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Abstract: As climate change increases the frequency and intensity of devastating and unpredictable
extreme heat events, developments to the built environment should consider instigating practices
that minimize the likelihood of indoor overheating during hot weather. Heatwaves are the leading
cause of death among weather-related causes worldwide, including in developed and developing
countries. In this empirical study, a four-step approach was used to collect, extract and analyze
data from twenty-seven states in the United States. Three housing characteristic categories (i.e.,
general housing conditions, living conditions, and housing thermal inertia) and eight variables were
extracted from the American Housing Survey database, ResStock database and CDC’s National
Environmental Public Health Tracking Network. Multivariable regression models were used to
understand the influential variables, a multicollinearity test was used to determine the dependence of
those variables, and then a logistic model was used to verify the results. Three variables—housing age
(HA), housing crowding ratio (HCR), and roof condition (RC)—were found to be correlated with the
risk of heat-related illness (HRI) indexes. Then, a logistic regression model was generated using the
three variables to predict the risk of heat-related emergency department visits (EDV) and heat-related
mortality (MORD) on a state level. The results indicate that the proposed logistic regression model
correctly predicted 100% of the high-risk states for MORD for the eight states tested. Overall, this
analysis provides additional evidence about the housing character variables that influence HRI. The
outcomes also reinforce the concept of the built environment determined health and demonstrate
that the built environment, especially housing, should be considered in techniques for mitigating
climate change-exacerbated health conditions.

Keywords: housing factors; heat-related illness; thermal inertia; multistate

1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) report, around
30% of the global population is exposed to extreme heat for at least 20 days each year [1].
Between 2000 and 2019, an average of six heat-related deaths per 100,000 residents each
year was reported in North America [2]. According the World Health Organization, from
1998 to 2017, more than 166,000 people died due to heat waves, and between 2000 and
2016, the number of people exposed to heat waves increased by around 125 million [3].
More recently, 2021 experienced a record-breaking heat wave across North America [4],
and according to the U.S. National Oceanic and Atmospheric Administration, August
2022 was the hottest August recorded in North America and Europe, and the second
warmest August globally [5]. In the United States, the increase in extreme temperatures is
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expected to lead to a rise in heated-related deaths and illness, particularly for vulnerable
populations and communities such as the elderly [6]. Most people stay indoors during
heat events, thus, developments to the built environment should consider instigating
housing design practices that minimize the likelihood of overheating during hot weather
events. Indoor heat exposure can lead to a cascade of illnesses including heat exhaustion,
heatstroke, and hyperthermia. In addition, extreme temperatures can worsen chronic
conditions such as cardiovascular and respiratory diseases. Meanwhile, climate change is
increasing the potential of devastating and unpredictable extreme heat events. The Climate
Action Tracker states that the world is headed for 2.4 ◦C of warming, despite the COP26
climate pledges [7]. Under such conditions, it is imperative to prioritize the prevention of
overheating in buildings. The first step is to understand what housing characteristics may
have the biggest impact on heat-related illness (HRI).

According to the World Health Organization, heat waves rarely receive adequate
attention because their death tolls and destruction are not always immediately obvious [3].
There are also different definitions for a heat wave. The U.S. Environmental Protection
Agency defines a heat wave as a period of two or more consecutive days when the daily
minimum apparent temperature (the actual temperature, adjusted for humidity) in a
particular city exceeds the 85th percentile of historical July and August temperatures
(1981–2010) for that city (refer to the EPA’s website for the reason for this definition) [8].
Extensive literature has focused on heat exposure in outdoor environments and its associ-
ated human health impacts, and the health impacts from extreme heat have used ambient
meteorological measures [9]. However, the available data on indoor heat exposure and
its effect on human health is relatively limited compared to that of outdoor heat exposure,
and most studies are on a small scale (e.g., individual buildings, a group of homes) [10,11].
For example, Williams and colleagues conducted a study on low-income senior residents
(n = 51) in public housing in Cambridge, Massachusetts. They found that with higher
indoor temperatures, sleep was more disrupted, and heart rates increased [9]. In Detroit,
Michigan, the thermal conditions of 30 different homes were monitored and analyzed,
along with the housing characteristics (e.g., exterior wall materials). The findings showed
that indoor exposure to heat in Detroit exceeded the comfort range among elderly occu-
pants [12]. In the United States, there have been only a few studies on a larger scale of a
single city (e.g., Detroit) [13], a single state (i.e., California) [14], or multi-county [15]. To
the authors’ knowledge, there is no multistate study that has focused on the connection
between heat-related illness and housing characteristics.

Indoor heat exposure potential is determined by the outdoor ambient temperature
and housing characteristics (e.g., housing thermal inertia)..The majority of epidemiolog-
ical studies of heat-related health effects use outdoor weather conditions as the primary
indicator to estimate indoor heat exposure and/or heat stress [16–18]. Currently, most
heat-health warning systems are also based on outdoor temperatures. This reliance on
outdoor conditions can mislead the interpretation of health effects and associated solutions,
since most people who stay indoors are assumed to be isolated from outdoor thermal
conditions [19]. Currently, heat exposure in epidemiological studies is often estimated
using an airport monitoring station and applied to residents of an entire community [12].
As for indoor heat exposure, a WHO working group on indoor environments found that
“There is no demonstrable risk to human health of healthy sedentary people living in
air temperature of between 18 and 24 ◦C” [20]. However, an adaptive thermal comfort
model showed that thermal comfort also depends on other individual variables such as
metabolism, level of activity, and clothing, among others. Therefore, a variety of indoor
heat exposure ranges were found in previous literature. For example, 27 ◦C was used as the
cut-off temperature in a survey of 57 elderly adults in the United States to study thermal
conditions, reduced emotional distress, and increased hours of sleep [21]. Conversely, a
study on 113 elderly people in the Netherlands used 20.8 to 29.3 ◦C as the temperature
range, which led to similar conclusions that an increased temperature can raise the risk of
sleep disturbance [22]. In the United States, there is no consensus on a cut-off maximum
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temperature for heat-related health risks; for instance, Boston uses 25 ◦C as an indoor
maximum acceptable temperature, while New York City uses 27–28 ◦C [23]. Consequently,
indoor heat exposure in this study should be understood as a range of higher temperatures
over an extended period of two or more consecutive days.

Moreover, the Heat Vulnerability & Preparedness index provided by the US Centers
for Disease Control and Prevention (CDC) considers 14 indicators including population
demographic information and outdoor conditions, such as the percentage of forest canopy
cover. However, there are no housing (building) indicators included. While outdoor
weather conditions can be monitored or measured through multiple methods, such as
ground monitoring, numerical models, and remote sensing data, indoor thermal conditions
are not routinely monitored or reported due to privacy concerns and the time-consuming,
labor-intensive traditional monitoring methods. Consequently, direct indoor heat exposure
and heat stress are less studied than outdoor heat. While it is commonly perceived that
buildings with little insulation, thermal mass, or shading are prone to overheating when
air-conditioning is unavailable, supporting empirical studies are limited. Many practical
models have been generated to predict indoor temperatures using outdoor temperatures,
housing characteristics, and other variables. Some recent models, based on deep-learning
computer algorithms, have reached a high accuracy of up to 98.4% [24]. However, there is
a lack of direct methods for and evidence of connecting housing characteristics and indoor
heat exposure with heat-related illness, which imposes difficulties in utilizing resilient
building designs (e.g., passive design) to adapt to changing climate conditions [25]. To
this extent, this study addresses these gaps by examining the association between housing
characteristics and HRI.

The purpose of this study is to examine the correlation between housing characteristics
and HRI at a national scale using data extracted from the American Housing Survey, the
American Community Survey, the ResStock database, and the CDC’s National Environmen-
tal Public Health Tracking Network on a state level in the United States. More specifically,
there are three questions addressed: (1) whether HRI can be predicted based on housing
characteristic variables, (2) how influential these variables are, and (3) whether the variables
influencing different HRI measure differently. Additionally, we hypothesized that states
with higher housing thermal inertia quality have a better mitigation effect on HRI.

2. Influential Factors and Measured Outcomes
2.1. Housing Characteristics

A large body of epidemiological literature links general housing and living conditions
to various health conditions, such as asthma and other respiratory diseases. While these
are not direct HRI, prolonged heat exposure is linked to increased hospital admission for
cardiovascular, kidney, and respiratory diseases [6].Therefore, this study includes general
housing conditions, which are measured by two indicators: housing age and housing size.
These two variables were used as a proxy measure of housing physical conditions.

Living conditions are included as a separate category. The housing crowding ratio and
the percentage of low-income housing were used together as a proxy measure of residents’
living conditions. Overcrowding in housing and a lack of ventilation can promote a moist
environment that leads to respiratory problems [26]. This threat is particularly high during
the summer, in areas that are hot and humid, and when the air humidity is high [27,28].
In addition, living in crowded conditions can give rise to psychological distress that has a
compounding effect on vulnerable populations during heat waves [29]. Crowding measures
how many households have more occupants than rooms. According to the US Census
Bureau, homes with more than 1.5 persons per room were counted as severely crowded,
and homes with 1.01–1.5 persons were considered moderately crowded [30]. In this study,
we aggregate severely crowded and moderately crowded homes.

From the limited epidemiological literature focusing on indoor heat exposure, we
found that the following building characteristics are linked to heat-related morbidity and
mortality: building age, prevalence of air-conditioning, and the thermal property of the
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exterior walls and roof [31–33]. In addition, according to the World Health Organization,
cooling systems, building materials, and ventilation and shading devices are crucial fac-
tors that can mitigate indoor heat exposure through reducing indoor temperatures [23].
Conversely, in the building science and architectural design field, there is a large body of
research on the effectiveness of reducing indoor temperatures through roof and exterior
wall materials with a high thermal mass [34,35]. Therefore, in this study, housing thermal
inertia is included as a separate category and has three indicators: roof condition, exterior wall
condition, and housing energy efficiency. Thermal inertia is the measure of how well building
materials and components can absorb solar heat without increasing the temperature [34],
and it is largely influenced by the types of materials and insulations used in exterior walls
and roofs. Roof thermal inertia and exterior wall thermal inertia are common variables
that define thermal properties of buildings [36]. Residential buildings and small-scale
commercial buildings are skin-load dominated buildings, where heat transfer is primarily
determined by the influence of the exterior climate on a building’s envelope, or “skin.”
The external walls and roof are important components of the building envelope. They
allow passive control of indoor thermal conditions through the management of external
heat transfer [37]. There is no available data on the thermal inertia value of housing on
a state level; therefore, in this study, the roof and exterior wall conditions were used as
proxy indicators for thermal inertia. The assumption is that roofs in poor condition (e.g.,
leaks, sagging, or holes) indicate a lower thermal inertia, with the same logic applied to the
exterior walls. Housing energy efficiency is based on the relation between housing thermal
property and energy consumption [38]. The United States did not employ a national model
energy code for buildings until 1994 [39]. The model code specifies the thermal property
of roofs and walls in different climate zones. Houses built before 1994 have potentially
lower thermal properties, and most houses built before the 1970s did not contain any
insulation [40]. During the summer, houses with a lower thermal inertia consume more
energy (electricity) to cool the building. Consequently, housing energy efficiency can also
be used to indicate the thermal inertia of houses.

In summary, built upon the results from the literature review of works from other
publications in both built environment research and epidemiology fields, influencing
housing characteristics can be grouped into three categories: general housing conditions,
living conditions, and housing thermal inertia. Table 1 lists the factors and data sources of
each category. Eight variables were used to index housing characteristics: (1) housing age
(HA), (2) housing size (HS), measured in gross square footage; (3) prevalence of air-conditioning
(AC), measured by the percentage of housing with air-conditioning units (including central
and non-central systems); (4) housing crowding ratio (HCR), the most common measure
of overcrowding is persons per room in a dwelling unit; this study uses the U.S. Census
Bureau’s definition (>1.5 persons per room as severely crowded, >1 persons per room
as moderately crowded) [30]; (5) percentage of low-income housing (PH); (6) roof condition
(RC), measured by the percentage of housing with roof problems, including a sagging roof,
missing roofing material and a hole in the roof; (7) exterior wall condition (EWC), measured
by the percentage of housing with exterior wall problems, including missing bricks, siding,
or other outside materials, and sloping outside walls; and (8) housing energy efficiency (HEE),
measured by site energy use intensity (kBtu/ft2). The percentage of the population that
was 65 or older (A65) was used as a control variable.

2.2. Measurement of Heat-Related Illness (HRI)

Four measures were used to index HRI. Heat-related emergency department vis-
its (EDV) is an age-adjusted rate of emergency department visits for heat stress per
100,000 population. It includes all cases where heat stress is listed as the primary di-
agnosis or one of the diagnoses. [27] The data were provided by state and/or local public
health departments to CDC’s Environmental Public Health Tracking Program. These
data represent the number of emergency department visits rather than the number of
individuals. For example, a person visiting the emergency department twice in one year
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would count as two visits. Heat-related mortality (MORD) is the number of summertime
(May–September) heat-related deaths over a five-year period (2015–2019). Based on data
from death certificates, this indicator evaluates deaths that identified heat as an under-
lying or contributing cause. The data were suppressed if the number of deaths was less
than 10. Heat-related hospitalizations (HOSP) is an age-adjusted rate of hospitalizations
for heat stress per 100,000 population. Data were provided by state and/or local public
health departments, and hospital admission records were selected using primary and
other diagnosis codes. The heat-related mortality rate (MOR) is the ratio of MORD to the
state population.

Table 1. Housing characteristic variables.

Factor Abbreviation Data Source

GENERAL HOUSING
CONDITIONS

Housing age HA ResStock

Housing size HS ResStock

% Air-conditioning AC American Housing Survey

LIVING CONDITIONS

% Low-income housing PH American Housing Survey

Housing crowd ratio HCR American Community Survey

HOUSING THERMAL INERTIA

Exterior wall condition EWC American Housing Survey

Roof condition RC American Housing Survey

Housing energy efficiency HEE ResStock

CONTROL VARIABLES

Age>65 ratio A65 American Housing Survey

3. Method and Materials

As illustrated in Figure 1, the research methodology of this study was composed
of four steps. First, three categories and eight variables influencing the HRI index were
identified from the literature review, and a data set containing data from 27 states was
created. Second, three multivariable regression models of the individual HRI indexes were
developed to determine the influential variables of each HRI index. Third, using the most
influential variables identified in step two, a binary logistic regression model was generated
to assess the risk of the HRI indexes on a state level. Fourth, the proposed logistic regression
model was verified and validated using a data set with an additional eight states.
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3.1. Data Collection

Housing characteristic data were downloaded from three sources as listed in Table 1:
the 2019 American Housing Survey (AHS), the ResStock database, and the American
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Community Survey. AHS is the most comprehensive national housing survey in the
United States, which includes 3,494 variables related to housing characteristics. It has
data on general housing conditions (e.g., size and age); rooms and amenities; heating,
air-conditioning, and appliances; and housing qualities (e.g., roof condition). In addition,
household demographics and low-income rental property data can be extracted from
AHS [41]. Besides national data, AHS contained breakdown data of 11 states, the top
15 metropolitan areas (e.g., Boston-Cambridge-Newtown), and the next 20 metropolitan
areas (e.g., Kansas City) [42]. Mobile houses were excluded in this study. Data on the AC,
PH, EWC, and RC were extracted from AHS. The ResStock database is a housing stock
characteristic database created and managed by the National Renewable Energy Lab based
on the Residential Energy Consumption Survey [43]. It contains more granular information
than the AHS; for example, it has breakdown information for housing types on state and
county levels and detailed information on HEE per state and housing type. Data on HA, HS,
and HEE (measured in kWh/m2/year) were extracted from ResStock. Data on HCR were
extracted from America’s Health Rankings analysis based on the U.S. Census Bureau’s
American Community Survey [29].

Data on the three HRI indexes—MORD, EDV, and HOSP—were extracted from CDC’s
National Environmental Public Health Tracking Network on a state level. MOR was then
calculated from MORD as described in Section 2.2. However, there were missing data on
HRI measures. For example, CDC has MORD data for 36 states, EDV data for 27 states,
and HOSP data for 31 states.

In our study, since complete and matching data on the HRI indexes and housing char-
acteristic variables were needed, the 27 states’ data sets with the most complete information
and data were used for regression model analysis and logistic model analysis. Additional
missing HRI data on eight states were obtained from the Healthcare Cost and Utilization
Project (HCUP). State-level data on EDV with a diagnosis directly indicating heat exposure
were derived from the HCUP 2016–2020 State Emergency Department Databases (SEDD)
and State Inpatient Databases (SID). The eight data sets were then used to test the proposed
logistic model.

3.2. Statistical Analysis

First, a Pearson correlation matrix was created to understand the correlation coeffi-
cients between variables (refer to Table 2). The statistical significance of the correlation
was determined to be p < 0.05; it appears as an asterisk (*) next to the correlation value.
For example, the correlation between MORD and HA is 0.479; an asterisk means there is
a statistically significant positive correlation between MORD and HA, and their correla-
tion is moderate (between 0.3 and 0.69). A coefficient higher than 0.69 indicates a strong
correlation, and HA and HEE have a correlation coefficient of 0.72. The variables with a
statistically significant correlation were then used in the next step to create a regression
model. As illustrated in Table 2, HA, HEE, and HCR are statistically correlated with
MORD; HA and HEE are statistically correlated with MOR; and HA, HEE, RC, and AC
are statistically correlated with EDV. Although EDV and MOR are correlated with HOSP,
since this study focuses on the housing characteristics’ influence on HRI, this correlation
among HRI measures was not further investigated in the regression model. The same
logic was applied to the correlations among different housing characteristics. The further
investigated variables are highlighted in Table 2. There were no housing characteristics
statistically correlated with HOSP; therefore, HOSP was excluded in the second step for
regression model analysis.

In step two, multivariable regression analysis was used to determine which variables
in a model had a significant impact on the HRI index. After determining the influential
predictors (significant variables), a multicollinearity test was used to determine the depen-
dence of those variables. Variables that were highly dependent on other variables (VIF > 10
was used as a cut score) were ruled out. The multivariable regression analysis answers the
following questions: (1) whether the HRI index is correlated with housing characteristic
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variables, (2) which housing characteristic variables are correlated with which HRI index,
and (3) the relative influence of each variable on the variance in the HRI index. Three
separate regression models were created and adjusted for A65 (refer to Equations (1)–(3)).
MORD, EDV, and MOR were the dependent health outcomes.

Table 2. Pearson correlation matrix.

HRI Index Housing Characteristics

MORD HOSP EDV MOR HA HEE HCR (HS) RC (AC) EWC (PH) A65

MORD 1

HOS 0.349 1

EDV 0.161 0.316 1

MOR 0.924* 0.429* 0.261 1

HA −0.479 * −0.228 −0.393 * −0.45 * 1

HEE −0.457 * −0.216 −0.431 * 0.35 * 0.72 * 1

HCR 0.521 * −0.089 −0.168 0.224 −0.04 −0.34 1

HS −0.143 −0.049 −0.107 −0.104 0.38 * −0.07 0.01 1

RC 0.526 0.015 0.497 * 0.086 −0.25 −0.16 * −0.10 −0.05 1

AC 0.138 0.026 0.392 * 0.140 −0.46 * −0.12 −0.16 −0.49 * 0.29 1

EWC 0.081 0.016 0.315 0.176 −0.22 0.07 −0.31 * −0.20 0.72 * 0.43 * 1

PH −0.101 −0.100 −0.032 −0.009 0.47 * 0.43* −0.11 0.08 −0.26 0.23 −0.10 1

A65 −0.061 −0.061 −0.157 0.003 0.14 0.17 −0.23 −0.05 −0.11 0.15 −0.01 0.31 1

* significant values.

For MORD,
Yi = β0 + β1(HA) + β2(HEE) + β3(A65) + µi (1)

For EDV,

Yi = β0 + β1(HA) + β2(HEE) + β3(RC) + β4(AC) + β4(A65) + µi (2)

For MOR,
Yi = β0 + β1(HA) + β2(HEE) + β3(A65) + µi (3)

where Yi is the HRI index per state, β1 to βx are the coefficients of variables, and µi is the
random effect of intercept for the state.

The most influential variables identified from the regression model were then used to
create the logistic model in step three. The difference between a logistic regression model
and linear regression model is the dependent variable [44]. In the former, the dependent
variable is binary or dichotomous. The logistic model created is illustrated in Equation (4).
The goal of using a logistic model was to verify whether the HRI index could be predicted
based on the identified housing variables (from the regression model).

E (1/0) = β0 + β1X1 + β2X2 + µi (4)

where E denotes the possibility of a high risk in the HRI index (MORD, EDV, MOR): = 1 for
a high risk and 0 = for a low risk. The threshold for determining the high and low risks
is explained in Section 4.6 βo is the coefficient of the constant term, βi denotes a model
parameter (the most influential variable), X is a value of the independent variable, and µi
as is the error term. For testing the logistic model, we used the eight remaining states.

4. Results and Findings

The findings obtained by analyzing the influential housing variables, in relation to the
HRI indexes in 27 states, are summarized in this section. First, a descriptive analysis of
housing characteristics in those states is presented. Then, variables contributing to the three
HRI indexes and their influence are discussed based on regression model results. Lastly,
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the validity and uncertainty of the housing characteristic variables in predicting the HRI
index are discussed based on logistic model results.

4.1. Descriptive Statistics of Housing Characteristics

To better understand the housing characteristic variations among the states, the general
housing conditions, living conditions, and housing thermal inertia are presented in Table 3.
The housing types included in this study are single-family detached, single-family attached,
multifamily 2–4 units, and multifamily ≥5 units. The definitions and typology of the
housing types are used in the Residential Energy Consumption Survey and adopted by
AHS. HA is measured by subtracting the average built year from 2021. For example, using
the ResStock database, homes in Arizona built before 1940 account for 2% of the total state
housing, while those built between 1940 and 1979 account for 32% and those built after
1979 account for 66%. Aggregating the average HA of each age bucket results in an average
HA of 48 in Arizona. HS is the aggregated average HS in the state, and the HCR is defined
as the percentage of occupied housing units with more than one person per room. RC
is measured by the percentage of housing that has physical problems with the roof (e.g.,
sagging roof, missing roofing material, hole in the roof), and EWC is measured by the
percentage of housing that has physical problems with an exterior wall (e.g., missing bricks,
sidings, water leakage).

Table 3. Housing characteristic variables per state.

General Housing Conditions Living Conditions Housing Thermal Inertia

State
Housing Age

(HA)
Years

Housing Size
(HS) ft2

Prevalence of
Air-Conditioning

(AC) %

Housing
Crowding

Ratio (HCR)

Percentage of
Low-Income

Housing (PH) %

Exterior Wall
Condition
(EWC) %

Roof
Condition

(RC) %

Housing Energy
Efficiency
(kBtu/ft2)

AZ 48 19,797 97% 2.73 30% 6% 4% 27.29

CA 56 17,823 76% 2.95 15% 4% 4% 28.88

CO 52 13,636 82% 2.65 10% 4% 2% 49.42

CT 60 28,280 63% 2.43 25% 4% 3% 54.50

FL 50 22,335 99% 2.48 14% 4% 4% 27.39

IA 63 22,448 98% 2.00 38% 6% 6% 59.92

KY 55 25,862 90% 2.61 18% 7% 5% 41.84

LA 54 20,955 99% 2.65 45% 4% 4% 28.66

KS 59 19,633 99% 2.46 37% 6% 4% 54.26

ME 59 19,340 94% 2.07 35% 7% 5% 67.85

MD 56 18,331 96% 2.59 41% 5% 4% 47.30

MA 63 26,025 87% 2.50 48% 3% 1% 60.06

MI 60 16,038 94% 2.34 46% 6% 4% 67.51

MN 57 21,483 97% 3.09 35% 6% 3% 68.44

MO 56 20,747 92% 2.39 17% 6% 5% 51.92

NH 57 32,970 87% 2.35 29% 7% 7% 55.60

NJ 60 21,624 52% 2.62 16% 4% 4% 55.63

NY 65 24,808 88% 2.54 52% 4% 3% 62.42

NC 51 17,869 99% 2.70 21% 4% 5% 31.91

OR 56 25,080 79% 2.71 29% 4% 2% 34.09

PA 56 25,080 92% 8.33 16% 8% 5% 34.09

RI 62 26,361 24% 2.40 25% 4% 3% 59.19

SC 51 17,599 93% 2.79 10% 6% 6% 29.07

TN 52 28,653 99% 2.65 31% 7% 6% 36.51

VA 53 21,072 98% 2.65 39% 4% 2% 41.08

WA 63 63,461 44% 2.79 30% 3% 3% 36.63

WO 60 25,041 94% 2.29 28% 4% 3% 64.18

From Table 3, several observations can be made. Washington state has the largest
average HS (63,461 ft2), one of the oldest housing stocks (63), and the least problems with
roofs and walls, while Colorado has the smallest HS (13,636 ft2) and the third youngest
housing stock (53). California has the highest HCR (8.2%), followed by New York (4.9%)
and Arizona (4.3%). Pennsylvania has the highest problematic EWC (8%), followed by
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Kentucky (7%), Maine (7%), New Hampshire (7%), and Tennessee (7%). New Hampshire
has the highest problematic RC (7%), followed by Iowa (6%), South Carolina (6%), and
Tennessee (6%). Poor RC and EWC are an indication of housing with a low thermal inertia.
HEE does not always follow the trend as housing ages, indicating that older housing does
not necessarily equal poor thermal inertia. A higher HEE value denotes housing with less
energy efficiency, while higher energy use during the summer signifies housing with a
lower thermal inertia. For example, Minnesota has the lowest HEE (68.44 kBtu/ft2), which
is two times lower than that of California (28.88 kBtu/ft2), while their respective housing
ages are 57 and 56. Lastly, AC varies from 99% to 44%. Overall, there is no general pattern
or trend that can be observed directly from the collected housing characteristic data.

4.2. Heat-Related Illness (HRI) Index

Table 4 lists the three HRI indexes on a state level. Two observations can be made.
First, the death count does not directly relate to EDV; for example, Louisiana has the highest
EDV (57.39) but a relatively low MORD (58), while Arizona has a median EDV (31.45) but
the highest MORD (890). Second, despite both measuring heat-related deaths, MORD and
MOR do not follow the same pattern. Except for Arizona ranking first for both MORD and
MOR, the other states have different rankings in the two indexes. For instance, California
has the second highest MORD but has a MOR in the lower quartile.

Table 4. Heat-related illness (HRI) indexes.

Heat-Related Illness Measures

State Heat-Related Mortality
(MORD)

Heat-Related Mortality
Rate (MOR)

Heat-Related Emergency
Department Visits (EDV)

Heat-Related Hospitalizations
(HOSP)

AZ 890 12.44 31.45 7.28

CA 369 0.93 13.50 1.76

CO 17 0.29 10.61 0.74

CT 45 1.25 13.01 12.70

FL 131 0.61 25.69 3.95

IA 23 0.72 33.56 1.46

KY 39 0.87 35.74 3.72

LA 58 1.25 57.39 3.64

KS 28 0.95 33.48 4.66

ME 9 0.66 17.50 0.87

MD 95 1.54 19.86 2.29

MA 9 0.13 10.80 1.27

MI 25 0.25 13.09 1.59

MN 28 0.32 14.69 1.27

MO 91 1.48 43.16 4.92

NH 9 0.65 14.46 0.87

NJ 26 0.28 12.30 1.48

NY 75 0.37 10.06 1.72

NC 66 0.63 24.96 1.40

OR 18 0.42 14.82 2.20

PA 85 0.65 15.00 0.84

RI 8 0.82 13.88 1.35

SC 67 1.31 35.40 3.90

TN 87 1.26 40.08 3.95

VA 58 0.67 13.73 3.00

WA 172 2.23 17.34 0.99

WI 134 2.27 11.69 1.18
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4.3. Regression Analysis: Emergency Department Visits (EDV)

General housing conditions and housing thermal inertia were predictors for state-level
EDV (Prob > F < 0.05). As listed in Table 5, the value of Prob(F) (column 4) is the same
as the p-value, and a value <0.05 shows the regression model has statistical significance.
The correlation coefficient (column 7) indicates the strength of a relationship between two
variables, where the higher the value, the stronger the relationship. The regression results
show that 43.78% of EDV variability was explained by four combined variables: HA, HEE,
RC, and AC. Among the four variables, only RC was statistically significant (p < 0.05), and
all variables were independent of each other (VIF<10). The coefficients of the variables
show that RC has a positive correlation with EDV, which indicates that worsening roof
conditions lead to lower thermal inertia of housing and, consequently, more frequent EDV.
HA has a negative correlation with EDV, which implies that aging buildings are not prone
to heat-related stress. The negative correlation between HEE and EDV shows that energy
efficiency is an indication of updated mechanical (including air-conditioning) systems,
where the better functioning an air-conditioning system, the higher the mitigation function
it plays in HRI. The overall interpretation of the regression model is that worsening roof
conditions lead to a higher EDV. According to regression analysis results, RC was brought
into the logistic model to predict EDV.

Table 5. Regression analysis results: heat-related emergency department visits (EDV).

Regression
Categories Variables R-Squared Prob > F t p-Value Coefficient

General housing
conditions

HA

0.4378 0.0103 *

0.60 0.556 −0.442

HEE −1.86 0.079 −0.396

Housing thermal
inertia

RC 2.24 * 0.036 * 328.30

AC 1.01 0.134 19.90
* significant values.

4.4. Regression Analysis: Heat-Related Mortality (MORD)

General housing conditions and living conditions were predictors for state-level
MORD (Prob > F < 0.05). As listed in Table 6, the regression results show that the combined
variables—HA, HEE, and HCR—produced a 48.33% MORD variance. Both HEE and HCR
have a positive correlation with MORD, while HA has a negative correlation with MORD.
Among the three variables, HA and HCR have a statistical significance (p < 0.05). The
interpretation is that the younger the housing age, the more crowded living condition,
and the higher MORD. For the correlation coefficient, HCR has a much higher influence
compared to HA. According to the regression analysis results, HA and HCR were brought
into the logistic model to predict MORD.

Table 6. Regression analysis results: heat-related mortality (MORD).

Regression Categories Variables R-Squared Prob > F t p-Value Coefficient

General housing
conditions

HA
0.4833 0.0014 *

−2.34 * 0.0928 * −20.215

HEE −0.41 0.717 1.222

Living conditions HCR 3.18 * 0.04 * 67.084
* significant values.

4.5. Regression Analysis: Heat-Related Mortality Rate (MOR)

General housing conditions and housing thermal inertia were not predictors for state-
level MOR (Prob >F >0.05). As listed in Table 7, HEE and HA do not have statistical
significance (p > 0.05). In addition, the R-squared value and coefficient level is low. These
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observations indicate that the combined influence of HA and HEE are not significant
enough to predict MOR. Accordingly, no logistic model was proposed for MOR.

Table 7. Regression analysis results: heat-related mortality rate (MOR).

Regression Categories Variables R-Squared Prob > F t p-Value Coefficient

General housing
conditions HA

0.2024 0.0663

−1.61 0.122 −0.872

Housing thermal
inertia HEE −0.16 0.874 −0.11

4.6. Statistic Results: Logistic Model

The logistic regression model was used to verify the influence of the housing charac-
teristic variables on the likelihood of a high risk of EDV and MORD. Based on the results of
the multivariable regression analysis, the RC was identified and used to create the logistic
regression model to predict the risk of EDV. HA and HCR were identified and used to
predict the risk of MORD. In this step, we recoded the EDV, assuming EDV < 22 indicates
a low-risk state, while EDV > 22 signifies a high-risk state. A threshold of 22 was used
because it was the median EDV value of the 36 states with EDV data. MORD was also
recoded using a cut-off value of 40, which is the median MORD value of the 36 states with
MORD data.

Table 8 demonstrates a statistical significance of the prediction of MORD using HA
and HCR; the corresponding Prob > χ2 values are less than 0.05. A significance level of 0.05
indicates there is a 5% risk of falsely concluding that an association exists; therefore, we
concluded that the logistic model for MORD had a statistical significance. A high risk of
mortality was positively associated with HCR (OR = 60.70, 95% CI:1.23) and negatively
related to HA (OR = 0.895, 95% CI:0.612), thus, HCR is more influential than HA. Table 8
also shows there is no statistical significance for the prediction of EDV using RC, since the
corresponding Prob > χ2 values are more than 0.05.

Table 8. Logistic regression model for heat-related mortality (MORD) and heat-related emergency
department visits (EDV).

Odds Ratio p-Value 95% CI LR χ2 Prob > χ2 Log Likelihood

Heat-related mortality (MORD)

HA 0.895 0.04 * 0.612
6.28 0.0433 * −2.153

HCR 60.698 0.006 * 1.23

Heat-related emergency department visits (EDV)

RC 767,000 0.022 * 790,820 7.73 0.0054 −14.832
* significant values.

In this proposed logistic model, two predictors (HA and HCR) have a statistically
significant association with the binary result of MORD. Therefore, after determining the
significance, we then examined the classification table which is shown in Table 9. Of the
27 states, 13 were high-risk states and 14 were low-risk states. The logistical model accu-
rately predicted 9 out of 13 high-risk states, and 11 out of 14 low-risk states. The aggregated
accuracy of predication was 74.07%. These results indicate that the proposed logistic model
with two predictors has a high success rate in predicting the risk of MORD on a state level.
The interpretation is that the younger the housing, the more crowded the living conditions,
and the higher the risk of MORD. Moreover, the accuracy of prediction for high-risk states
(75%) was slightly higher than that of low-risk states (73.33%).
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Table 9. Classification table for logistic model results.

Successful
Predictions

Failed
Predictions Total # of States Percentage

Correct

High Risk 9 4 13 75%

Low Risk 3 11 14 73.33%

Total 12 15 27 74.07%

Lastly, we used the eight remaining states to test the logistic model. The model
correctly predicted 100% of the high-risk states, but only correctly predicted 25% of the low-
risk states. Figure 2 illustrates the test logistic model results; the ROC curve can reasonably
predict the likelihood of a high-risk state for MORD, as the higher the ROC curve, the
better the model fits the data. The area under the curve (AUC) is 0.875, larger than 0.5,
which indicates that the model is much better than randomly estimating the outcome. A
margin impact analysis on the logistic model was calculated to describe the average effect
of changes in variables (HA and HRC) on changes in the probability of outcome (MORD),
providing a direct and easily interpreted answer to the reliability of the logistic regression
model [45]. For 10% of changes in HA and HRC, the probability of a high risk of MORD
increased by 3.6%. The results showed that the effect of changes on these two housing
characteristic variables on the high MORD is significant. Based on the limited testing, we
can hypothesize that a combination of HA and HCR could be used to study the likelihood
of high-risk states for MORD. Additional testing for a larger data set of states would be
beneficial to refine and validate the model.
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5. Conclusions
5.1. Study Contribution

Using a data set of 27 states, this study identified the correlation of housing character-
istic variables in three categories, including general housing conditions, living conditions,
and housing thermal inertia, with heat-related mortality (MORD), heat-related mortality
rate (MOR), and heat-related emergency department visits (EDV). Out of the five identified
influential variables (housing age (HA), housing energy efficiency (HEE), housing crowd-
ing ratio (HCR), roof condition (RC), and prevalence of air-conditioning (AC), RC has a
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statistical significance correlated with EDV; HA and HCR have a statistically significant cor-
relation with MORD. The findings are discussed in three housing characteristic categories
in the following sections.

The first two categories are closely related, with findings of the correlation between HA
and HCR in line with previous studies. Moreover, the combination of these two variables
can be used as predictors for the risk of MORD; these findings can help state agencies
identify vulnerable communities and populations affected by extreme heat events. The
regression model results of this study indicate that HA is negatively related to a higher
risk of MORD. This differs from previous research and the common perception that older
housing is linked to less thermal comfort. Findings from this study indicate that younger
and newer housing may have less thermal inertia than older housing. This novel finding
can be validated with additional data.

Although the individual correlations of HEE and AC were not found to be statistically
significant to HRI, when combined with HA and HCR they were influential to MORD
and EDV. This empirical evidence further supports the concept of the built environment
determined health and climate change-exacerbated health outcomes.

The third category, housing thermal inertia (including RC), was not closely examined
in previous research. This study contributes new findings on the role of housing thermal
inertia in mitigating heat-related illness. The strong correlation between RC and EDV
(from the regression model analysis) shows promise in mitigating heat stress by making
roofs more thermally resistant. Relatively low-cost and low-tech solutions include adding
additional insulation in the attic space or underside of the roof ceiling, or painting flat
roofs in light colors and high reflective coating materials, which are readily available for
most communities.

Other findings that do not align with previous research include the lack of correlation
between the percentage of low-income housing (PH) and heat-related illness. This finding
could help to dispel the perception that housing quality and thermal inertia equate to
expensive construction. In addition, unlike RC, the exterior wall condition (EWC) did not
correlate with any of the HRI indexes. There are two hypotheses: first, using an exterior
condition as a proxy for thermal inertia is not reliable, and second, more indoor heat
exposure is mitigated through the roof rather than the walls. Further data collection and
analyses are needed to validate these hypotheses.

Overall, the results from this study provide useful insight, helping building owners
and policy makers to make decisions or develop state-wide policies to support building
upgrades or retrofits that adapt to extreme heat conditions. To the authors’ knowledge, this
study is the first multistate study focusing on the connection between heat-related illness
and housing characteristics. As climate change related, extreme heat events are projected to
worsen for at least the next three decades [46], the findings from this study provide useful
information to help health systems become more heat- resilient by integrating housing
physical conditions as a mitigator. The results also reinforce the benefits of using data
analytics to understand the correlation between housing characteristics and HRI. Findings
of some less impactful variables are unexpected, but they are useful for providing direction
for future studies.

5.2. Study Limitations

This study had four main limitations. First, our analysis data were limited to the state
level. Data sets of 27 states were used for multivariable regression analysis and for building
a logistic regression model. The limited data and samples may create selection bias and
consequently affect the reliability of the analysis results. Therefore, the next step should be
to expand the data set to include more states. Second, the selection of housing characteristic
variables in this study may have influenced the findings. There are other housing variables
besides the three categories in this study that impact HRI. To rule out other influencers,
additional housing variables should be examined, especially variables contributing to the
thermal inertia of housing, such as window (glass) areas that have direct exposure to sun
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and heat. A more in-depth literature review would help to extract additional variables to
be included in this study. Third, data availability largely constrained the robustness of the
analysis results. Since the data were collected and extracted from different sources, certain
information did not match exactly. For example, EDV data from CDC was from 2015 to 2019,
whereas EDV data extracted from HCUP was from 2016 to 2020. In addition, HRI data were
not available for all states. It may be difficult to retrieve data for certain states with cold
climates that have not tracked health data related to heat events, creating potential barriers
for future research. Moreover, in the CDC database, there are no separate categories that
differentiate outdoor heat-related data from indoor-heat-related data. The assumption used
in this study is that during extreme heat conditions, most of the population is sheltered
indoors. More granular and reliable data is needed for the specific purpose of studying
indoor heat-related illness. To the authors’ knowledge, there is no such data set yet, which
would be the next research step. Lastly, in this study, human factors were not included (e.g.,
activity level, underlying health conditions); in future studies, these variables can be used
as control variables and be integrated into a regression model.

6. Conclusions

Heatwaves are the leading cause of death among weather events worldwide, in both
developed and developing countries. The increase in extreme temperatures is expected
to lead to a rise in heat related illness and deaths. Most research has focused on outdoor
heat exposure and mitigation strategies, with studies on housing characteristics and their
correlation with HRI being sparse. In this empirical study, three housing characteristic
categories (general housing conditions, living conditions, and housing thermal inertia)
and eight variables were analyzed using a multivariable regression model and a logistic
model. Three variables (HA, HCR, and RC) were found to be correlated with a risk of HRI
indexes. The logistic regression model was created using the three variables to predict the
likelihood of the risk of EDV and MORD on a state level. The proposed model correctly
predicted 100% of the high-risk states for MORD for the eight states tested. Overall, this
analysis provides new evidence about the housing characteristic variables that influence
HRI. The outcomes also reinforce the concept of built environment determined health,
and demonstrate that the built environment, especially housing, should be considered
as part of the techniques for mitigating climate change exacerbated health conditions.
Those findings are useful for researchers from both the architectural engineering field and
epidemiology field.
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