Table 1.
Drug Name | Year | First Author | Setting | Sample Size | Interaction with Gut Microbiome | Ref |
---|---|---|---|---|---|---|
Irinotecan (CPT-11) | 2015 | Wallace, BD | Preclinical | / | Intestine bacteria producing β-glucuronidase can convert non-toxic CPT-11 metabolite (SN-38-G) to toxic metabolite (SN-38), causing diarrhea. | [23] |
Irinotecan (CPT-11) | 2008 | Stringer, AM | Preclinical, rats | / | ↑ number of β-glucuronidases-expressing species. | [24] |
Cyclophosphamide | 2013 | Viaud, S | Preclinical | / | Translocation of specific Gram-positive bacteria from the intestine to secondary lymphoid organs was critical for the differentiation of CD4+ T cells into Th1 and Th17 cells. | [25] |
Cyclophosphamide | 2015 | Xu, X | Preclinical | / | ↑ Firmicutes, ↓ Bacteroidetes. | [26] |
L-asparaginase | 2021 | Dunn, KA | Pediatric ALL | 12 patients | ↑ Escherichia in the community if decreased-activity, ↑ Bacteroides and Streptococcus in the community if increased-activity. | [27] |
Anti-PD1 | 2018 | Gopalakrishnan, V | Adults, melanoma | 112 patients | ↑ α-diversity of responders to anti-PD1 therapy. Higher proportion of Ruminococcaceae, Faecalibacterium, and Bifidobacterium spp. reported in responders. | [28] |
Anti-PD1 | 2018 | Routy, B | Mice, Adults | Mice, 249 treated | ↑ Akkermansia, Ruminococcus spp., Alistipes spp., and Eubacterium spp in responders. ↓ Bifidobacterium adolescentis, B. longum, and Parabacteroids distasonis in responders. |
[29] |
Cyclosporine | 2019 | Jia et al. | Preclinical | 8 treated | ↑ gut microbial richness, Enterobacteriaceae. ↓ F. prausnitzii, Clostridium clusters I and XIV. | [30] |
Cyclosporine | 2020 | O Reilly et al. | Adults | 6 ex vivo, 8 in vivo | No significant α and β diversity before and after treatment. | [31] |
Tacrolimus | 2017 | Zhang et al. | Mice | 8 treated | No change in bacterial richness and diversity. ↑ genera Allobaculum, Bacteroides and Lactobacillus. ↓ Clostridiales, Ruminococcaceae, Rikenella, Ruminococcaceae and Oscillospira. |
[32] |
Tacrolimus | 2017 | Bhat et al. | Mice | 5 treated | ↓ Mollicutes, Micrococcaceae, Actinomycetales, Roseburia, Oscillospira, Rothia and Staphylococcus. ↑ A. muciniphila. | [33] |
Tacrolimus | 2018 | Toral et al. | Mice | 8 treated | ↓ microbial diversity. ↑ Firmicutes/Bacteroidetes ratio. |
[34] |
Tacrolimus | 2018 | Jiang et al. | Mice | 8 high dosage, 8 medium dosage, 8 low dosage | Intermediate dose: ↑ Bifidobacterium, Faecalibacterium prausnitzii ↓ less Enterobacteriaceae, Bacteroides-Prevotella Low and high doses: ↑ Enterobacteriaceae ↓ Bifidobacterium, Faecalibacterium prausnitzii. |
[35] |
MMF | 2018 | Flannigan et al. | Mice | 9 treated | ↓ overall diversity ↑ Proteobacteria (Escherichia/Shigella), Deferribacteres, Firmicutes ↓ Bacteroidetes and Verrucomicrobia phyla, Akkermansia, Parabacteroides and Clostridium genera. |
[36] |
Rapamycin | 2017 | Bhat et al., | Mice | 5 treated | ↓ bacterial diversity. ↓ Roseburia, Oscillospira, Mollicutes, Rothia, Micrococcaceae, Acninomycetales and Staphylococcus. |
[33] |
Rapamycin | 2016 | Jung et al. | Mice | 5 treated | ↓ Turicibacter, unclassified Marinilabiliaceae, Alloprevotella. ↑ Ruminococcus. | [37] |
Alemtuzumab | 2013 | Li et al. | Monkeys | 15 treated | ↑ Enterobacteriales order and Prevotella genus. ↓ Lactobacillales order. |
[38] |
Steroids | 2014 | Lee et al. | Humans | 4 treated | ↓ Clostridiales ↑ Erysipelotrichales. |
[39] |
Steroids | 2016 | Tourret et al. | Mice | 8–10 treated | ↑ Firmicutes/Bacteroidetes ratio ↓ Clostridium sensu stricto. |
[40] |
Steroids | 2017 | Wu et al. | Mice | 30 lower dose, 30 higher dose | ↓ bacterial richness and diversity. ↓ Firmicutes, Bacteroides, Actinobacteria, α and γ Proteobacteria, Clostridiales and Lactobacillus. ↑ Proteobacteria. |
[41] |
Steroids | 2019 | He et al. | Mice | 10 treated | ↓ Proteobacteria, Deferribacteres, Rikenella, Mucispirillum, Oscillospira and Bilophila. ↑ Prevotella and Anaerostipes. |
[42] |
Steroids | 2020 | Vich Vila et al. | Adults | 17 treated | ↑ Methanobrevibacter smithii and Streptococcus salivarius. | [43] |
PPI | 2016 | Jackson et al. | Adults | 1827 | ↓ diversity in PPI users. ↑ Lactobacillales order, families Micrococcaceae and Streptococcaceae, genera Rothia and Streptococcus, species Rothia mucilaginosa and Streptococcus anginosus. ↓ families Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, genera Firmicutes, species Erysipelotrichales and Clostridiales. |
[44] |
PPI | 2015 | Imhann et al. | Adults | 99 treated | ↓ species richness and ↓ Shannon diversity, although not significant. ↑ Gammaproteobacteria class, Actinomycetales order, families Streptococcaceae and Micrococcaceae, genera Rothia, Streptococcus and Veilonella, species Lactobacillus salivarius. |
[45] |
PPI | 2015 | Freedberg et al. | Adults | 12 treated | No changes in diversity. ↑ families Enterococcaceae, Streptococcaceae, Micrococcaceae and Staphylococcaceae. ↓ Clostridiales. |
[46] |
PPI | 2015 | Tsuda et al. | Adults | 18 treated | No changes in α diversity, increased β diversity. ↓ genus Faecalibacterium. |
[47] |
PPI | 2020 | Vich Vila et al. | Adults | 108 treated | ↑ species Veillonella parvula, Streptococcus salivarius, Streptococcus parasanguinis, Streptococcus vestibularis, Bifidobacterium dentium, Haemophilus parainfluenzae. | [43] |
PPI | 2021 | Simakachorn et al. | Pediatrics | 20 treated | No significant change in α and β diversity. No change in total number of species-level taxonomy categories. |
[48] |
UDCA | 2018 | Pearson et al. | Adults | 661 treated | No change in microbial richness. ↑ Streptocuccus, Escherichia and Bilophila spp., Faecalibacterium prausnitzii; ↓ Fusobacterium spp., Ruminococcus gnavus. |
[20] |
UDCA | 2018 | Tang et al. | Adults | 60 treated | ↑ Enterobacteriaceae. | [49] |