and physicians, working with patients
who need to regulate fat metabolism due to illness and/or excessive body mass, to better understand
the problem.

Keywords: hepatic lipid metabolism model; CellDesigner; non-stationary global sensitivity analysis;
Fourier amplitude sensitivity test (FAST)

1. Introduction

Human diet, as well as lifestyle, influence many of the reactions and processes that
occur in our bodies. Such interactions might occur at the cell, tissue, organ or organis-
mal level. The consumption of diverse metabolites (micronutrients, macronutrients and
non-nutritive dietary components) influences metabolic pathways as well as physiological
homeostasis [1]. The human body is a very complicated biological system, and the same
eating pattern does not have the same impact on all organisms [2]. Therefore, understand-
ing how diet impacts an individual’s metabolism and how specific dietary patterns might
enhance or harm individuals’ health are significant research aims in nutrition [3]. An
efficient tool which helps solve the above problems is the use of a systems biology approach
in nutrition [4]. The goal of systems biology in nutrition is to predict the mode of action
of individual food components, as well as their mutual and combined action, in order
to treat chronic diseases and, in certain cases, successfully prevent their occurrence [5].
According to Mc Auley [6], efficient modern nutritional research includes the most im-
portant components of systems biology: (i) bioinformatics, (ii) nutritional metabolomics,
(iii) nutritional proteomics, (iv) nutritional transcriptomics, (v) nutritional genomics and
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(vi) computational systems biology. The results based on interconnection of mentioned
approaches make it easier to understand the complex biochemical reactions and dynamic
changes that occur when food is ingested into the body under certain conditions and over
a certain period of time [6].

Mathematical modeling plays a very important role in the field of systems biology [6].
Mathematical models of metabolic pathways give insight into cell physiology and the
evaluation of metabolic pathways used inside the cell, allowing the characterization of the
metabolic behavior of the cell population [7]. Over time, mathematical models evolved,
first incorporating reaction networks and stoichiometry, and later, reaction kinetics and
mechanism control [8]. Today, we distinguish between: (i) constraint-based models and (iii)
dynamic kinetical models [9]. Dynamic kinetic mathematical models try to represent the
process inside biological systems in terms of enzyme activity and mass balance in relation
to intracellular metabolites, not only in a steady state but also throughout a certain time
period [10]. Such mathematical models employ differential equation systems that depict
mass balance [11]. The values of intracellular fluxes and concentrations are obtained by
solving the mass conservation equations numerically. These mathematical models can sim-
ulate various changes that are a based on kinetic parameters and initial concentrations [12].
Although dynamic models can be efficiently used for studying biological systems, they still
have some limitations. The primary drawbacks of dynamic kinetic mathematical models
are limited availability of data on intracellular molecule concentrations and a difficult
technique for determining the kinetic rate law and related kinetic parameters [9].

According to Felix et al. [13], most models have numerous parameters that have to be
evaluated with significant nonlinearity, which means that several solutions to the objective
function can be produced during the optimization process and that the optimal combination
of parameters may not be guaranteed and, therefore, the sensitivity analysis methodology
needs to be used for confirming the optimal set of parameter values. Sensitivity analysis
examines the impact of minor changes in nominal values of model parameters on model
outputs [14]. Generally, there are two approaches: local and global sensitivity analysis.
Local sensitivity analysis or one-factor-at-a-time analysis implies that parameters are varied
one by one for selected small percentages, keeping other parameters constant [15]. Al-
ternatively, global sensitivity analysis considers simulated changes of all parameter sets
over a specified range [16,17]. Over the past years, different global sensitivity analysis
methods such as the Moriss method [18–20], Sobol’s method [21,22], the Fourier amplitude
sensitivity test (FAST) [23,24] and derivative-based global sensitivity measures [25,26] have
been developed to study complex models. The FAST method is a well-known global
sensitivity approach. The basic mechanism of the FAST method is to specify a characteristic
frequency to each parameter using a search algorithm and Fourier transformation [27,28].
The FAST method then decomposes the variance of a model output into partial variances
provided by individual model parameters [29]. According to Saltelli et al. [30], evaluation
of sensitivity coefficients for each parameter can be conducted independently by only one
simulation since all the terms in the Fourier expansion are mutually orthogonal. Based on
this approach, FAST is computationally efficient for small sample sizes. To the best of our
knowledge, there are limited available data on the use of the FAST method for biological
model importance analysis. For example, Jurinjak Tušek et al. [31] used extended FAST for
analysis of kinetic parameters of the biological part of the integrated BTEX bioremediation
model. Moreover, Tušek and Kurtanjek [32] presented the use of FAST on an E. coli central
carbon metabolism model and Jurinjak Tušek et al. [33] presented the application of FAST
for analysis of the activated sludge models (ASM1, ASM2d and ASM3).

To test the importance of the parameters of the hepatic lipid metabolism model, in
this work, non-stationary FAST global sensitivity analysis was applied. The goal of this
work was to simulate the hepatic lipid metabolism model in order to examine how the
intake of different meals with regard to the proportion of macronutrients (fats and carbohy-
drates) affects hepatic lipid metabolism itself and then to define the most important model
parameters at five different time points to discover potential shifts in metabolic regulation.
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2. Materials and Methods
2.1. Materials
2.1.1. Recommendations for Menu Planning

In this work, 4 menus were designed (Table 1) that differ according to the proportion
of macronutrients, with an emphasis on carbohydrates and fats.

Table 1. Designed meal plans with different proportions of macronutrients with an emphasis on the
carbohydrates and fats.

Meal Components with Corresponding Masses

M
en

u
1

Breakfast 2 egg yolks (30 g), bacon (50 g) and gouda cheese (80 g) prepared in olive oil (5 g)

Lunch Salmon (100 g) prepared in olive oil (10 g) and green salad (100 g) with flax seeds (10 g) and olive
oil (5 g)

Snack Handful of walnuts (30 g)
Dinner Chicken (120 g) prepared with cooking cream (150 mL) and broccoli (100 g) with olive oil (5 g)

M
en

u
2

Breakfast Cornflakes (80 g) with 2.8% m.f. yogurt (200 mL) and a cup of chamomile tea with sugar (5 g)

Lunch
Plate of vegetable soup (200 mL), chicken breast (200 g) prepared in olive oil (10 g) with couscous
(50 g), tomato salad (100 g) with flax seeds (5 g), 2 slices of graham bread and a glass of orange
juice (200 mL)

Snack Banana (100 g) and a handful of almonds (30 g)

Dinner Tuna steak (100 g) with potatoes (100 g) prepared with olive oil (10 g) and a cup of apple compote
(200 mL)

M
en

u
3

Breakfast 2 egg yolks (30 g) and bacon (50 g) prepared in olive oil (5 g) and a slice of bread (25 g)

Lunch Plate of vegetable soup (200 mL), tuna steak (150 g) with potatoes (100 g) and Swiss chard
prepared (100 g) in olive oil (10 g)

Snack 3.2% m.f. yogurt (150 mL) and mixed nuts (40 g)
Dinner Chicken (100 g), rice (60 g) with vegetable salad (150 g) and olive oil (15 g)

M
en

u
4

Breakfast 2 slices of graham bread (50 g) with butter (15 g) and honey (20 g) and chamomile tea (200 mL)
with sugar (5 g)

Lunch Plate of vegetable soup (200 mL), beef stew (150 g) prepared with olive oil (10 g) with pasta (80 g)
and vegetable salad (100 g) with olive oil (5 g)

Snack Sliced apple (100 g) with peanut butter (10 g)

Dinner Salmon (100 g) prepared in olive oil (5 g) with bulgur (50 g), vegetable salad (100 g) with olive oil
(5 g) and a glass of orange juice (200 mL)

Each menu has an energy value of 2000 kcal (±100 kcal). The USDA food composition
database was used to plan meals and calculate the amount of energy and nutrients. When
planning the menu, nutritional guidelines for the general population were used, as well
as guidelines for the ketogenic diet. Dietary guidelines for the general population include
three basic principles: variety, moderation and balance. In the case of a ketogenic diet,
emphasis is placed on increased fat intake, while carbohydrate intake is extremely reduced
(maximum 5% of daily energy intake) [34]. The paper presents 4 menus (Table 1): (i) menu
according to the principles of a ketogenic diet (Menu 1), (ii) menu for the general population
(Menu 2), and 2 residual menus, (iii) and (iv), are planned with carbohydrate and fat values
that are between the first two listed menus.

2.1.2. Mathematical Model of Hepatic Lipid Metabolism

In this paper, an analysis of the mathematical model of hepatic lipid metabolism
was carried out. The model in the form of 24 differential equations (Table 2) including
81 parameters (Table 3) describes the metabolic response of the organism to meals with
different proportions of macronutrients with a special emphasis on lipids or triglycerides. A
macronutrient metabolism pathway was proposed by Pratt et al. [35]. The model includes
four compartments: liver, adipose tissue, skeletal muscle and blood plasma. According to
Pratt et al. [35], the liver regulates the quantities of metabolites accessible to other tissues,
so each investigation of a metabolic process in the liver must also include associated
tissues and organs. Nutrient distribution among tissues is controlled by blood plasma
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and, as such, is very important for model reliability. Moreover, adipose tissue and skeletal
muscle account for 20% and 40% of the body volume and have to be taken into account in
the model.

Table 2. List of hepatic lipid metabolism model balances proposed by Pratt et al. [35].

Variable Balance Initial Conditions

plasma insulin dI
dt = k11 + k22·erf

(
GB−v

cc

)
− kd·I 60 pmol/L

liver glucose αL· dGL
dt = SG(t)− kgl ·GL + kgl2·GB − vLG ·GL

kLG+GL
− vLH ·GL

kLH+GL
·
(

1
1+krep ·PL

)
·k61·PL 8 mmol/L

liver glucose-6-phospahte
αL· dPL

dt = − 1
2 ·kyl ·I·PL·

(
1 + tanh·

(
lmax−YL

c0

))
+

βL
1+kp6·I ·

(
YL

YL+y0

)
−

kp·I·PL + kgp·LA +
β6·RL

1+kp6·I +
vLG ·GL
kLG+GL

+ vLH ·GL
kLH+GL

·
(

1
1+krep ·PL

)
− k61·PL

2.06 mmol/L

liver glycogen αL· dYL
dt = 1

2 ·kyl ·I·PL·
(

1 + tanh·
(

lmax−YL
c0

))
− βL

1+kdl ·I ·
(

YL
YL+y0

)
50 mmol/L

liver pyruvate αL· RL
dt = kpp·RM + µB + kp·I·PL − β6

1+kp6·I ·RL − kal ·I·RL + µB 0.37 mmol/L

free fatty acids in liver
αL· dAL

dt = 3·kcl ·TCB + kbl ·AB + 3·kr·TLB + kal ·I·RL − 3·v6·AL
k6+AL

+ 3·v10·TL
k10+TL

−
3·v8·AL
1+k5·I − k7·AL

1+k5·I
0.57 mmol/L

triacylglycerides secretory
pool in liver αL· dSL

dt = v6·AL
k6+AL

− k9a·SL 0.0149 mmol/L

triacylglycerol storage
pool in liver αL· dTL

dt = v8·AL
k8+AL

−
(

k12·tanh
(

v12−I
k13

)
+ k14

)
· v9·TL

k9+TL
− v10·TL

k10+TL
40 mmol/L

glucose in muscles αL· dGM
dt =

(
1 + kgi·I

)
·
(
kgm·GB − kgm2·GM

)
− vMH ·GM

kMH+GM
·
(

1
1+krep ·PM

)
0.5 mmol/L

glycogen in muscle αL· dYM
dt = 1

2 ·kym·I·PM·
(

1 + tanh·
(

mmax−YM
c0

))
− βM

1+kdy ·I ·
(

YM
YM+y0

)
20 mmol/L

glucose-6-posphate in
muscle

αL· dPM
dt = vMH ·GM

kMH+GM
·
(

1
1+krep ·PM

)
− 1

2 ·kym·I·PM·
(

1 + tanh
(

mmax−YM
c0

))
+

βM
1+kdy ·I ·

(
YM

YM+y0

)
− k6p·I·PM

0.133 mmol/L

pyruvate in muscle αL· RM
dt = k6p·I·PM − kpp·RM − µ3·RM·I·P 0.009 mmol/L

free fatty acids in muscle αL· AM
dt = −3ms·I·AM + 3me + 3kcm·TCB + kbm·AB + 3kt·TLB − µ4·AM·P 0.53 mmol/L

triacylglycerides in muscle αL· dTM
dt = ms·I·Am − me 14.8 mmol/L

AMP in muscles dP
dt = µamp − µ4·AM·P − µ3·RM·I·P 0 mmol/L

adipose triacylglycerides αL· dTA
dt = kaa·I·AA·GA − β f

1+k f t ·I2 500 mmol/L

adipose free fatty acids αL· dAA
dt = −3·kaa·I·AA·GA + 3·ka·(1 + kai·I)·TCB + 3·kba·TLB + kna·AB 0.57 mmol/L

adipose glycerol αL· dLA
dt =

β f

1+k f t ·I2 − kgp·LA 0.17 mmol/L

adipose glucose αL· dGA
dt = dba·

(
1 + kga·I

)
·(GB·GA)− kaa·I·AA·GA 2.53 mmol/L

exogenous plasma
triacylglycerides

dTCB
dt = SF(t)− kcm·TCB − kcl ·TCB − ka·(1 + kai·I)·TCB 0 mmol/L

plasma free fatty acids AB
dt = −kbm·AB − kbl ·AB − kna·AB +

3·β f
1+k f t ·I + 3·ka 0.5 mmol/L

endogenous plasma
triacylglycerides

dTLB
dt = F(I)· v9·TL

k9+TL
+ k9a·SL − kr·TLB − kt·TLB − kba·TLB Table 4

plasma glucose
dGB
dt = kgl ·GL − kgl2·GB −

(
1 + kgi·I

)
·
(
kgm·GB − kgm2·GM

)
−

dba·
(
1 + kga·I

)
·(GB − GA)− µ1

Table 4
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Table 3. List of hepatic lipid metabolism model parameters proposed by Pratt et al. [35].

Parameter Value

1. αA (adipose tissue volume) 15.60 L

2. αL (liver tissue volume) 1.60 L

3. αM (skeletal muscle volume) 26.4 L

4. β6 (rate of liver de novo lipogenesis from pyruvate) 31.6 L/min

6. βf (adipose release of triacylglycerides to non-esterified fatty acids) 0.117 mmol/min

7. βL (liver glycogenolysis) 12 L/min

8. βm (muscle glycogenolysis) 82.5 L/min

9. µamp (national adenosine monophosphate/adenosine diphosphate creation rate) 1.8

10. µb (lactate production by red blood cells) 0.133 mmol/min

11. µe (muscle triglyceride breakdown to free fatty acids) 0.420 mmol/min

12. µs (muscle free fatty acid esterification to triglycerides) 7.19 × 106 L mmol/min

13. µ1 (plasma glucose usage) 0.588 mmol/min

14. µ3 (muscle glucose-6-phospahte usage) 7.839 × 107 L mmol/min

15. µ4 (muscle free fatty acid usage) 100 L/min

16. c0 (small parameters) 0.1 mmol/L

17. cc (range of glucose concentrations over which excess insulin secretion occurs) 2.5 mmol/L

18. dba (adipose uptake of glucose) 0.3 mmol/min

19. k10 (affinity for hydrolysis of triglycerides to secretory pool) 0.625 mmol/L

20. k11 (basal insulin secretion rate) 48 mmol/min

21. k12 (increased fraction of very low-density lipoprotein 1 secretion by insulin) 0.2

22. k13 (rate at which insulin modifies the fraction of very low-density lipoprotein 1 to very
low-density lipoprotein 2 secretion) 15 mmol/L

23. k14 (basal very low-density lipoprotein 1 secretion fraction) 0.6

24. k22 (excess insulin secretion rate due to glucose stimulation) 48 mmol/min

25. k5 (flux control coefficient for insulin inhibition of free fatty acid oxidation) 8.23 × 107/mmol

26. k6 (affinity for very low-density lipoprotein 2 triglyceride secretion through
secretory pathway) 0.3 mmol/L

27. k61 (liver glucose dephosphorylation rate) 4 L/min

28. k6p (muscle glucose-6-phospahte to pyruvate conversion rate) 6.56 × 108 L2/mmol min

29. k7 (maximum rate of free fatty acid oxidation) 0.759 L/min

30. k8 (affinity for esterification of free fatty acids to triglycerides) 0.625 mmol/L

31. k9 (affinity of additional bulk lipidation) 43.583 mmol/L

32. k9a (release of very low-density lipoproteins from secretory pathway) 1 L/min

33. ka (adipose free fatty acid uptake of chylomicron triglycerides, insulin independent) 0.1497 L/min

34. kaa (adipose free fatty acid esterification to triglycerides) 3.11 × 105 L2/mmol min

35. kai (adipose free fatty acid uptake of chylomicron triglycerides, insulin dependent) 2.08 × 106 1/mmol

36. kal (pyruvate to acetyl coenzyme A conversion rate) 0.00002 L2/mmol min

37. kba (adipose uptake of endogenous lipoprotein triglycerides) 0.0104 L/min

38. kbl (liver uptake of plasma non-esterified fatty acids) 0.156 L/min
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Table 3. Cont.

Parameter Value

39. kbm (muscle uptake of plasma non-esterified fatty acids) 0.226 L/min

40. kcl (liver free fatty acid uptake of chylomicron triglycerides) 0.0075 L/min

41. kcm (muscle free fatty acid uptake of chylomicron triglycerides) 0.0449 L/min

42. kd (insulin degradation rate) 1.733 × 1014 L/mmol

43. kdl (liver glycogenolysis; insulin-inhibited rate) 3.5 × 188 mmol/L

44. kdy (muscle glycogenolysis; insulin-inhibited rate) 4 × 108 L/mmol

45. kft (adipose release of triglyceride to non-esterified fatty acids; insulin-inhibited rate) 1.67 × 1014 L/mmol

46. kga (rate of glucose diffusion between plasma and adipose mediated by glucose
4 transporters) 1.67 × 106

47. kgi (glucose diffusion between plasma and muscles, insulin-mediated) 2.632 × 108 mmol/L

48. kgl (plasma glucose diffusion rate to liver) 0.9277 mmol/L

49. kgl2 (live glucose diffusion rate to blood) 0.396 mmol/L

50. kgm (plasma glucose diffusion rate to muscle) 0.0380 mmol/L

51. kgm2 (muscle glucose diffusion rate to plasma) 0.0380 mmol/L

52. kgp (glucose-6-phospahte uptake from adipose glycerol) 0.311 L/min

53. klp (rate of plasma triglyceride uptake by adipose tissue) 0.25

54. kLG (Michaelis–Menten constant of glucokinase in liver) 8.95 mmol/L

55. kLH (Michaelis–Menten constant of hexokinase in liver) 0.0115 mmol/L

56. kMH (Michaelis–Menten constant of hexokinase in muscle) 8.98 mmol/L

57. kna (rate of plasma free fatty acid uptake into adipose free fatty acids) 0.0697 L/min

58. kp (rate of insulin-mediated glucose-6-phoshate to pyruvate) 1.41 × 107 mmol/L

59. kp6 (constant of pyruvate conversion to glucose-6-phospate) 6.56 × 108 L2/mmol min

60. kpp (rate of muscle pyruvate transport to liver) 0.5

61. kr (rate of endogenously derived lipoprotein triglycerides by liver as free fatty acids) 0.00058 mmol

62. krep (glucose-6-phospahte inhibition constant of hexokinase in muscle) 2.98 mmol/L

63. kt (uptake rate of plasma endogenous triglycerides into muscle free fatty acids) 0.00348 mmol/L

64. kyl (rate of the glycogen synthesis stimulated by insulin) 1.28 × 106

65. kym (glycogen synthesis rate) 21.3641 mmol/L

66. lmax (maximum glycogen store of liver) 400 mmol

67. mmax (maximum glycogen concentration) 100 mmol

68. v (rate of glycogen transport) 7 mmol

69. v10 (rate of triglyceride storage conversion to free fatty acids) 0.1 mmol/min

70. v12 (constant in triglyceride release into plasma) 40 mmol L−1

71. v6 (rate of liver free fatty acid input to secretory pool) 0.0158 mmol/L

72. v8 (rate of free fatty acid input to storage pool) 0.333 mmol/min

73. v9 (rate of triglyceride release into plasma)) 0.0159 mmol/L

74. vLG (maximum rate of glucokinase in liver) 14.3 mmol/min

76. vLH (maximum rate of hexokinase in liver) 5.57 mmol/min

76. vMH (muscle hexokinase maximum rate) 54.288 mmol/min

77. y0 (range of liver glycogen concentration over which the release drops to zero) 0.1

78. αG (rate of glucose change in diet) 2 mmol
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Table 3. Cont.

Parameter Value

79. αF (rate of fructose change in diet) 2 mmol/L

80. ms (insulin-dependent rate of skeletal muscle storage of free fatty acids in the form
of triglycerides) 0.8

81. me (rate of skeletal muscle triglyceride breakdown to free fatty acids) 0.9

Table 4. Initial concentrations for the hepatic lipid metabolism model simulation based on
developed menus.

Menu 1 Menu 2 Menu 3 Menu 4

breakfast GB0 = 1.5 mmol/L
TLB0 = 23 mmol/L

GB0 = 44.7 mmol/L
TLB0 = 1.6 mmol/L

GB0 = 7.7 mmol/L
TLB0 = 16.1 mmol/L

GB0 = 23.6 mmol/L
TLB0 = 4.7 mmol/L

lunch GB0 = 3.2 mmol/L
TLB0 = 9.1 mmol/L

GB0 = 49.8 mmol/L
TLB0 = 9.5 mmol/L

GB0 = 14.0 mmol/L
TLB0 = 7.7 mmol/L

GB0 = 43.2 mmol/L
TLB0 = 14.5 mmol/L

snack GB0 = 2.3 mmol/L
TLB0 = 5.4 mmol/L

GB0 = 16.3 mmol/L
TLB0 = 4.3 mmol/L

GB0 = 8.3 mmol/L
TLB0 = 9.0 mmol/L

GB0 = 13.5 mmol/L
TLB0 = 1.6 mmol/L

dinner GB0 = 7.0 mmol/L
TLB0 = 12.4 mmol/L

GB0 = 21.7 mmol/L
TLB0 = 4.2 mmol/L

GB0 = 26.6 mmol/L
TLB0 = 5.1 mmol/L

GB0 = 30.8 mmol/L
TLB0 = 5.8 mmol/L

2.2. Methods

Schematic illustration of the experimental design and process of this study is given in
Figure 1.
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2.2.1. Hepatic Lipid Metabolism Model Simulation

The hepatic lipid metabolism model was constructed and simulated using CellDe-
signer 4.4.2. Software (Systems Biology Institute (SBI), Tokyo, Japan), which allows mod-
elling of biochemical and gene regulatory networks with a graphical interface. The simu-
lation of hepatic lipid metabolism was performed using different initial plasma glucose
concentrations (GB) and plasma endogenous lipoprotein triglyceride concentrations (TLB)
based on proposed menus (Table 4). Initial values of other variables were as given by
Pratt et al. [35] (Table 2).

Simulations were performed for different meals (breakfast, lunch, snack and dinner)
individually. Changes in the plasma glucose concentration (GB), plasma insulin concen-
tration (I), plasma non-esterified fatty acid concentration (ANB) and plasma endogenous
lipoprotein triglycerides (TLB) were observed over a time period of 500 min.

2.2.2. Non-Stationary Global Sensitivity Analysis

The importance of the individual parameters of the hepatic lipid metabolism model
was analyzed using the Fourier amplitude sensitivity test (FAST) method belonging to a
group of variance-based global sensitivity analysis methods [36]. The approach is based on
the nonlinear transformation of each parameter in the multidimensional parameter space
into the one-dimensional space of a single parameter, s, according to Equation (1):

xi =
1
2
+

1
π

arcsin(sin(πωis + ϕi) (1)

where s is the sampling parameter with a range of s [−1,1], ωi are randomly chosen
frequencies and ϕi are randomly chosen phase angles. The phase angles are generated
at random from the range ϕi [−π, π], but the frequencies are integers that constitute an
incommensurate set. The frequencies and phase angels are selected to provide uncorrelated
parameter variations when the s variable is scanned throughout the limits from −1 to 1.
The input variables (transformed model parameters) were sampled at frequencies ranging
from 5 to 159 Hz, with the maximum frequency in the Fourier analysis set at 500 Hz. The
selected range of frequencies was tested by a covariance matrix of the parameters, which
showed that all parameter correlations were of order 10−3 or smaller, which is an indication
of an almost independent parameter.

Responses of the output variable are expanded into a Fourier series by which the
overall variance D (Equation (2)) of the output function is decomposed into summands of
the squares of Fourier coefficients Aω and Bω (Equations (3) and (4)):

D = 2 ∑∞
ω=1

(
A2

ω + B2
ω

)
(2)

Aω =
1

2π
·
∫ π

−π
y(s)· cos(ωs)·ds (3)

Bω =
1

2π
·
∫ π

−π
y(s)· sin(ωs)·ds (4)

Individual parameter sensitivity indices Si are calculated using these Fourier coeffi-
cients. The partial sum Di of the harmonics is given by:

Di = 2·∑M
p=1 A2

pωi
+ B2

pωi
(5)

Si =
Di
D

(6)

Wolfram Research Mathematica v. 10.0 software was used for model simulation and
determining FAST sensitivities. The impacts of 78 model parameter modifications in the
2nd order of magnitude around their nominal values were evaluated simultaneously. The
integration ranges of s from s = −1 to s = 1 were split into 2000 identical segments, each
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with a size of 0.001. Non-stationary sensitivity analysis was performed, and model balances
for each of the 2000 parameter combinations were integrated from the starting state of
signal initiation through a time span of 10, 50, 100, 250 and 500 min. The resulting set of
2000 output values is zero-order interpolated to create a continuous function y(s) of the
s parameter. Up to the maximum frequency, the function was extended into a Fourier
series. The numerical assessment of the Fourier coefficients and sensitivity coefficients was
performed using zero-order interpolation. Non-stationary sensitivity analysis was applied
for model metabolites and model reactions, taking into account initial conditions obtained
from Menu 1 and Menu 2.

3. Results and Discussion
3.1. Meal Plans

A large number of people use the ketogenic diet for the purpose of reducing body
weight. The basic principle of the ketogenic diet is to drastically reduce carbohydrate
intake and achieve ketosis. Ketosis is a state of the organism in which, due to the lack of
carbohydrates, the formation of ketone bodies such as beta-hydroxybutyrate, acetoacetate
and acetone occurs [37]. In order to achieve ketosis, it is necessary to limit carbohydrate
intake to 20 to 50 g per day, and ensure the majority of daily energy intake is made up
of fats [34]. As presented in Table 4 and Figure 1, in the proposed Menu 1, carbohydrate
intake was 25 g and 78.1% of the total dally energy intake corresponded to fats. Menu 2
was designed according to dietary guidelines for the general population with regard to
the proportion of macronutrients. Accordingly, the proportion of fat should be between
20–35% of the total daily energy intake [38] and the proportion of carbohydrates should be
between 45–60% of the total daily energy intake [39]. Accordingly, with an energy intake of
2000 kcal, carbohydrate intake should be between 225 and 300 g, and fat intake between
44.4 and 77.8 g. Menu 2 included 238.5 g of carbohydrates per day that contributed to 47.6%
of daily energy intake and 70.2 g of fats per day contributing to 31.5% of daily energy intake
(Table 5 and Figure 2). The proportion of saturated fatty acids (SFA) ranged from 1.2% in
the daily energy supply of Menu 2 (average menu for the general population) to 16.2% for
Menu 1 (keto diet menu). The other two menus (Menu 3 and Menu 4) have carbohydrate
and fat proportions between the first two listed dietary patterns in order to further examine
the impact of different carbohydrate and fat intakes on fat metabolism. Menu 3 included
101.9 g of carbohydrates per day that contribute to 20.4% of daily energy intake and 136.0 g
of fats per day contributing to 61.3% of daily energy intake, while Menu 4 included 200 g
of carbohydrates per day that contribute to 39.7% of daily energy intake and 95.1 g of fats
per day contributing to 42.5% of daily energy intake (Table 5 and Figure 2).
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Table 5. Energy and macronutrient content (carbohydrates and fats) per meals according to meal
plans with daily proportion of saturated fatty acids (SFA).

Meal Carbohydrates/g Fats/g SFA/% Energy/kcal

M
en

u
1

Breakfast 2.7 82.4 859.2

Lunch 5.7 32.6 408.6

Snack 4.1 19.5 209.9

Dinner 12.6 44.4 584.0

Per day 25.1 178.9 37.0 2061.7

M
en

u
2

Breakfast 80.4 5.9 421.9

Lunch 89.7 33.9 904.7

Snack 29.3 15.3 284.1

Dinner 39.1 15.1 395.1

Per day 238.5 70.2 2.7 2005.8

M
en

u
3

Breakfast 13.9 57.7 612.9

Lunch 25.2 27.7 517.3

Snack 14.9 32.4 403.6

Dinner 47.9 18.2 461.8

Per day 101.9 136.0 27.1 1995.6

M
en

u
4

Breakfast 42.5 16.7 343.9

Lunch 77.8 52.0 971.2

Snack 24.3 5.6 164.4

Dinner 55.4 20.8 533.6

Per day 200 95.1 9.8 2013.1

3.2. Hepatic Lipid Metabolism Construction and Simulation in CellDesigner

CellDesigner is widely used for biochemical modeling due to its straightforward
visualization and presentation of the logic and dynamics of complicated processes inherent
in most metabolic pathways [40]. In this work, CellDesigner was used for hepatic lipid
model simulation and analysis. As described by Funahaski et al. [41], CellDesigner is a tool
for modeling gene regulatory and metabolic networks that enables users to quickly design
such networks through the use of well-defined and detailed graphical representations. The
CellDesigner model of lipid metabolism constructed based on the list of balances given in
Table 1 and using parameter values given in Table 2 is presented in Figure 3.

Lipids make up a very important part of human nutrition. Triglycerides are mostly
ingested through food. The main places of triglyceride storage are within fat cells. Inside the
fat cells, the synthesis and breakdown of triglycerides and, if necessary, the mobilization of
triglycerides to other tissues are possible [42]. For this reason, changes in lipid metabolism
can lead to the development of many disorders and diseases in the body. As part of this
work, four simulations were carried out with regard to different concentrations of blood
glucose and triglycerides. The of carbohydrate and fat contents from the menu shown in
Table 4 were used for calculation of the initial quantities of glucose and triglycerides and
the calculation was made individually for each meal. In addition to the changes in the
concentration of plasma glucose concentration, plasma insulin, plasma non-esterified fatty
acids and plasma endogenous lipoprotein triglycerides were monitored over a period of
500 min. Obtained results are presented in Figure 4.
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Figure 3. CellDesigner model of hepatic lipid metabolism model.

According to Cruz et al. [43], after food intake, there is a glucose increase in the blood,
given that glucose is absorbed in the intestines, from where it spreads through the blood
to other peripheral tissues. Blood glucose concentration in healthy individuals should
be between 4.9 and 6.9 mmol/L [43]. Figure 4(a1–a4) clearly shows an initial increase in
blood glucose depending on the initial concentration of glucose in a particular meal. The
concentration stabilizes at around 240 min. It can also be seen that Breakfast 2 (Figure 4(a1)),
which is extremely rich in carbohydrates, i.e., glucose (Table 4), leads to a fast increase
in blood glucose, after which the concentration decreases. The same can be observed in
Figure 4(a2) with Lunch 2 and Lunch 4.
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Figure 4. Results of hepatic lipid metabolism model simulations in CellDesigner software.
(a1–a4) plasma glucose concentration, (b1–b4) plasma insulin concentration, (c1–c4) plasma non-
esterified fatty acid concentration, (d1–d4) plasma endogenous lipoprotein triglycerides. Initial
concentration for different meals (1) breakfast, (2) lunch, (3) snack and (4) dinner according to dif-
ferent menus (—) Menu 1, (—) Menu 2, (—) Menu 3, (—) Menu 4. (�) experimental data for plasma
glucose concentration from Yoshizame et al. [44], (�) experimental data for plasma insulin concentra-
tion from Yoshizame et al. [44] (•) experimental data for plasma concentration of triacylglycerol from
Sarabhai et al. [45].

Insulin is a hormone whose action is influenced by glucose. After food intake, insulin
is secreted from the β-cells of the pancreas. The role of insulin is to distribute glucose from
the blood to peripheral tissues [46]. The insulin secretion curve has two characteristic parts:
the first part, which is characterized by a rapid rise in insulin concentration after which it
disappears after several minutes, and the second part, which lasts longer, that stabilizes
and slowly decreases insulin concentration [47]. Such nature of insulin behavior can also
be observed in Figure 4(b1–b4). Immediately after food intake, there is a large increase
in the concentration of insulin in the blood, then stabilization of the concentration occurs
and, finally, a slight decrease in the concentration can be observed. In Figure 3, it can also
be observed that a higher concentration of glucose in the blood causes a longer action of
insulin before the concentration decreases and stabilizes.
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The influence of dietary triglycerides on insulin secretion was studied by
Bermudez et al. [48]. According to their research, monounsaturated fatty acids such
as oleic acid have a positive influence on insulin sensitivity, and saturated fatty acids such
as palmitic acid have a negative influence. In addition to the concentration of triglycerides
in an individual meal, the type of fatty acids from which the triglycerides themselves
are made is also important. Consistency with experimental data from the research of
Cruz et al. [43] was also confirmed in the example of non-esterified fatty acids (ANB). Ini-
tially, in response to food intake and insulin action, there is a decrease in ANB concentration.
Insulin inhibits the action of the enzyme lipase, which is responsible for the formation
of ANB [49]. Figure 4(c1–c4) clearly shows that after food intake, there is a decrease in
ANB concentration. By comparing subfigures in Figure 4(b1–b4), which present changes in
insulin concentration and changes in ANB concentration, the mentioned dependence of ANB
concentration on insulin concentration can be observed. When the insulin concentration
decreases, the ANB concentration increases and vice versa. This is clearly visible in the
examples of Breakfast 1, Lunch 1 and Snack 1.

The largest proportion of fat that we consume in food refers to triglycerides (TAG).
Triglycerides must be broken down to fatty acids to become available for absorption in
the intestinal epithelium. After that, triglycerides are again resynthesized in the intestinal
epithelium, and are then incorporated into lipoprotein particles called chylomicrons. Then,
chylomicrons are released into the lymph and then into the blood, where they transport
triglycerides to peripheral tissues [42]. Figure 4(d1–d4) shows the behavior of triglycerides
in the blood during the 500 min following a meal. This behavior is in accordance with the
stated theoretical facts; first, there is a slight increase in the concentration of triglycerides,
which, after some time, begins to decrease and later returns to the initial value. The
concentration of triglycerides after a meal is directly dependent on the amount of ingested
fat [50]. The biggest increase in triglyceride concentration is caused by meals with the
highest TAG content. The higher the proportion of triglycerides in the meal, the longer it
takes for the concentration to return to the initial value.

The hepatic lipid metabolism model simulation results for CellDesigner were compared
with available experimental data from the literature. The simulation results for glucose
and insulin dynamic change were compared with the data given by Yoshizame et al. [44],
where the time course of blood glucose and insulin levels were dynamically measured after
ingestion of 25 g of trehalose or glucose among 20 participants in the study. Furthermore,
simulation results for the plasma endogenous lipoprotein triglycerides were compared
with the experimental data presented by Sarabhai et al. [45], where plasma concentration
of triacylglycerol was measured among 16 volunteers after receiving single meals contain-
ing safflower oil, palm oil or other natural vehicles for stabilizing and storing biological
lipophilic compounds. The obtained simulation results follow the trend of the experimental
data well, especially for the glucose concentration. The biggest difference between the used
experimental data and model simulation results was noticed for the plasma endogenous
lipoprotein triglyceride concentration change, due to different meal compositions used for
obtaining experimental data and the model simulation. However, based on the presented
results, it can be concluded that mathematical modeling can be efficiently used for the
prediction of metabolite profiles.

3.3. Non-Stationary Global Sensitivity Analysis

Mathematical models make it possible to integrate information collected from different
sources using common mathematical methods. By increasing the availability of information
about the metabolic activity of an organism through the application of advanced molecular
techniques, the complexity of the proposed mathematical models also increases [51]. Math-
ematical models of biological systems are most often derived in the form of differential
equations that describe the changes in a single variable over time [52]. When developing
models of biological systems, the biggest challenge is the choice, that is, the estimation
of model parameter values (maximum reaction rates, saturation constants, etc.). Due to
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still-existing experimental limitations, it is sometimes impossible to estimate the real value
of a particular model parameter, so the accuracy of the selected model parameter value
is often questionable. This problem is particularly related to parameters that describe the
kinetic expressions of enzyme-catalyzed reactions. Specifically, the estimation of parameter
values of kinetic models of enzyme-catalyzed reactions is usually carried out on the basis of
data collected in in vitro experiments, and often, in vitro conditions do not simulate in vivo
conditions with complete accuracy [14]. In order to examine the influence of a change in the
value of a model parameter on the selected output variables, parametric sensitivity analy-
sis techniques are applied. The analysis of local parametric sensitivity is based on small
changes in the value of an individual parameter, while the values of other parameters are
constant [53]. On the other hand, the analysis of global parametric sensitivity includes the
analysis of the impact of changes in the values of all model parameters simultaneously [31].

In this work, global parametric sensitivity analysis was performed using Fourier
analysis (Fourier amplitude sensitivity test, FAST). The FAST method assumes that each
parameter in the mathematical model is statistically independent of other parameters. Each
parameter is varied at different frequencies and the output amplitudes are measured [54].
Global sensitivity coefficients were estimated for all 24 model variables and 45 reactions
for two different initial concentrations of glucose and triglycerides according to designed
menus for Lunches 1 and 2. Global sensitivity coefficients were estimated at five different
time intervals (tf = 10, 50, 100, 200 and 500 min) to define the control change over time.
The global sensitivity coefficients are marked with colors: green indicating low values
of sensitivity coefficients, and red indicating high values of global sensitivity coefficients
based on the data distribution at the percentile curve.

3.3.1. Global Sensitivities of the Model Metabolites

Based on the results of metabolites’ global sensitivities for the model simulation
according to initial concentrations from Menu 1 and Menu 2 (Figures 5 and 6), it can be
noticed that estimated values of sensitivities are in the range for 1.750 × 10−5 to 0.895 for
Menu 1 and in the range from 6.000 × 10−5 to 0.986 for Menu 2. Furthermore, changes
in the model control over time can be observed. Throughout time, model parameters’
sensitivity coefficients change with different dynamics.

Some sensitivity coefficients’ values increase over time, while some decrease. Fur-
thermore, some similarities can be observed. Numerically, the largest values of sensitivity
coefficients (values over 0.80) were obtained for βL (liver glycogenolysis rate) and k11
(basal insulin secretion rate) for both combinations of initial conditions. βL is a kinetic
constant included in the description of liver glycogen balance. It describes the rate of
liver glycogen release and conversion to glucose-6-phosphate inhibited by insulin. k11 is
included in insulin balance and it describes the glucose-stimulated insulin production.
Using initial concentrations based on Menu 1 and Menu 2 for model simulation, high
values of sensitivity coefficients were calculated for free fatty acid concentration in the
liver (AL), free fatty acid concentration in muscle (AM), free fatty acid concentration in
adipose tissue (AA), glucose concentration in adipose (GA), triglycerides in liver secretion
pool (TL), triglyceride concentration in blood plasma (TCB), free fatty acid concentration
in plasma (ANB) and endogenous triglyceride concentration in plasma (TLB) at tf = 10,
50, 100 and 250 min. At tf = 500 min, changes in βL and k11 values mostly affected TCB
and TLB concentrations for initial conditions based on the keto diet menu (Figure 5e) and
additional TL for initial conditions based on the general population menu (Figure 6e). It
is also important to mention that results show global sensitivity coefficients for YM and
TM over the 50th percentile of calculated coefficients (marked yellow) for all parameters
at tf = 10, 50, 100 and 250 min for Menu 1 (Figure 5a–d). For Menu 2, global sensitivity
coefficients for YM, TM and TA were over the 50th percentile of calculated coefficients for
all analyzed model parameters at all five time points, indicating that those variables are the
most sensitive part of the model (Figure 6a–e).
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GA, TCB, ANB, TLB, GB. The global sensitivity coefficients are marked with colors: green indicating
low values of sensitivity coefficients, and red indicating high values of global sensitivity coefficients
based on the data distribution at the percentile curve.

Changes in the concentration of plasma glucose, plasma insulin, plasma non-esterified
fatty acids and plasma endogenous lipoprotein triglycerides were analyzed in the previous
section, so it was considered important to discuss the sensitivities of the selected model
variables. As described before, ANB and TLB were mostly sensitive to variations in βL
and k11 values for both menus at all five analyzed time points. Furthermore, changes
in control were noticed for GB and I. For Menu 1 (keto diet), GB concentration is mostly
sensitive to βL, k11 and kaa (rate of adipose free fatty acid esterification to triglycerides)
values at tf = 10 min (Figure 5a). Prolonging the simulation time to tf = 50, 100, 250
and 500 min, results showed that GB concentration is mostly sensitive to β6 (rate of liver
de novo lipogenesis form pyruvate), βM (muscle glycogenolysis rate), k10 (affinity for
hydrolysis of triglycerides to secretory pool) and k14 (basal very low-density lipoprotein
1 secretion fraction) (Figure 5b,e). A similar observation was noted for I concentration: at
tf = 10 min (Figure 5a), the I concentration is mostly sensitive to β6 (rate of liver de novo
lipogenesis from pyruvate), βL, βM (muscle glycogenolysis rate), k10 (affinity for hydrolysis
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of triglycerides to secretory pool), k11 and k14 (basal very low-density lipoprotein 1 secretion
fraction), while at tf = 50, 100, 250 and 500 min, results showed that the I concentration
was most sensitive to β6, βM, k10 and k14 (Figure 5b,e). Moreover, for Menu 2 (general
population diet) at tf = 10 min (Figure 6a), GB concentration is mostly sensitive to βL, and
k11 values, but prolonging the simulation time to tf = 50, 100, 250 and 500 min, results
showed that GB concentration becomes mostly sensitive to β6, βM, k10 and k14 (Figure 6b,e).
At tf = 10 min, the I concentration is mostly sensitive to β6, µ3 (rate of muscle glucose-
6-phospahe usage) and kcm (muscle free fatty acid uptake of chylomicron triglycerides)
(Figure 6a), while results showed that the I concentration was the most sensitive to β6, βM,
k10 and k14 at tf = 50, 100, 250 and 500 min (Figure 5b,e).
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Figure 6. Global sensitivities of hepatic lipid model metabolites (initial conditions for simulations
according to Menu 2): (a) tf = 10 min, (b) tf = 50 min, (c) tf = 100 min, (d) tf = 250 min, (e) tf = 500 min.
Rows: βG, β6, βf, βl, βm, µAMP, µe, µs, µ1, µ2, µ3, µ4,c0, cc, dBA, k10, k11, k12, k13, k14, k22, k5, k6, k6l, k6p,
k7, k8, k9, k9a, ka, kaa, kai, kal, kba, kbl, kbm, kcl, kcm, kd, kdl, kdy, kft, kga, kgi, kgl, kgl2, kgm, kgm2, kgp, klp,
kLG, kLH, kMH, kna, kp, kp6, kpp, kr, kre, kt, kyl, kym, lmax, mmax, vmin, v10, v12, v6, v8, v9, vLG, vLH, vMH,
y0, αG, αF, ms, me. Columns: I, GL, YL, PL, RL, AL, SL, TL, GM, YM, PM, RM, AM, TM, P, TA, AA, LA,
GA, TCB, ANB, TLB, GB. The global sensitivity coefficients are marked with colors: green indicating
low values of sensitivity coefficients, and red indicating high values of global sensitivity coefficients
based on the data distribution at the percentile curve.

3.3.2. Global Sensitivities of the Model Reactions

Global sensitivities of hepatic lipid metabolism models are given in Figures 6 and 7. It
can be noticed that estimated values of global sensitivities are in the range from 5.530 × 10−7

to 0.986 for Menu 1 (Figure 7) and in the range from 6.000 × 10−7 to 0.986 for Menu 2
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(Figure 8). As for the model metabolites, model reaction changes in the model control
were observed over time. Similar to the model metabolites, numerically, the largest values
of sensitivity coefficients (values over 0.75) were obtained for βL and k11 and, addition-
ally, for β6 for both initial conditions (Figures 7 and 8). Results showed that the largest
global sensitivities were obtained for variations in βL, k11 and β6 values for both menus
for the following reactions: (i) v16 (uptake of exogenous plasma triglycerides into liver free
fatty acids), (ii) v17 (free fatty acid transport from plasma to liver), (iii) v18 (free fatty acid
synthesis form plasma endogenous triglycerides), (iv) v24 (rate of triglyceride release into
plasma), (v) v32 (uptake of exogenous plasma triglycerides into muscle free fatty acids),
(vi) v34 (rate of endogenous triglyceride release into plasma), (vii) v38 (uptake of plasma
exogenous triglycerides by adipose tissue), (viii) v39 (uptake of plasma endogenous triglyc-
erides into adipose free fatty acids), (ix) v44 (rate of complete uptake of plasma exogenous
triglycerides by adipose tissue) and (x) v45 (adipose tissue uptake of exogenous triglyc-
erides from plasma). Additionally, a sensitivity coefficient over 0.75 was obtained for the
influence of β6 on v43 (fat input form the diet). The obtained result confirms the statement
by Pratt et al. [35] where they describe that under conditions of heightened insulin, the liver
accumulates glucose in form of glycogen (glycogenesis) for later use, and during times of
low insulin, the liver decomposes glycogen to glucose (glycogenolysis).

Furthermore, it can also be noticed that for simulations with initial conditions accord-
ing to Menu 1 (Figure 7), only global sensitivity coefficients for v19 were over the 50th
percentile of calculated coefficients (marked yellow) for all parameters at tf = 100 min
(Figure 7c). With described initial conditions at tf = 100 min, the highest sensitivities for
reaction v19 were estimated for βL (0.617), ka (0.603) and βM (0.157), indicating that triglyc-
eride storage conversion to free fatty acids in the liver mostly depends on the release of liver
glycogen, uptake of plasma triglycerides by adipose tissue and conversion of glycogen into
glucose-6-poshate in muscles. Obtained results present complex inter-relations that cannot
be noticed by analyzing model balances alone, since global sensitivity analysis revealed
important influences of specific parameters that are directly included into selected balances.
In case of simulations with initial conditions according to Menu 2, global sensitivity coeffi-
cients for v1 and v2 were over the 50th percentile of calculated coefficients at tf = 10 min
(Figure 8a) and for v19 at tf = 100 min (Figure 8c). Results showed that v1 and v2, reactions
describing glucose-stimulated insulin production and insulin degradation, were mostly
sensitive to β6, βM, k10 and k14, while v19 was mostly sensitive to changes in βM and ka,
which is similar for the simulations with initial conditions according to Menu 1 (0.157).

Furthermore, the sensitivities of the reactions included into plasma glucose, plasma in-
sulin and plasma non-esterified fatty acids and plasma endogenous lipoprotein triglyceride
balances were analyzed in detail. Hepatic lipid metabolism describes the plasma glucose
change with glucose flux to plasma from the liver (v4), glucose flux from plasma to the liver
(v5), insulin-stimulated glucose transport between plasma and muscle (v25) and glucose
transport between plasma and adipose tissue (v42). For all four listed reactions, with both
initial conditions, changes in control were noticed over the time frame. For example, v4
for both menus was mostly sensitive to k22, βL and k11 at tf = 10 min (Figures 7a and 8a),
while at tf = 50, 100, 250 and 500 min, β6, βM, k10 and k14 (Figures 7b,e and 8b,e) became
the most important parameters. Results also showed that the highest global sensitivities for
v5, v25 and v42 were obtained for βL and k11. Insulin concentration change was described
by glucose-stimulated insulin production (v1) and insulin degradation (v2). Gradually,
both reactions with both indicial concentrations were mostly sensitive to β6, βM, k10 and
k14. Plasma free fatty acid concentration was specified by free fatty acid uptake from
plasma into muscle (v33), free fatty acid transport from plasma to the liver (v17), uptake of
plasma free fatty acids into adipose free fatty acids (v40), release of adipose triglycerides
to plasma free fatty acids (insulin-inhibited) (v37) and adipose tissue uptake of exogenous
triglycerides from plasma (v45). Global sensitivity analysis showed that for both menus,
the highest sensitivities for v33, v17, v40 and v45 were obtained for βL and k11 at all times
point (Figures 7 and 8). However, it is also important to mention that values of sensitivities
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for v33, v17 and v40 decrease over time, while those for v45 were constant. Furthermore,
endogenous plasma triglyceride concentration was modeled, taking into account the se-
cretion of triglycerides from the liver (v24), export of triglycerides from the secretory pool
to plasma (v23), liver uptake of triglycerides as free fatty acids (v18), uptake of plasma en-
dogenous triglycerides into muscle free fatty acids (v34) and uptake of plasma endogenous
triglycerides into adipose free fatty acids (v39). Obtained results showed that all reactions
except v23 were mostly sensitive to changes in values of βL and k11 for both menus and at
all time intervals.
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This study examined the influence of input parameter uncertainty on the variance
of metabolic model predictions. The majority of the propagated uncertainty is due to the
interactions of numerous factors rather than being linear from one parameter to one result
as previously presented by Quang et al. [51].

4. Conclusions

This study looked at the overall impact of input parameter uncertainty on the metabolic
model’s prediction variance. Instead of being linear from one parameter to one answer,
the preponderance of the uncertainty that is spread results from the interactions of several
other components. The obtained findings demonstrated that the model control varied
depending on the various beginning concentrations as well as how the model control
changed over time.
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