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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with a five-year
survival rate of approximately 5–10%. The immune checkpoint blockade represented by PD-1/PD-L1
inhibitors has been effective in a variety of solid tumors but has had little clinical response in
pancreatic cancer patients. The unique suppressive immune microenvironment is the primary reason
for this outcome, and it is essential to identify key targets to remodel the immune microenvironment.
Some B7 family immune checkpoints, particularly PD-L1, PD-L2, B7-H3, B7-H4, VISTA and HHLA2,
have been identified as playing a significant role in the control of tumor immune responses. This
paper provides a comprehensive overview of the recent research progress of some members of
the B7 family in pancreatic cancer, which revealed that they can be involved in tumor progression
through immune-dependent and non-immune-dependent pathways, highlighting the mechanisms of
their involvement in tumor immune escape and assessing the prospects of their clinical application.
Targeting B7 family immune checkpoints is expected to result in novel immunotherapeutic treatments
for patients with pancreatic cancer.

Keywords: B7 family; pancreatic ductal adenocarcinoma; immune checkpoint; cancer immunotherapy;
novel targeted immunotherapies

1. Introduction

Despite the advancements in conventional systemic therapy, PDAC is one of the most
aggressive cancers, with a 5-year survival rate approaching 5–10% in 2020 [1,2]. In 2021,
it became the third leading cause of cancer-related mortality and is projected to overtake
lung cancer as the second leading cause by 2030 [3]. Since most patients (80–85%) have
locally advanced or metastatic cancer at first diagnosis, conventional chemotherapy based
on drugs such as fluorouracil and gemcitabine remain the main treatment for patients
with PDAC. Metastatic PDAC has a median overall survival (OS) of less than a year, and
locally-progressing unresectable PDAC is only marginally better [4,5].

PDAC patients account for over 90% of all cases of pancreatic cancer. The majority
of PDAC originate from pancreatic intraepithelial neoplasias, which advance through the
acquisition of genetic changes and culminate in the formation of overt PDAC. A minority of
PDAC arises from cystic neoplasms [4]. PDAC is characterized histologically by a severely
desmoplastic tumor microenvironment (TME), which comprises around 70% of tumor
tissue. This fibrotic milieu is produced by cancer-associated fibroblasts (CAFs) [6]. The
TME of PDAC consists of immune cells, CAFs, neurons, vessels, and extracellular matrix
components such as collagen, fibronectin, and hyaluronic acid [7].

Over the past decade, inhibiting the PD-L1/PD-1 pathway has shown promising
results. Although good clinical responses have been achieved in some solid and hemato-
logic tumors, such as melanoma and non-small cell lung cancer (NSCLC), PDAC is mostly
resistant to immunotherapies [8]. The profoundly immunosuppressive TME of PDAC
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should be primarily responsible for this outcome, as regulatory T cells (Treg), myeloid-
derived suppressor cells (MDSC), and numerous M2 tumor-associated macrophages (TAM)
infiltrate the TME and inhibit the migration and activation of T cells [6,9]. In addition to the
regulatory immunological signature, an effector immune infiltrate, including CD3, CD4,
and CD8 T cells, is also present in PDAC [10,11]. The B7 family is an immunoglobulin
superfamily, and secondary signaling for T cell activation is dependent on the B7 family.
Immune checkpoints of the B7 family play a key role in regulating the critical bidirectional
signals that drive T cell activation and self-tolerance. The B7 family can produce positive
signals to initiate and sustain T cell activity as well as negative signals to regulate and
inhibit T cell responses. Ultimately, the T cell immune response is determined by the equi-
librium between co-stimulatory and co-inhibitory signals [12,13]. The T cells that infiltrate
the TME of PDAC interact with tumor cells (TCs) and immunosuppressive cells, exhibiting
an “exhausted” phenotype. When the PD-1/PD-L1 pathway is disrupted, clinical trials
show no clinical effect on PDAC, indicating that T cells’ anti-tumor function cannot be
restored. This disappointing result demonstrates the urgent need to discover more novel
immune checkpoints in the TME of PDAC [14,15].

The B7 family members have attracted much attention due to their crucial roles in immune
evasion and tumorigenesis, and a variety of preclinical and clinical treatments have been
established based on them. To date, the B7 family consists of 11 members: B7-1 (CD80), B7-2
(CD86), B7-H1 (PD-L1, CD274), PD-L2 (PDCD1LG2, B7-DC, CD273), B7-H2 (CD275, ICOS-L,
B7RP1), B7-H3 (CD276), B7-H4 (B7x, Vtcn1, B7S1), VISTA (B7-H5, GI24, DD1α, SISP1), B7-H6
(NCR3LG1), HHLA2 (B7-H7), and ILDR2 [13]. It has been shown that some B7 family members
receive multiple signaling pathways and are widely expressed on a variety of different cell
surfaces in the TME of PDAC. Some molecules belonging to the B7 family in the TME of PDAC
have been proven to not only regulate the activation or suppression signals of immune cells but
also participate in tumor development, invasion, drug resistance, and epithelial-mesenchymal
transition (EMT) independent of their immune functions [12,16–19].

This review provides a summary of recent developments in several members of the
B7 family in PDAC, including PD-L1, PD-L2, B7-H3, B7-H4, VISTA, and HHLA2. Figure 1
shows these molecules in the TME, highlighting the relationship between these molecules
and immune cells in the TME of PDAC. Exploring and summarizing the biological functions
of these potential therapeutic targets and their unique roles in PDAC is expected to provide
new insights into the development of immunotherapies for pancreatic cancer.
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Figure 1. The B7 family members in the TME of PDAC. The B7 family members are widely expressed in
the TME of PDAC, and this diagram mainly depicts the expression of these molecules in the TME, briefly
describing how these molecules are involved in the interaction between tumor cells and immune cells and
emphasizing their major role in the antitumor immune response. The dashed line indicates a major role as
an immune suppressor, and the solid line indicates a major role in PDAC as an immune activator.
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2. PD-L1

This programmed cell death ligand 1 (PD-L1), which belongs to the B7 family, is
a ligand for PD-1 found in a variety of tumors. A high expression level of PD-L1 is
found primarily in TCs but can also be found in epithelial cells, macrophages, dendritic
cells, lymphocytes, etc., in the TME of PDAC [20,21]. PD-1 is predominantly expressed in
activated lymphocytes. The PD-1 and PD-L1 signaling pathways can suppress the activation
of immune cells and induce T cell apoptosis, leading to the exhaustion of activated immune
cells and promoting the infiltration of Tregs [22]. Soluble PD-L1, which is a type of PD-L1,
is detected in the blood of some patients with PDAC and has predictive significance [23,24].
Multiple studies have demonstrated the association between a high expression level of
PD-L1 in patients with PDAC and a poor prognosis [21,22,24].

Immune checkpoint monoclonal antibody (mAb) inhibitors targeting PD-1/PD-L1
have achieved higher objective response rates (ORR) with very few adverse events in
patients with hematological tumors and numerous solid tumors, such as NSCLC, gastric
cancer, and melanoma, by disrupting the immunosuppressive microenvironment and
reactivating T cells [8,25,26]. However, the benefit of PD-1/PD-L1 inhibitors alone in
patients with PDAC is limited due to the complex TME, which exhibits an immunosup-
pressive immune “desert” phenotype [27]. In a phase I multicenter study in 2012 that
included 207 cancer patients to receive an anti-PD-L1 antibody, no objective response
was observed in 14 patients with PDAC [28]. To overcome resistance to PD-1/PD-L1
inhibitors and combine different anti-tumor treatment mechanisms, clinical researchers are
combining PD-1/PD-L1 inhibitors with chemotherapy, radiotherapy, targeted therapy, or
other immunotherapies [28]. Multiple therapeutic strategies that are being evaluated are
summarized in Table 1.

Table 1. Ongoing clinical trials targeting B7 family members in PDAC.

Agent/Drug Combination Regimens Targets Phase Number
Enrolled Trial ID Primary Outcome(s)

Pembrolizumab

Cyclophosphamide
+ GVAX + SBR PD-1 II 58 NCT02648282 DMFS

Defactinib PD-1 I/II 59 NCT02758587 AEs, DLTs, MTD

Cyclophosphamide
+ GVAX + IMC-CS4 PD-1 Early I 12 NCT03153410 CD8 T cell density, AEs

Epacadostat + CRS-207
+ CY + GVAX PD-1 II 40 NCT03006302 DMFS

Olaparib PD-1 II 20 NCT05093231 ORR

Cabozantinib PD-1 II 21 NCT05052723 PFS

Defactinib PD-1 II 36 NCT03727880 pCR rate

ENB003 PD-1 I/II 130 NCT04205227 ORR, TRAEs

ONC-392 PD-1 I/II 468 NCT04140526 DLT, MTD, TRAEs, RP2D

Tadalafil
Ipilimumab

CRS-207
PD-1 II 20 NCT05014776 ORR

PEGPH20 PD-1 II 35 NCT03634332 PFS

Lenvatinib PD-1 II 590 NCT03797326 ORR (initial), ORR (expansion),
AEs, Discont due to AE

V941 PD-1 I 100 NCT03948763 DLTs, AEs

CPI-006 + ciforadenant PD-1 I 378 NCT03454451 Incidence of DLTs, TRAEs; MDL

INT230-6
+ anti-CTLA-4 antibody PD-1 I/II 110 NCT03058289 TRAEs

BCA101 PD-1 I 292 NCT04429542 DLTs, safety, tolerability
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Table 1. Cont.

Agent/Drug Combination Regimens Targets Phase Number
Enrolled Trial ID Primary Outcome(s)

Spartalizumab
Siltuximab PD-1 I/II 42 NCT04191421 MTD

Canakinumab injection +
nab-paclitaxel + gemcitabine PD-1 I 10 NCT04581343 RP2/3D

Dostarlimab Niraparib PD-1 II 20 NCT04493060 DCR

Sintilimab
Gemcitabine +

Albumin-paclitaxel PD-1 II 20 NCT05346146 % R0 resection

Surufatinib + AG PD-1 II 32 NCT05481476 ORR

Toripalimab
Anlotinib + Nab-paclitaxel PD-1 II 53 NCT04718701 PFS

YH003 + Nab-paclitaxel +
Gemcitabine PD-1 II 129 NCT05031494 ORR

Camrelizumab

Nab paclitaxel + Gemcitabine
Injection PD-1 II 117 NCT04498689 ORR, PFS

Chemotherapy + Ablation PD-1 Not
Applicable 34 NCT04420130 6-month PFS rate

Surufatinib + nab-paclitaxel
+ S-1

gemcitabine
PD-1 II 68 NCT05218889 DLTs, ORR, RP2D

Paclitaxel (Albumin Bound) +
Gemcitabine + Placebo PD-1 III 401 NCT04674956 PFS

Apatinib PD-1 II 48 NCT04415385 ORR

Capecitabine PD-1 I 20 NCT04932187 AEs

Nivolumab

Tadalafil + oral vancomycin PD-1 II 22 NCT03785210 BOR

Recombinant Human
IL12/15-PDL1B Oncolytic
HSV-1 Injection (Vero Cell)

PD-1 I/II 51 NCT05162118 DCR (phase 2), MTD, AEs, DLT
(phase 1), RP2D (phase 1)

Cyclophosphamide +
Ipilimumab + GVAX Pancreas

Vaccine + CRS-207
PD-1 II 63 NCT03190265 ORR

Ipilimumab + Stereotactic body
radiation therapy + Low dose

irradiation
PD-1 I 10 NCT05088889 ORR

Nivolumab

Anetumab Ravtansine +
Gemcitabine Hydrochloride +

Ipilimumab
PD-1 I/II 74 NCT03816358 MTD

Irreversible Electroporation
(IRE) + Toll-Like Receptor 9 PD-1 I 18 NCT04612530 Safety

Irreversible electroporation
(IRE) PD-1 II 12 NCT05435053 Safety, tolerability

SX-682 PD-1 I 20 NCT04477343 MTD

Cyclophosphamide + GVAX
Pancreas Vaccine + Stereotactic

Body Radiation (SBRT)
PD-1 II 30 NCT03161379 CD8 count in the TME

Cabiralizumab PD-1 I 313 NCT02526017 ORR, RD, Safety

AK105 Anlotinib PD-1 I/II 29 NCT04803851 DCR

Camrelizumab Paclitaxel (Albumin Bound) +
Gemcitabine PD-1 III 401 NCT04674956 PFS

Anti-PD-1 mAb PD-1 III 830 NCT03983057 PFS
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Table 1. Cont.

Agent/Drug Combination Regimens Targets Phase Number
Enrolled Trial ID Primary Outcome(s)

Anti-PD-1
antibody

Chemotherapy PD-1 III 110 NCT03977272 OS

Radiation PD-1 II 21 NCT03374293 Local control

SBRT PD-1 I 36 NCT03716596 OS

Radiotherapy + Gemcitabine +
cisplatin + Apatinib PD-1 150 NCT04365049 PFS

Durvalumab

Gemcitabine PD-L1 II 71 NCT03572400 DFS

Tremelimumab + Gemcitabine
+ Minimally Invasive Surgical

Microwave Ablation
PD-L1 II 20 NCT04156087 PFS

Olaparib + Radiation Therapy PD-L1 I 18 NCT05411094 DLTs

Radiotherapy +
Tremelimumab PD-L1 I 30 NCT02639026 Number of AEs

Gemcitabine + Nab-paclitaxel
+ Oleclumab PD-L1 II 30 NCT04940286 Incidence of AEs, RR

Romidepsin + Azacitidine +
nab-Paclitaxel + Gemcitabine

+ Lenalidomide capsule
PD-L1 I/II 75 NCT04257448 RDE, safety and tolerability

Capecitabine + Bevacizumab +
CV301 PD-L1 I/II 8 NCT03376659 PFS(4 and 8.5 month) RP2D

Oleclumab+gemcitabine +
nab-paclitaxel + oxaliplatin +

leucovorin + 5-FU
PD-L1 I/II 212 NCT03611556

Incidence of AEs, clinically
significant ECG abnormalities
and laboratory values, ORR

Tazemetostat PD-L1 II 173 NCT04705818 Assessment of
antitumor activity

Galunisertib PD-L1 I 37 NCT02734160 DLTs

Avelumab

Aldoxorubicin HCl + ALT-803
+ ETBX-011 + GI-4000 etc. PD-L1 I/II 173 NCT03387098 Incidence of AEs and SAEs,

ORR

ALT-803 + ETBX-011 +
GI-4000 + haNK etc. PD-L1 I/II 80 NCT03329248 Incidence of AEs and SAEs,

ORR

Aldoxorubicin HCl + ALT-803
+ ETBX-011 + ETBX-021 etc. PD-L1 I/II 173 NCT03586869 Incidence of AEs and SAEs,

ORR

Cyclophosphamide +
Oxaliplatin + Capecitabine +

5-Fluorouracil etc.
PD-L1 I/II 3 NCT03136406 Incidence of AEs and SAEs,

ORR

Atezolizumab

Cabozantinib PD-L1 II 29 NCT04820179 ORR or stable disease

KY1044 PD-L1 I/II 412 NCT03829501 Safety, tolerability, DLTs, ORR,
survival rate

FT500 + Nivolumab +
Pembrolizuma +

Cyclophosphamide etc.
PD-L1 I 37 NCT03841110 DLTs

RO7198457 + mFOLFIRINOX PD-L1 I 29 NCT04161755 Toxicity

MEDI4736 Tremelimumab PD-L1 II 64 NCT02527434 OR

SHR-1701
(PD-L1/TGF-β

bsAb)
PD-L1 I/II 56 NCT04624217 ORR, RP2D

Pembrolizumab
Cabozantinib (RKTs Inhibitor) PD-L2 II 21 NCT05052723 PFS

PEGPH20 PD-L2 II 35 NCT03634332 PFS

CD276 CAR-T
cells B7-H3 I/II 10 NCT05143151 ORR
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Table 1. Cont.

Agent/Drug Combination Regimens Targets Phase Number
Enrolled Trial ID Primary Outcome(s)

MGD009
(B7-H3/CD3 bsAb) B7-H3 I 67 NCT02628535 AEs

SGN-B7H4V
(B7-H4 ADC) B7-H4 I 375 NCT05194072 AEs, DLTs, laboratory

abnormalities

HS-20089
(B7-H4 ADC) B7-H4 I 177 NCT05263479 MTD

JNJ-61610588
(B7-H5 mab) VISTA I 12 NCT02671955

Markers of monocyte activation,
T-cell activation, immune

infiltration; total blood cell
counts; protein expression of

VISTA; DLTs; AEs; SAEs

DMFS, distant metastasis-free survival; AEs, adverse events; SAEs, serious AEs; DLTs, dose limiting toxicities;
MTD, maximum tolerated dose; ORR, objective response rate; PFS, progression-free survival; pCR rate, pathologic
complete response (pCR) rate; TRAE, rate of treatment related adverse events; RP2D, recommended phase 2
dose; MTD, maximal tolerated dose; BOR, best overall response; RD, recommended dose; DCR, disease control
rate; OS, overall survival; RR, major pathological response rate; RDE, recommended dose for expansion; TEAEs,
treatment-emergent AEs.

Although the combination of PD-1/PD-L1 inhibitors with chemotherapy, radiotherapy,
or targeted therapy did not produce the expected results in terms of progression-free sur-
vival (PFS) and OS, an overall improvement was observed in some clinical trials [29,30]. In
a phase Ib clinical trial, 12 patients with metastatic pancreatic cancer were treated with the
CD40 agonist APX005M (Sotigalimab, 0.1 mg/kg or 0.3 mg/kg on day 3 or 10), gemcitabine
(1000 mg/m2 on days 1, 8, and 15 every 4 weeks), and nab-paclitaxel (125 mg/m2 on days
1, 8, and 15 every 4 weeks) in combination with the anti-PD-1 mAb nivolumab (240 mg
on day 1, 15 cases every 4 weeks). Among them, eight individuals achieved a partial
response (PR) and three exhibited stable disease. The cycles of chemotherapy and dose
reduction (except for nivolumab) were permitted to control toxicity. The medicine exhibited
an excellent safety profile, with a median PFS of 10.8 months (0.1 mg/kg APX005M) and
12.4 months (0.3 mg/kg APX005M), but further clinical trials are necessary to verify its clin-
ical efficacy [31]. A PD-1 inhibitor plus a CD40 agonist produced a better clinical response.
Moreover, unlike partial blocking of tumor progression or invasive signals, CD40 agonists
are “ignition” signals that promote the initiation of immune responses in PDAC, contribut-
ing to anti-tumor immunity dependent on CD8 T cells and activated antigen-presenting
cells (APCs) [32]. Combining PD-1/PD-L1 blockade and anti-CTLA-4 therapy is based on
the theory that they function at different phases of the immune response. The overall re-
sponse rates for single- and double-dose immune checkpoint blockade in combination with
anti-PD-1 and anti-CTLA-4 drugs were 0% and 3%, respectively [28,33]. The comparison
between gemcitabine and nab-paclitaxel plus the anti-PD-L1 mAb dulvalumab versus the
CTLA-4 inhibitor tremelimumab has been made in a randomized, multicenter, phase II trial
(NCT02879318) to assess the safety and efficacy of combination chemotherapy/immune
checkpoint inhibitors (ICI) for PDAC. In an unselected group of patients with PDAC,
adding dulvalumab and tremelimumab to gemcitabine and nab-paclitaxel as the first-line
therapy failed to improve survival [34]. Other studies have shown that most effects of
monotherapy are additive in the context of combination therapy to facilitate the expansion
of phenotypically deficient CD8 T cells converted to activated effector CD8 T cells [35],
demonstrating the good prospect of PD-L1 in combination with other new checkpoints
for cancer treatment. However, PD-L1 with CTLA4 may not be the optimal choice for
PDAC, and additional immune checkpoints need to be sought [28,33,34]. Furthermore, the
combination of multiple immunotherapies, such as TGF-β inhibitors, oncolytic viruses,
tumor vaccines, and adoptive cell therapy, has shown a good safety and tolerability profile,
but clinical outcomes must be evaluated further [29,30,36].
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Several studies have revealed that PD-L1 expression in tumor membranes of patients
with PDAC is not associated with treatment response or PFS, and microsatellite instability-
high/defective mismatch repair status is considered a more reliable biomarker than PD-L1
for predicting the efficacy of immunotherapy in PDAC [37,38]. Unfortunately, even so,
only a small percentage (1–2%) of PDACs are microsatellite instability-high [39]. More
diagnostic markers are needed to predict immunotherapy prognosis, in addition to the
development of additional systemic treatment strategies with the PD-L1 inhibitors. Im-
portantly, future immunotherapy for PDAC will benefit more from the discovery of novel
immunosuppressive targets and mechanisms in these patients.

3. PD-L2

One of the PD-1 receptors, PD-L2, is mostly expressed in macrophages and dendritic
cells and shares 34% of the amino acids of PD-L1 [21,40,41]. Although hematological
malignancies are more likely to have upregulated PD-L2 expression, a favorable association
between PD-L2 expression and T cell density is still present in roughly 71.5% of PDAC. In
addition, the poorer prognosis in PD-L2–positive patients than in PD-L2-negative patients
indicates the role of PD-L2 in predicting patient survival and treatment effectiveness [19,42].

There are numerous mechanisms that regulate PD-L2 expression. IFN-γ initiates
intracellular signaling in T cell-infiltrated TME and stimulates PD-L2 expression in various
malignancies by phosphorylating several molecules, including ERK and JNK1/2. This
tissue specificity may be related to the varied intensity of IFN-γR expression in different
tumor tissues, however, the precise mechanism by which IFN-γ is induced in PDAC is
still unknown [19,41]. Moreover, the expression of PD-L2 is influenced by the “TGF-β2
signaling route”, the “JAK-Stat signaling pathway”, and “cytokine-receptor interaction”
in PDAC, among which TGF-β2, triggered by differentiation and growth arrest signaling,
is particularly connected to PD-L2 expression [19]. Recent studies have discovered that
the human breast cancer susceptibility gene 2 (BCRA2), which is strongly linked to both
high PD-L2 in TCs and poor survival in patients wih PDAC, inherits mutations in 1–
4% of pancreatic cancer patients, indicating the possible impact of BCRA2 on PD-L2
expression [43].

The immunomodulatory effects of PD-L2 have been discovered to be both co-inhibitory
and co-stimulatory, and they may have distinct effects when bound to various receptors in
multiple settings. Freeman et al. first proposed PD-L2 as another ligand of PD-1 in 2001
and, identical to PD-1/PD-L1, both inhibit T cell apoptosis by blocking the cell cycle [44].
Conversely, another study revealed PD-L2 to produce a co-stimulatory effect on CD4
T cells independent of PD-1 during the T cell initiation phase in genetically defective
mice, and PD-L2 binding to repulsive guidance molecules B induced initial CD4 T cell
expansion [45,46]. In the TME of PDAC, PD-L2 primarily plays an immunosuppressive role.
Negative feedback regulation induced by PD-1/PD-L1/PD-L2 interactions is essential for
immunological homeostasis after T cell activation. Blocking PD-L1 increased intratumoral
IFN-α and FOXP3+ Treg while blocking PD-L2 decreased intratumoral IL-10 and FOXP3+
Treg in a mouse PDAC model; however, using PD-L1 and PD-L2 simultaneously did not
demonstrate significant discernible synergistic effects, indicating the potential of PD-L2 for
being a strategy for immunotherapy and taking a distinct role from PD-L1 [40]. Another
study indicated that CD11b+ DCs expanded Treg and suppressed CD8 T cells via the PD-L2
pathway, and this drove pancreatic cancer liver metastasis [47].

More attention is being paid to the non-negligible inhibitory effect of PD-L2 because
the treatment for PDAC via the PD-1/PD-L1 axis is ineffective. Anti-PD-1 medications
improved the prognosis of PD-L2–rich head and neck squamous carcinoma, revealing that
the outcome of PD-1/PD-L1 therapy can be predicted utilizing PD-L2 [48]. The majority of
clinical trials on PD-L2-based tumors, including hematologic malignancies, lymphomas,
and other solid tumors, are currently in phases I or II [49,50]. Ongoing clinical trials are
summarized in Table 1. Further elucidation of the mechanism of PD-L2 action in TME is
anticipated to yield new immunotherapeutic strategies for PDAC.
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4. B7-H3

B7-H3, a type I transmembrane protein, belongs to the B7 superfamily. In mice, two
immunoglobulin-like domains (IgV and IgC) make up the extracellular component of B7-H3
(2IgB7-H3), and two isoforms, 2IgB7-H3 and 4IgB7-H3, are found in humans, with the latter
being predominant with two pairs of IgV-IgC structural domains [51]. It is overexpressed
in numerous cancers, including neuroblastoma, melanoma, and PDAC, while its expression
in normal tissues is limited [52]. B7-H3 is abundant in PDAC cells, particularly cancer
stem cells [53]. B7-H3 was widely expressed not only on TCs but also on other cells in
the (TME), such as macrophages, DCs, T cells, B cells, etc. Additionally, its significant
expression was found in the tumor vascular system [54,55]. sB7H3 is a soluble form of
B7-H3 that is produced by cleavage of 2IgB7-H3 and is abundant in mB7-H3-positive
pancreatic cancers [56,57]. Not only can B7-H3 suppress the tumor immune response, but
it can also contribute to tumor invasion, drug resistance, and tumor migration in the TME
of PDAC through non-immune mechanisms, as depicted in Figure 2 [12,58–60]. Thus, high
B7-H3 expression is associated with low PDAC survival, but its receptor has not yet been
identified [54,61,62].
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Figure 2. B7-H3 promotes pancreatic cancer cell growth. B7-H3 can promote the progression of
pancreatic cancer cells through multiple pathways, including promoting pancreatic cancer cell invasion
and enhancing cell resistance to drugs and apoptosis, independent of its immunological effects.

B7-H3 is expressed frequently in PDAC patients. B7-H3 positivity was detected
on TCs and stromal cells (SCs) in 81.3% (195 of 240) and 87.9% (211 of 240) of PDAC
patients, respectively. However, only 30.3% (80 of 264) and 20.5% (54 of 264) of patients
exhibited positive PD-L1 expression [63]. The expression of B7-H3 in PDAC is significantly
and positively correlated with MMP2 expression. The joint analysis of the expression of
B7-H3 and MMP-2 allowed for a more comprehensive and accurate prognostic analysis,
serving as a good predictor of TNM staging in PDAC [56]. Previous experimental evidence
suggests that suppressing B7-H3 expression significantly slows the growth and invasion of
PDAC [12,59,60]. Through upregulating the expression of IL-8 and VEGF via activating
the TLR4/NF-κB pathway and promoting the formation of new blood vessels, sB7-H3
is regarded as a biomarker for predicting the malignant progression of PDAC [57]. It
has been demonstrated that increased expression of B7-H3 enhances the resistance of
PDAC cells to gemcitabine. B7-H3 increases PDAC apoptosis resistance by upregulating
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the EGFR protein, which leads to gemcitabine resistance [59], whereas silencing B7-H3
increases gemcitabine sensitivity by reducing anti-apoptotic protein [64]. B7-H3 activates
the Jak2-STAT3 signaling pathway in colorectal cancer cells to promote anti-apoptosis [65].
Aberrant expression of B7-H3 is associated with pancreatic cancer progression. B7-H3 is
transcriptionally regulated by BRD4 in pancreatic cancer cells, and targeting the BRD4/B7-
H3/TLR4 axis may be a novel therapeutic strategy to overcome chemotherapy resistance
in pancreatic cancer [66].

Co-stimulatory and co-inhibitory signals are utilized by B7-H3 to control immuno-
logical responses [67–69]. In a mouse model of sepsis, it was discovered that B7-H3
co-stimulates innate immunity by boosting the release of pro-inflammatory cytokines from
LPS-stimulated monocytes in a TLR4- and TLR2-dependent manner [70]. B7-H3 was able
to promote CD4 and CD8 T cell proliferation and selectively activate IFN-γ production in
the presence of anti-CD3 antibodies in vitro [71]. However, recent studies have indicated
the role of B7-H3 in serving as a critical immune checkpoint to promote tumor immune
evasion and tumor progression in the tumor immunological microenvironment. B7-H3 can
directly regulate T cell and NK cell antitumor activity. It inhibits the CD4 T lymphocyte
activation and the generation of effector cytokines, such as IFN-γ and IL-4 [72]. B7-H3
positivity on SCs is strongly correlated with a low density of CD45RO T cells in clinical
patients [63]. B7-H3 suppresses T cell activity in the tumor immune response of a mouse
melanoma model by decreasing type I interferon (IFN) release from T cells [73]. In the
B7-H3 knockout mouse model, NK-mediated killing activity was enhanced, and in vitro
experiments revealed that the presence of B7-H3 diminished the antibody-dependent cellu-
lar cytotoxicity (ADCC) impact of NK cells [53,70]. In other models, B7-H3 was found to be
indelibly expressed by tumor-associated macrophages that can recruit macrophages and
promote the conversion of pro-inflammatory M1 macrophages to anti-inflammatory M2-
type macrophages [55,74,75]. Furthermore, B7-H3 expression increases the recruitment and
infiltration of immunosuppressive cells, including MDSC and Treg, which help establish a
suppressive immune microenvironment [53,76].

The relationship between B7-H3 expression and the prognosis of patients with pan-
creatic cancer is a controversial subject. B7-H3 is an inhibitory molecule, and its presence
has been associated with unfavorable clinical outcomes in some studies [63,77]. However,
others have found the opposite to be true, correlating a positive B7-H3 result with a higher
survival rate [71]. Several recent studies have found that differences in the location of
B7-H3 expression in the TME have different effects on the prognosis of pancreatic cancer
patients [63,78]. The expression of B7-H3 on TCs is an independent factor for improved
patient survival, while B7-H3 expression on CD68+ macrophages is thought to be an im-
portant indicator of poor patient prognosis. The expression of B7-H3 on SCs is associated
with a low density of memory T cells [63,78]. This also demonstrates the complexity
of the B7-H3 function, wherein different cells and subcellular localization of expression
may play different immunomodulatory roles, and the specific mechanisms should be
explored further.

Several therapeutic strategies have been developed against B7-H3 as it represents a
promising target for PDAC treatment [17]. However, these strategies are limited because its
receptor has not yet been identified, and the current therapeutic approaches mainly target
B7-H3–expressing cells. In several animal tumor models, including the ones for PDAC,
an inhibitory mAb against B7-H3 demonstrated potent anti-tumor activity evidenced by
enhanced CD8 T cell anti-tumor responses, enhanced CD8 T cell infiltration, and suppressed
tumor growth [53,58,79]. With promising efficacy in mouse models of melanoma and
lymphoma, the combination of anti-B7-H3 and anti-PD-1 antibody therapies is regarded
as a promising strategy for PD-1 inhibitor-resistant NSCLC, with promising synergistic
effects for PDAC [53]. Good safety and anti-tumor activity have been shown in patients
participating in a clinical trial of a B7-H3 mAb in combination with a PD-1 mAb for
the treatment of advanced solid tumors. An attractive synergistic treatment strategy for
patients with PDAC [80]. Although CAR-T therapy has made significant progress in
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treating hematopoietic cancers, the lack of specific tumor antigens restricts its application to
solid tumors such as pancreatic cancer. In this case, B7-H3 is a viable target for generating
CAR-T therapy [81,82]. CAR-T coactivated 4-1BB B7-H3 CAR-T cells had a lower PD-1
expression and improved therapeutic effect on PD-L1–expressing tumors, indicating a
promising application of B7-H3-CAR-T immunotherapy [73]. Anti-B7-H3 antibody-drug
conjugate (ADC) exhibited promising antitumor properties in a variety of tumor models
without substantial toxicity [83]. Bispecific anti-B7-H3/CD3 antibody therapies showed
some efficacy in B7-H3-expressing PDAC [84–86]. Ongoing clinical trials are summarized in
Table 1. In combination with chemotherapy, immune checkpoint inhibitors, and therapeutic
approaches, developing new therapies against B7-H3 as the “right” tumor antigen and
immune checkpoint is a potential treatment strategy for PDAC [55].

5. B7-H4

B7-H4 is a type I transmembrane protein that contains 282 amino acids. Except for
lung and pancreatic epithelial cells, B7-H4 protein expression is restricted in most normal
cells and tissues despite its widely available mRNA expression [87–89]. In contrast, the
B7-H4 protein is overexpressed in most human cancer tissues, including those in ovarian,
breast, bladder, and pancreatic cancers [90,91] and is preferentially expressed in TCs [92,93].
Myeloid cells in human hepatocellular carcinoma were also found to overexpress B7-H4 [94].
Freshly isolated T cells, B cells, monocytes, and dendritic cells do not express B7-H4 on their
surface, but they all express it after in vitro stimulation, such as in Tregs [95–97]. MiR-125b-
5p affects translational or post-translational regulation mechanisms in macrophages and
negatively regulates B7-H4 expression [98], while HIF-1α significantly stimulates B7-H4
upregulation within TME [99]. In PDAC, aberrant B7-H4 expression, which is associated
with advanced stages, poor prognosis, and overall patient survival [18], plays an important
role in the immune surveillance mechanism of tumors [100]. Research has shown that
B7-H4–Ig binds to activated T cells, tumor-infiltrating T cells [96], and tumor-associated
neutrophils [101]. MDSCs also have B7-H4 receptors, and compared to activated T cells,
MDSCs bind to B7-H4 with a stronger affinity [89,102,103]. B7-H4 may be detectable in a
soluble form, which is more frequently expressed in cancer [104].

B7-H4 is overexpressed in several PDAC cells, largely as a membrane protein [92,104,105].
This upregulation may result from the cytokine network in TME, which may also promote
B7-H4 production in cancer cells or APCs [102]. As depicted in Figure 3, B7-H4 can
promote the progression of pancreatic cancer cells through multiple pathways, promoting
the growth, migration, and invasion of pancreatic cancer cells independent of their immune
effects. Several studies have proven that substantial accumulation of B7-H4 inhibits the
production of the proapoptotic proteins in PDAC cells while enhancing cancer growth via
activating the Erk1/2 and Akt mitogenic signaling pathways. In contrast, proliferation,
migration, and invasion of PDAC L3.6P1 cells were all slowed down by silencing the B7-H4
gene with siRNAs [18,92,104], while siRNAs improved cell-cell adhesion by decreasing
the formation of pseudopodia [18]. Furthermore, B7-H4 gene silencing diminishes CD44
expression, a PDAC stem cell marker implicated in the epithelial-mesenchymal transition,
suggesting that B7-H4 is involved in the regulation of tumor cell stemness [18]. B7-H4
can increase the expression of angiogenesis-related molecules, notably MMP2, MMP9,
and VEGF, which enables PDAC cells to migrate and invade with relative ease [106,107].
In TME, B7H4 is also involved in the regulation of the cell cycle in TCs [108,109]. By
upregulating cyclin to enhance the G1/S phase transition, B7-H4 was also discovered
to promote tumor cell growth in renal cell carcinoma [108], and its expression level in
NSCLC was substantially connected with TIL and lymph node metastasis [110]. Through
the JAK/STAT3 pathway, IL-6 promotes B7-H4 expression in gliomas, whereas STAT3
modulates B7-H4 transcription by enhancing the B7-H4 promoter [111].
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Figure 3. B7-H4 promotes the progression of pancreatic cancer. B7-H4 can promote the progression
of pancreatic cancer cells through multiple pathways, promoting the growth, migration, and invasion
of pancreatic cancer cells independent of its immunological effects.

B7-H4 regulates immune system cells in both the innate and adaptive immune systems
and has important immunomodulatory properties [112]. The overexpression of B7-H4 in
PDAC may be an important component of the immune escape mechanism of malignant
tumors and may have a vital immunomodulatory role in the TME of pancreatic cancer [100].
Teff proliferation, cytokine generation, and cytotoxic activity were all suppressed in vitro
by its overexpression [93,97,98]. There is a negative correlation between B7-H4 expression
on TCs and CD8 T-lymphocyte infiltration. The overexpression of B7-H4 on tumor cell
membranes reduced the frequency of antigen-specific CD8 T cells, impaired activation
and expansion of antigen-specific CD8, and reduced IFN-γ production with rapid tumor
progression in a variety of animal tumor models [91].

B7-H4 molecules have also been demonstrated to mediate immunosuppression in
neuroendocrine tumors by suppressing T cell activation and promoting the immunosup-
pressive activity of MDSC, which is associated with a higher grade and a higher incidence
of nodal and distant spread [113]. In CD4 T cells, B7-H4 acts as a suppressor ligand, and
effector T cells promote the conversion of conventional CD4 T cells to Tregs by modulating
the Akt/FoxO pathway and increasing the Treg transcription factor Foxp3, thereby driving
these cells to adopt both an activating and suppressive phenotype, as observed in several tu-
mor models [114]. B7-H4 not only promotes immunosuppressive cells in TME, such as Treg,
myeloid-derived suppressor cells, and macrophages, which regulate tumor-infiltrating
neutrophils, but it also inhibits the activation and subsequent effector functions of CD4 and
CD8 T cells in TME [101,115]. Although many mechanisms have not been fully elucidated,
by suppressing effector T cells and promoting immunosuppressive cells, B7-H4 induces an
overall immune tolerance and creates an immunosuppressive TME.

The mechanisms regulating the immune system and B7-H4 expression in malignancies
appear to be distinct from those regulating PD-L1 and other immune checkpoints. The
inflammatory cytokines IFN-γ and TNF-α both promote PD-L1 but not B7-H4 expression
on tumor cells, whereas the immunosuppressive cytokines TGF-β1 and IL-10 stimulate
B7-H4 expression [111,116]. Multiple signal integration in TME may be one reason PD-L1 or
B7-H4 expression patterns in TCs change, which tends to be mutually exclusive as shown in
some research. B7-H4–targeted therapy may be more efficient than PD-1 or PD-L1 inhibitors
in treating these B7-H4–expressing malignancies [112]. B7-H4 has been found to contribute
to Teff “failure”, a dysfunctional state characterized by the co-expression of markers such
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as B7-H4 receptors, PD-1, and TIM-3 [96]. In the field of immunology, tumors that express
PD-L1 are considered “hot”, and those that express B7-H4 are considered “cool” tumors
that greatly limit immune penetration and are thus viewed as poor immunotherapeutic
targets [112]. Consequently, more research is required to evaluate whether B7-H4 can be
used as a useful biomarker to predict the effectiveness of immunotherapy.

Aberrant expression of B7-H4 in human cancers and its role in tumor immune evasion
indicate that B7-H4 is a compelling target for therapeutics. B7-H4-targeted immunothera-
pies, such as ADCs, CAR-T cells, and mAbs, have shown promising therapeutic efficacy in
tumors. Ongoing clinical trials in pancreatic cancer are summarized in Table 1. Leong et al.
developed a specific ADC that effectively inhibits breast cancer growth [117], while Smit
et al. found that ovarian cancer regression can be achieved by utilizing B7-H4–targeting
CAR therapy, despite being currently limited by off-target and off-tumor toxicity [112,118].
Furthermore, using monoclonal antibodies to disrupt the immunological checkpoint of can-
cers has been shown to be successful. A bispecific B7-H4/CD3 antibody has been found to
successfully crosslink TCs with B7-H4 with human CD4 and CD8 T cell receptors, inducing
T cells to lyse B7-H4+ breast cancer cells both in vivo and in vitro [119]. Another preclinical
trial demonstrated that anti-B7-H4 antibodies improved OS in mice by reducing tumor cell
proliferation and promoting apoptosis. Anti-B7-H4 mAb-treated mice had higher rates
of CD4 and CD8 T cell infiltration, fewer MDSCs, and significantly increased IFN-γ and
TNF-α secretion when compared to control IgG-treated mice [91]. While ICI has been
effective, it has also met widespread resistance. Aberrant expression of B7-H4 in tumors
mediates anti-CTLA-4 and anti-PD-1 resistance via different mechanisms, implying the
synergistic efficacy of combination therapy with anti-B7-H4 and anti-PD-1/anti-CTLA-4
in overcoming B7-H4–mediated drug resistance and inhibiting tumor growth [96,114],
which has been demonstrated in other tumors. More research is required to confirm the
anti-efficacy of B7H4 and its value in the treatment of PDAC, either as a monotherapy or as
part of combination therapy. Therapies that target the B7-H4 pathway need to be evaluated
for the most efficient and least harmful clinical responses.

6. VISTA

V-domain inhibitory T cell activation immunoglobulin (VISTA), a recently identi-
fied immunomodulatory cell surface protein of the B7 family, is encoded by the human
VSIR gene (Vsir gene in mice) as a type I transmembrane protein [16,120]. Given that
mice and humans share a 90% similarity, VISTA is the most conserved member of the B7
family [121]. Its structure includes a cytoplasmic tail, a transmembrane region, and an
N-terminal extracellular IgV domain that is quite similar to PD-L1, as is its absence of the
ITIM/ITAM motif in the intracellular terminal tail, which distinguishes it from other B7
family molecules [16,121,122]. VISTA is predominantly expressed in the hematopoietic
system. With the highest expression in myeloid cells such as microglia, macrophages, and
dendritic cells, it can also be detected in lymphocytes [123].

VISTA is a suppressive immune checkpoint that can act in various ways as a ligand or
receptor to exert immunosuppressive effects, as depicted in Figure 4. When VISTA was
overproduced on APCs or as an Ig fusion protein, it was shown to reduce the multiplication
of CD4 and CD8 T cells and also to limit the production of cytokines, including IFN-γ,
TNF-α, and IL-2 [124,125]. Overexpression of VISTA inhibits anti-tumor immunity in tumor-
bearing animals, suggesting that VISTA functions as a ligand with immunosuppressive
effects [125]. PSGL-1 (P-selectin glycoprotein ligand 1) and VSIG3 have been identified
in recent years as ligands that interact with VISTA to suppress T cell responses, while
VSIG8 may potentially be a ligand for VISTA [120]. The enriched histidine residues in
VISTA’s distinctive extracellular structure undergo deprotonation in an acidic environment,
resulting in PH-selective binding to PSGL-1. Since it only occurs in an acidic environment,
this binding property makes it easier to create pH-responsive blocking antibodies [121].
By inhibiting the binding of PSGL-1 and VISTA, which are predominantly expressed in
artificial blood cells, human CD4 T cell proliferation, NF-κB phosphorylation, and IFN-γ
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release are suppressed [126]. At physiological pH, VSIG-3 expressed on non-hematopoietic
cells interacts with VISTA, and this interaction has been demonstrated to suppress the
immune system by reducing the release of several cytokines, along with IL-2, IL-17, and
CCL5 in vitro [127]. Surprisingly, one crucial mechanism regulating the prompt removal of
apoptotic cells involves the interaction of the IgV structural domains of VISTA-VISTA on
the surface of macrophages and apoptotic cells [128].
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Figure 4. VISTA expression regulation and function in PDAC. VISTA is primarily expressed in tumor-
infiltrating immune cells. Hypoxic TME stimulates VISTA expression via upregulation of HIF-1α,
while VISTA is a direct downstream target of reactive p53 molecules. Expression of VISTA may be
positively correlated with TLR-4. VISTA can act as a receptor and ligand, binding to several cells and
substances in the TME. When serving as a receptor, VISTA binds to the ligand in a pH-dependent
manner. VISTA attaches to PSGL-1 on T cells at a pH of about 6.0. When the pH rises to about 7.4,
VISTA binds selectively to VSIG-3 on tumor cells, blocking the synthesis of chemicals including
IL-2, IL-17, and CCL5. As a ligand, VISTA-Ig greatly increased the conversion of naive T cells into
Foxp3+ T cells while suppressing the proliferation of CD4/CD8 T cells, lowering IFN-γ, TNF-α and
IL-2 production. The connection between VISTA-VISTA-IgV structural domains on the surface of
macrophages and apoptotic cells may facilitate the prompt clearance of apoptotic cells.

VISTA is significantly upregulated in immune cells infiltrating the TME of PDAC,
particularly PMN-MDSC and monocytes, whereas neutrophils with upregulated VISTA
expression are more likely to infiltrate and accumulate in necrotic foci of the tumor [129].
Further investigation demonstrated that VISTA is predominantly expressed on CD68+
macrophages in the stromal region of TME [11]. In contrast, TCs exhibited a significant
decrease in VISTA expression [16]. Multiple signaling pathways facilitate the translation of
VISTA. Given that VISTA expression is upregulated by HIF-1α under hypoxic conditions in
TME, VISTA is demonstrated as one of the direct transcriptional targets of p53 molecules in
response to DNA damage, which releases VISTA on both macrophages and apoptotic cells
to encourage phagocytosis of apoptotic cells and trigger immunological responses. Taken
together, VSITA expression may also be associated with the TLR4 pathway [128–131]. The
overexpression of VISTA suppresses T cell activation while promoting the transition of
naive T cells into FoxP3+ Treg cells, immunosuppressing TME in PDAC, and fostering
tumor growth [124,132]. The TME of PDAC has demonstrated the expression of VISTA
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and PD-L1 on distinct subpopulations of CD68+ macrophages, with the VISTA pathway
resulting in a more pronounced reduction in CD8 T cell responses and a significant infil-
tration of TAM with MDSC, implying that VISTA may be more important than PD-L1 in
pancreatic cancer [11]. Therefore, VISTA is seen as a novel therapeutic approach and as an
immune checkpoint on macrophages in pancreatic cancer.

The potential of VISTA as an immunotherapeutic target has been further established
by multiple preclinical investigations. Anti-VISTA antibodies significantly reduced the
number of early liver metastases and inhibited tumor growth in PDAC animal models,
with results similar to those seen in melanoma and ovarian cancer models [16,133]. The
combination of VISTA and PD-L1 antibodies substantially strengthened the therapeutic
impact in a mouse colon cancer model, and since VISTA and PD-L1 have different mecha-
nisms, immune checkpoint combinations might also be a potential therapeutic approach
in the treatment of PDAC [132]. A variety of VISTA inhibitors, antagonists, and mAbs
have currently entered clinical trials [120,121]. As the first oral small molecule inhibitor
in the clinic, CA-170, which has been demonstrated to inhibit VISTA and target PD-L1,
PD-L2, and VISTA, is currently in a phase II trial that is summarized in Table 1 [121]. The
complexity of VISTA regulatory systems has prevented a complete understanding of the
mechanism of action in PDAC despite significant advancements in VISTA research. There
is debate concerning the association between VISTA expression and the prognosis of PDAC
patients, with some research indicating that VISTA expression often increases with the
course of the disease and is related to a reduced chance of survival in malignancies like
PDAC [11,16,128]. However, another prognostic study on 137 patients with PDAC dis-
covered that the OS was considerably increased when VISTA was enhanced on TCs [133].
Nevertheless, another viewpoint contends that there is no connection between VISTA
expression and patient prognosis [134]. Such controversial findings may cause skepticism,
but more clinical evidence will clear things up. In conclusion, a better understanding of the
intricate regulatory functions of VISTA in pancreatic cancer immunity will provide a basis
for expanding its application as an immune checkpoint.

7. HHLA2

A novel member of the B7 family named HERV-H LTR-associating 2 (HHLA2), which
has three Ig structural domains in its extracellular region, shares 10–18% of its amino acid
sequences with other members of the B7 family [135,136]. Due to species differences in gene
expression, HHLA2 is not expressed in mice but is expressed in higher primates, making
it unique among the B7 family [135]. Except for non-lymphoid organs such as the testes,
colon, and pancreas, HHLA2 mRNA is undetectable in most normal tissues [137]. HHLA2
is only weakly expressed in healthy tissues but is widely expressed in a variety of cancerous
tumors, such as pancreatic and breast cancer [137,138]. HHLA2 is constitutively expressed
in human monocytes but not in immature dendritic cells or resting T or B cells [139],
and it can be induced in B lymphocytes, mature DCs, and macrophages by inflammatory
signaling stimuli such as IFN-γ and LPS [138]. HHLA2 has been shown to bind to multiple
putative receptors in a variety of immune cells [138].

HHLA2 is now known to have two receptors, which account for the immunostim-
ulatory and immunosuppressive pathways that are both mediated by HHLA2. The co-
stimulatory signaling molecule transmembrane and immunoglobulin domain 2 (TMIGD2,
also named CD28H or IGPR-1) is primarily expressed in human naive T cells, NK cells, and
endothelial cells, whereas the co-inhibitory signaling molecule killer cell Ig-like receptor,
three Ig domains, and the long cytoplasmic tail (KIR3DL3) is expressed in activated T cell
subsets and NK cells [136,139,140]. The co-stimulatory and co-inhibitory properties of
HHLA2 have been described in the regulation of T cells. Zhao et al. noted that as a suppres-
sive immune checkpoint molecule, HHLA2 blocks the proliferation of CD4 and CD8 T cells
and the synthesis of cytokines such as IFN-γ, TNF-α, IL-5, and IL-10 [138]. Recent studies
have shown that HHLA2 is induced to be expressed only when T cells are activated and is
preferentially expressed on CD8 T cells after activation, which may be related to the fact
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that HHLA2 can inhibit the cytotoxic effects of CD8 T cells faster and more strongly [141].
HHLA2/CD28H has been established to activate human T cells and generate cytokines
including IFN-γ, TNF-α, IL-5, and IL-10 through the AKT pathway [137]. NK cells can be
induced to degranulate and generate cytokines including IFN-γ, TNF-α, and MIP-1α by the
synergistic action of HHLA2 with CD28H. Therefore, both natural and antibody-dependent
cellular cytotoxicity of NK cells can be enhanced due to the expression of HHLA2 on
target cells, which is considered a strong activator of NK cells capable of lysing HHLA2+
TCs [142]. The function of HHLA2 as a suppressive and stimulatory immune checkpoint
in TME may be related to the predominance of different receptor interactions in different
cancer types. Intriguingly, one study suggested that HHLA2 may be a better marker of
T cell exhaustion than PD-1 [40,141].

High intratumoral HHLA2 expression is often an adverse predictor of survival in
individuals with different cancer types, such as triple-negative breast cancer and renal cell
carcinoma, where it is related to increased cancer recurrence or decreased survival [143].
However, recent research indicates that HHLA2 may function as a co-stimulatory ligand
in pancreatic cancer. To a significant extent, HHLA2 is not expressed in the benign peri-
ampullary tissue; nevertheless, it is abundantly expressed in early pancreatic precancerous
lesions and invasive PDAC. Furthermore, the expression of HHLA2 in pancreatic ductal ep-
ithelial cells may be promoted by inflammation [144]. Both Yan and Patrick demonstrated
that the augmentation of intratumoral HHLA2 expression in patients with pancreatic cancer
after tumor resection led to an increased survival rate [144,145]. HHLA2, which has been
shown to have a protective effect on PDAC, exerts a co-stimulatory effect on PDAC by
interacting with TMIGD2, promoting T cell proliferation, and improving the expression of
IL-2, TNF-α, and IFN-γ. Upregulation of CD28H or HHLA2 is anticipated to enhance anti-
tumor immunity, as Chen et al. showed that pancreatic cancer may promote immunological
escape by lowering the expression of the HHLA2 receptor CD28H on T cells [146].

As a consequence of the absence of HHLA2 expression in laboratory mice, the in-
volvement of HHLA2 in pancreatic cancer has not yet been investigated thoroughly [146].
However, it has been shown that the KIR3DL3-HHLA2 pathway, which is considered
an alternate immunosuppressive route to PD1, is implicated in tumor immune escape in
various cancers, indicating that disrupting the KIR3DL3-HHLA2 pathway is a viable im-
munotherapeutic approach for treating cancer [136,147]. As opposed to other molecules in
the B7 family that regulate the processes of pancreatic cancer, the current study found that
overexpression of the HHLA2 molecule seems to be associated with a good prognosis [146].
However, PDAC is highly heterogeneous, and the microenvironment is in a continuous
evolutionary process. It is speculated that the function of HHLA2 within the TME of PDAC
may change as the tumor progresses. Further studies on HHLA2 can help to elucidate the
complex tumor immune microenvironment and provide strategies for immunotherapy of
pancreatic cancer.

8. Conclusions

Due to its advanced stage at diagnosis and resistance to immunotherapy and chemother-
apy, PDAC is a therapeutically problematic malignancy. Most PDACs are immunosuppres-
sive “cold” tumors with a suppressive TME and insufficient TIL infiltration. Its impaired
immune function and multiple immunosuppressive mechanisms contribute considerably
to achieving “adaptive immune resistance” [6,26]. Multiple intrinsic and extrinsic mech-
anisms are utilized by PDAC to generate an immunosuppressive TME [6]. On the one
hand, the PDAC oncogene and its downstream effects contribute to immunosuppressive
TME. Ninety-two percent of pancreatic cancers with KRAS mutations can promote the
recruitment of MDSCs and Tregs through the secretion of cytokines such as granulocyte-
macrophage colony-stimulating factor (GM-CSF) [148–150]. PDAC cells can impair tumor
antigen presentation by reducing the expression of major histocompatibility complex-1
molecules and induce apoptosis of T cells by increasing the production of indoleamine
2,3-dioxygenase [151,152]. On the other hand, the specific TME promotes the formation of
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an immunosuppressive TME. The dense and hypoxic tumor stroma form a physical barrier
that inhibits the infiltration of immune cells and impairs the function of T cells [153]. CAFs
can inhibit the activation of T cells through the activation of FAK, secretion of cytokines
such as CXCL12, IL10, TGF-β, and IL-6, reduce the activity of CTL, and promote the
differentiation of MDSC to an immunosuppressive phenotype [6]. In conclusion, multiple
components interact to modulate the immunosuppressive TME of PDAC. Immunotherapy
has demonstrated many advantages in the treatment of solid organ tumors but has been
disappointing in the treatment of PDAC. More immunosuppressive mechanisms exist in
the TME of PDAC and need to be further explored.

This review summarizes the expression of PD-1, PD-L2, B7-H3, B7-H4, VISTA, and
HHLA2 in the immune microenvironment of pancreatic cancer and their roles in promot-
ing tumor metastasis and invasion. Additionally, their important roles in mediating the
formation of an immunosuppressive microenvironment by participating in the interaction
between TCs, APC cells, TAM, MDSC cells, and endothelial cells have been highlighted,
and the relevant clinical progress of these molecules in recent years has been detailed. The
B7 family molecules show constitutive or inducible expression in different cells of the tumor
immune microenvironment and affect different stages of immune cell activation by binding
to their receptors. Although many mechanisms have not yet been discovered, based on the
present findings, it is inferred that these B7 family molecules not only suppress the immune
activity of CD4 T cells and CD8 T cells but probably play a key role in the maintenance of
the immunosuppressive phenotype of TAM, MDSC, and other cells.

Some receptors of the B7 family members are not yet identified, and the immunomod-
ulatory mechanisms of the B7 family members in the pancreatic cancer microenvironment
and their non-immunological functions have not been fully elucidated, all of which limit
their further application. In conclusion, the B7 family members and their pathways repre-
sent a new immunosuppressive mechanism in pancreatic cancer tumor immunity. Further
exploration and elucidation of its mechanism and intervention of its immunomodulatory
function can improve the local microenvironment and enhance T cell-mediated immunity,
which is a potential target for immunotherapy, and change pancreatic cancer from “cold”
to “hot”. It is expected to break the bottleneck of acquired immune resistance in the TME of
PDAC, and immunotherapy based on combined B7 family members may be a promising
strategy for the treatment of PDAC.

9. Future Perspectives

Emerging research highlights the significance of understanding more about the B7
family and its multifaceted roles in tumor suppression and immune evasion. B7-H3, B7-
H4, VISTA, HHLA2, and other molecules may be better immunotherapy targets than
PD-L1 in PDAC and represent distinct immunomodulatory pathways. Considering the
recalcitrant immune resistance as well as the heterogeneity of PDAC, future approaches
should prioritize integrated or combined targets. Targeting different B7 family molecules in
combination with other multimodal therapies holds promise for success. Complementarity
between the different targeted pathways and the potential feedback reactions should be
taken into account during the combination’s design process. Individualized analysis of the
patient can help assess the effectiveness of immunotherapy. Given the advancements in
our understanding of the B7 family and the novel strategies, we have reasons to be hopeful
for the future success of immunotherapy for PDAC.
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