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Abstract: Cutaneous squamous cell carcinoma (CSCC) is an epidermal skin cancer that evolves
from normal epidermis along several pre-malignant stages. Previously we found specific miRNAs
alterations in each step along these stages. miR-199a-3p expression decreases at the transition to later
stages. A crucial step for epithelial carcinoma cells to acquire invasive capacity is the disruption
of cell–cell contacts and the gain of mesenchymal motile phenotype, a process known as epithelial-
to-mesenchymal transition (EMT). This study aims to study the role of decreased expression of
miR-199a-3p in keratinocytes’ EMT towards carcinogenesis. First, we measured miR-199a-3p in
different stages of epidermal carcinogenesis. Then, we applied Photoactivatable Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) assay to search for possible biochemical
targets of miR-199a-3p and verified that Ras-associated protein B2 (RAP2B) is a bona-fide target of
miR-199a-3p. Next, we analyzed RAP2B expression, in CSCC biopsies. Last, we evaluated possible
mechanisms leading to decreased miR-199a-3p expression. miR-199a-3p induces a mesenchymal to
epithelial transition (MET) in CSSC cells. Many of the under-expressed genes in CSCC overexpressing
miR-199a-3p, are possible targets of miR-199a-3p and play roles in EMT. RAP2B is a biochemical
target of miR-199a-3p. Overexpression of miR-199a-3p in CSCC results in decreased phosphorylated
focal adhesion kinase (FAK). In addition, inhibiting FAK phosphorylation inhibits EMT marker
genes’ expression. In addition, we proved that DNA methylation is part of the mechanism by which
miR-199a-3p expression is inhibited. However, it is not by the methylation of miR-199a putative
promoter. These findings suggest that miR-199a-3p inhibits the EMT process by targeting RAP2B.
Inhibitors of RAP2B or FAK may be effective therapeutic agents for CSCC.

Keywords: cutaneous squamous cell carcinoma (CSCC); miR-199a-3p; epithelial-mesenchymal
transition (EMT); RAP2B

1. Introduction

Skin cancer is one of the most common human malignancies worldwide. The three
major forms of skin cancer are basal cell carcinoma, cutaneous squamous cell carcinoma
(CSCC), and melanoma [1]. The development and progression of CSCC are strongly asso-
ciated with chronic exposure to sunlight ultraviolet radiation and thus it is preferentially
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located on sun-exposed skin parts of the body [2,3]. The process underlying the transforma-
tion of a healthy epidermis into CSCC, is a multi-step process with several pathologically
defined stages [4,5]. Healthy skin evolves to solar-elastosis (SE) and then to actinic-keratosis
(AK) with varying degrees of keratinocyte (KC) dysplasia, termed keratinocytic intraepi-
dermal neoplasia (KIN). KIN degree is defined according to the depth of involvement of
dysplastic KC in the epidermis. The most advanced stage is CSCC [4–7].

miRNAs are small, noncoding, ~22 nucleotide RNA molecules that function as reg-
ulators of gene expression [8–10]. miRNAs are involved in many biological processes.
miRNAs affect cancer development, progression, and metastasis by altering the expres-
sion of both oncogenes and tumor suppressor genes [8,10,11]. Tumorigenesis is facilitated
by the loss of certain miRNAs. For example, miR-15/16 cluster in chronic lymphocytic
leukemia [12], miR-34a in uveal melanoma [13], and miR-31 in mesothelioma [14]. We
found that the expression of a large cluster of miRNAs on human chromosome 14q32 is
silenced in melanoma [15]. In contrast, cancer advances by overexpression of miR-17~92
cluster members, which promotes migration and invasion in several malignancies [16–19].

Recently we showed that there are major alterations in miRNAs expression along the
malignant evolution of KC [20]. Moreover, we could define specific miRNAs change at
specific stages of this transformation [20]. One of those miRNAs is miR-199a-3p, whose
expression decreases at the transition from AK-KIN1/2 to AK-KIN3 [20]. MiR-199a-3p can
be transcribed from two genes: miR-199a-1 at chromosome 19p13.2, in one of the introns
of the dynamin2 (DMN2) gene and miR-199a-2 at chromosome 1q24.3, within the long
non-coding-RNA gene dynamin3 opposite strain (DNM3OS). The main transcript from
both genes is miR-199a-3p.

In our previous work, miR-199a-3p expression was one of the highest-expressed
miRNAs in healthy skin biopsies [20]. MiR-199a-3p expression decreases in hepatocellular
carcinomas [21], prostate cancer [22], endometrial cancer [23], CSCC [24], and in testicular
malignancy [25,26]. In contrast, increased expression of miR-199-3p was found in gastric
cancer [27].

2. Results
2.1. miR-199a-3p Expression Is Decreased at the Advanced Stages of KC Malignant Evolution

Total RNA was extracted from FFPE biopsies of healthy epidermis, severe SE, AK-KIN1/2,
AK-KIN3, and well-differentiated CSCC, and subjected to qRT-PCR with miR-199-3p specific
primers. As shown in Figure 1A, there is a significant decrease in miR-199a-3p expression along
the normal to CSCC axis, most strikingly in the AK-KIN1/2 to AK-KIN3 transition.

To study the biological effects of miR-199a-3p on CSCC, we first analyzed the expres-
sion of miR-199a-3p in different CSCC cell-lines in comparison to healthy primary human
KC cells (PHK). Shown in Figure 1B, all CSCC cell-lines express much less miR-199a-3p
compared to PHK.

2.2. miR-199a-3p Expression Is Not Correlated with the Expression of DNM3OS or DNM2

In the human genome, miR-199a-3p is encoded from miR-199a-1 in chromosome-19
within an intron of the DNM2 gene, and from miR-199a-2 in chromosome-1 within an
intron of the DNM3OS gene. One possibility for the decrease of miR-199a-3p expression
in CSCC is decreased expression of these two genes. Hence, we compared the expression
levels of these two genes between PHK to CSCC cell-lines, and between tumor or healthy
skin biopsies. We found that the expression of DNM3OS, a non-coding RNA, expression
increases in CSCC biopsies compared to healthy skin biopsies (Figure 1C). Likewise, in
CSCC cell-lines, DNM3OS also increases compared to PHK but not statistically significantly
(Figure 1D). We did not find any difference in the expression of DNM2 between tumor
to healthy biopsies (Figure 1E). DNM2 decreased in CSCC cell-lines compared to PHK
(Figure 1F), but not to the same extent as miR-199a-3p (Figure 1B). The above results suggest
that the decreased expression of miR-199a-3p in CSCC is not because of the decreased
expression of these two genes.
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Figure 1. miR-199a-3p expression in different development stages towards CSCC and in CSCC cell-
lines. (A) miR-199a-3p expression along different stages in the malignant evolution of CSCC. Results
are normalized to Rnu43 (SNORD43). Each diamond represents an individual sample. The average
is denoted by a horizontal line (the number of samples tested in each stage is written in parentheses
below). (B) The expression levels of miR-199a-3p in various CSCC cell lines and PHK culture as
assessed by qRT-PCR and normalized to Rnu48. (C) The expression of DNM3OS in healthy skin
biopsies compared to CSCC biopsies (D) The expression of DNM3OS in PHK compared to CSCC
cell lines. (E) The expression of DNM2 in healthy skin biopsies compared to CSCC biopsies. (F) The
expression of DNM2 in PHK compared to CSCC cell lines. Error bars show ± SEM. p-values are
calculated via one-way ANOVA, and Tukey’s method was implemented as a correction for multiple
comparisons. ** p < 0.01, *** p < 0.001. p-values are calculated via One-Way ANOVA, and Tukey’s
method was implemented as a correction for multiple comparisons. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.3. The Role of DNA Methylation in miR-199a-3p Expression

To analyze whether methylation plays a role in the silencing of miR-199a-3p in CSCC,
six different CSCC cell-lines were treated with 5-AZA-2′deoxycytidine (5-AZA) contin-
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uously for five days. Shown in Figure 2A, in all cells there was a significant increase in
miR-199a-3p expression compared to untreated cells.

Although the expression of miR-199a-3p seems to be regulated by methylation, both
the expression of DNM2 and DNM3OS were not affected by 5-AZA treatment (Figure 2B).
Reinforcing the conclusion that the expression regulation of miR-199a-3p is detached from
the expression of both DNM2 and DNM3OS.

2.4. miR-199a-1 and miR-199a-2 Putative Promoters Methylation

From the 5-AZA results, we expected that both or at least one of miR-199a-1 or miR-
199a-2 promoters will be unmethylated in PHK and healthy skin biopsies, and methylated
in CSCC lines and biopsies. However, it seems that the miR-199a-1 putative promoter
region is methylated in all samples (Figure 2C). Remarkably, the miR-199a-2 putative
promoter region was found to be un-methylated in three different CSCC biopsies. In
contrast, in most CSCC cell-lines, this region is methylated. Moreover, in PHK and in
healthy skin biopsies, this region is methylated (Figure 2C).

2.5. Effects of miR-199a-3p in CSCC Cells

To determine the functional role of miR-199a-3p in CSCC, we generated CSCC cell-
lines, stably expressing the pre-miR-199a-3p or a control vector (Figure 3A). We observed
a change in the cellular morphology; miR-199a-3p transfected cells acquired epithelial
morphology, in contrast to the typical spindle-shaped mesenchymal cell morphology of
control cells (Figure 3B). This alteration is suggestive of mesenchymal to epithelial transition
(MET) activated by miR-199a. Using the xCELLigence real-time-cell analyzer system, we
found that miR-199a effect CSCC migration and proliferation. Whereas control-transfected
cells, exhibited high proliferation and migration ability, miR-199a transfected cells displayed
a significant reduction in both proliferation and migration (Figure 3C,D).

2.6. Effect of miR-199a-3p on MET/EMT Molecular Markers

To confirm that indeed the morphological changes we observed are MET, we compare
the expression of known EMT/MET markers in MET1 and SCL-II overexpressing miR-199a
to control MET1 and SCL-II, by qRT-PCR (Figure 3E,F) and Western blot (WB) analysis
(Figure 3G). Shown in Figure 3 mRNAs of SMAD3, SMAD4, and SERPINE1 decrease
significantly in both cells overexpressing miR-199a-3p. MiR-199a-3p expression in MET1
cells results in a significant decrease in VIM expression, while SCL-II does not express VIM
(Figure 3G). In SCL-II overexpressing miR-199a-3p, there is a significant decrease in the
expression of COL4A1, ID1, and ID2. The WB analysis reinforces the mRNAs’ findings,
as the protein levels of several other EMT markers; β-Catenin, Slug, and N-Cadherin
decreased in cells overexpressing miR-199a-3p (Figure 3G).

2.7. Targets of miR-199-3p

To understand the molecular mechanism by which miR-199a-3p contributes to the
MET phenotype, we searched for its potential targets using two different experimental
systems. First, we analyzed an mRNA expression array of cells overexpressing miR-
199a-3p and compared it to the matching control cells. Cluster analysis reveals that cells
overexpressing miR-199a-3p are more closely clustered together than each of the lines is
to its matching control cell (Supplementary-Data Figure S1A). Using a cut-off of 2-fold
change in expression, the expression of 1494 genes increases in SCL-II cells and 995 in MET1
overexpressing miR-199a-3p. Of these genes only 395 increases in both cells. Likewise,
1499 genes decrease in SCL-II cells and 1185 in MET1. Of these genes, only 297 decreases in
both cells (Supplementary-Data Figure S1B). The EMT-related genes: SMAD4, SERPINE1,
SERPINE2, ID1, ID2, and COL4A1 decrease in both CSCC lines, similar to the qRT-PCR
results. (Table S1).
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Figure 2. DNA methylation affects miR-199a expression. (A) Six CSCC lines were treated with 5-AZA
for 5 days. Next, RNA was extracted from both treated and control untreated cells and was subjected
to qRT-PCR as written in Figure 1. The mean −/+ SD was calculated from at least 6 independent
experiments. Statistics were performed using a t-test (* p < 0.05) (** p < 0.01) (B) The effect of treatment
with 5-AZA for 5 days on the expression of DNM2 and DNM3OS. (C) In the upper panel drawn
a scheme of the genomic region of miR-199a-1 and miR-199a-2 genes and the location of the CpG
island that was analyzed. Genomic DNA was extracted from three different PHK lines and three
different CSCC cell lines or 3 healthy skin biopsies and 3 CSCC biopsies. The genomic DNA was
subjected to bisulfite treatment. The treated DNA was subjected to PCR amplification and cloned
into PUC19 (see Materials & Methods). From each sample at least 5 sequencings were performed
(gray square represents methylated C residues, the white square represents un-methylated C residue,
red represents unclear seq of the residue or missing C residue).
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Figure 3. Phenotypic effects of miR-199a-3p on CSCC cells. (A) qRT-PCR analysis of miR-199a-3p
normalized to Rnu43 in control or MET1 or SCL-II transfected with a plasmid expressing miR-199a-1.
(B) Morphologic changes were consistent with MET in MET1 and SCL-II cells; the same number
of cells was seeded initially in each sample. The photographs were taken under a phase-contrast
microscope (magnification ×10). The growth (C) and migration (D) of MET1 and SCL-II cell-lines
stably transfected with the control vector (red) or vector expressing mir-199a (blue) was assessed with
xCELLigence TM real-time system. Statistics were performed using two-way ANOVA and Bonferroni
post hoc corrections; * p < 0.05, ** p < 0.01, *** p < 0.001. The mRNA levels of EMT-related effectors in
cells overexpressing miR-199a-3p. RNA extracts from (E) MET1 and (F) SCL-II cells were subjected to
qRT-PCR with specific primers (see Methods). mRNA expression was calculated relative to RPLP0
expression. The expression of each mRNA, in cells overexpressing miR-199a-3p was relative to its
expression in control cells. Values are expressed as the mean + SD of three independent experiments,
* p < 0.05, ** p < 0.01, *** p < 0.001. (G) Protein extracts from the named cells were subjected to WB
analysis with antibodies to the indicated proteins.
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Using the miRWalk tool, which combines miRNA-target prediction from 12 different
algorithms [28]. We found that from the 297 mRNAs whose expression decreased in both
cell-lines by at least 2-fold, 50 genes contained a putative binding site to miR-199a-3p at
their 3′UTR by at least 4 out of 12 algorithms (Supplementary-Data Table S2). Interestingly,
of these 50 genes, 33 were shown to promote EMT, proliferation, or migration of cells.

We further study two putative targets: SMAD4, which is a major player in the TGF-β
signaling and its involvement in EMT is well known [29], and Fibronectin 1 (FN1), which
is one of the molecular markers of EMT [30]. We cloned the 3′UTRs of SMAD4 and FN1
into psiCHECK-II reporter plasmids. These plasmids were transfected into SCL-II cells that
overexpress miR-199a-3p. Although FN1 and SMAD4 have at least one putative miR-199a-
3p binding site, the luciferase assay failed to suggest that either are biochemical targets of
miR-199a-3p (Figure S2A,B).

A second strategy to identify biochemical targets of miR-199a-3p in an unbiased
method is the AGO2-PAR-CLIP technique. In this method, anti-AGO antibodies, are used
to pull-down complexes of Argonaute-miRNA bound to their targeted mRNAs [31,32].
A total of 4,897,445 reads were mapped to the human genome. Most reads (3,594,003)
were annotated to miRNAs sequences and to the 3′UTR of mRNAs (413,146 reads). From
these reads, 905 were of miR-199a-3p, and 13,695 reads were mapped to mRNAs harboring
miR-199a-3p binding site(s). Of these, 4484 reads had 3′UTR annotation, arising from
50 different mRNAs (Supplementary-Data Table S2). This data is summarized in Figure 3A
and Table S3. From these 50 mRNAs, pull-down by AGO, the expression of 12 mRNAs
decreased by at least two-fold in one of the two CSCC cell-lines overexpressing miR-199a-3p
(Supplementary-Data Tables S2 and S3). Only AMIGO2 mRNA decreased in both MET1
and SLC-II by more than two-fold in cells overexpressing miR-199a-3p and was pull-down
by AGO (Supplementary-Data Tables S2 and S3).

2.8. Biochemical Targets of miR-199a-3p

PAR-CLIP provides binding evidence. However, it does not prove regulatory effects.
From, the 50 genes identified by the AGO2-PAR-CLIP 12 are known to promote EMT
(Supplementary-Data Table S3). To test whether these genes are biochemical targets of miR-
199a-3p, we cloned their 3′UTRs into psiCHECK-II reporter plasmids. These 12 plasmids
were individually transfected into overexpress miR-199a-3p SCL-II cells or control cells. The
addition of the 3′UTR of four genes-AKT, VANGL1, RAP2B, and TGFBR3 onto the reporter
plasmid decreased its expression in cells overexpressing miR-199a-3p (Figure 4B), suggest-
ing that their 3′UTR is directly targeted by the overexpressed miRNA. Of these 4 genes,
the 3′UTR of RAP2B was the most effectively repressed. Interestingly, the RAP2B sequence
that was pulled down in the PAR-CLIP assay contains a miR-199a-3p binding site that
was not predicted in silico. This is probably because this site has only six complementary
nucleotides. However, shown in Figure 3C this site is conserved in mammals.

To validate that miR-199a-3p targets RAP2B we generated in psiCHECK-WT-RAP2B-
3′UTR plasmid a mutation that substitutes the 6 nucleotides CTACTG, complementary to
miR-199a-3p seed sequence, with GGGAAA. This substitution abolished the miR-199a-
3p effect on the reporter gene expression (Figure 4D mut-RAP2B columns). Moreover,
in CSCC cells transfected with the miR-199a-3p mimic, there is a significant decrease of
RAP2B protein as shown in (Figure 4E, F). Collectively, these results prove that RAP2B is a
bona-fide biochemical target of miR-199a-3p.
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Figure 4. Summary of PAR-CLIP Ago2 assay and RAP2B is a biochemical target of miR-199a-3p.
(A) Genomic distribution of Argonaute 2 binding sites in transcript regions. Black = all cluster-
assigned PAR-CLIP reads; Green = cluster-assigned PAR-CLIP reads containing miR-199a-3p comple-
mentary regions. RAP2B is a biochemical target of miR-199a-3p. (B) SCL-II cells stably expressing
miR-199a (red columns) or control vector (blue columns) were transfected with psiCHECK-II vectors
with 3′UTR of the named genes (fused to Renilla luciferase). 24 h after transfection cell lysates were
subjected to a dual luciferase assay. The ratio of luminescence of renilla/firefly luciferase obtained in
control cells for each gene was set as 100% and the results are the ratio of expression of renilla/firefly
luciferase in cells expressing miR-199a-3p relative to controls. The mean ± SD was calculated from
3 independent experiments. Statistics were performed with t-tests * p < 0.05, *** p < 0.001. (C) The con-
servation of a RAP2B 3′UTR region that contains a putative miR-199a-3p binding site and was pulled
down in the PAR-CLIP assay is shown in mammals. (D) SCL-II cells stably expressing miR-199a-3p
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(red columns) or control vector (blue columns) were transfected with psiCHECK-II (psi columns)
or with a psiCHECK-II vector with WT or mutated 3′UTR of RAP2B fused to renilla luciferase
(WT-RAP2B or MUT columns, respectively). The ratio of expression of renilla/firefly control cells was
set as 100% and the results are the ratio of expression of renilla/firefly luciferase in cells expressing
miR-199a-3p relative to it. The mean ± SD was calculated from 6 independent experiments. Statistics
were performed with t-tests * p < 0.05, *** p < 0.001. (E) SCL-II cells were transfected with 10 nM of
miR-199a-3p mimic RNA or with 10 nM of scrambled control RNA. WB analysis of the RAP2B protein
is shown 48 h after transfection. (F) Bar plot presenting 3 independent densitometry measurements of
the WB experiments shown in D. The data is the relative expression of RAP2B to Heat-Shock Protein
70 (HSP70). Statistics were performed using t-tests * p < 0.05.

2.9. Effect of miR-199a-3p on RAP2B Signaling

Ras-related protein Rap-2b, encoded by RAP2B, is a member of the Ras family of
small GTP-binding proteins. It has been shown that Ras tumorigenesis in breast cancer
is dependent on FAK signaling [33]. In addition, it was shown in prostate cancer that the
effect of RAP2B is mediated at least in part by FAK-phosphorylation [34]. To study whether
the effect of miR-199a-3p on RAP2B also affects FAK-signaling, we analyzed its effect on
phosphorylated FAK (p-FAK) expression in CSCC cells. Shown in Figure 5A–C in both
SCL-II and MET1 cells, miR-199a-3p overexpression results in a 50% reduction of p-FAK
while the total expression of FAK is almost unchanged.
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Figure 5. Effect of miR-199a-3p on phosphorylation of FAK and effect of inhibition of FAK-
phosphorylation on EMT genes expression in SCC cells. (A) WB analysis of protein extracts from
SCL-II and MET1 control cells or cells overexpressing miR-199a-3p, as indicated. The extracted pro-
teins were blotted with the indicated antibodies; phosphorylated FAK (p-FAK), total FAK (FAK), and
HSP70. p-FAK densitometry is quantified relative to HSP70 (B) and total FAK (C) in 3 independent
WB experiments. Statistics were performed using t-tests * p < 0.05, ** p < 0.01. MET1 (D) and SCL-II
(E) cells were treated with the FAK inhibitor PF-573228, 0.5 µM for 48 h. Next, RNA was extracted
from control cells or treated cells and subjected to qRT-PCR with specific primers as indicated (see
Methods). Specific mRNA expression was calculated relative to GAPDH. Values are expressed as the
mean + SD of at least three independent experiments, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Is the inhibition of EMT in CSCC cells overexpressing miR-199a-3p, due in part to
altered FAK-signaling? To address this, we treated SCL-II or MET1 cells with PF-573228,
a specific inhibitor of FAK-phosphorylation on Tyr(397) [35], and analyzed the effect on
EMT-related genes. As shown in Figure 5D, E, in both CSCC cell-lines, PF-573228 treatment
results in decreased expression of EMT-related genes.

2.10. RAP2B Expression in CSCC Cells and CSCC Tissue

miR-199a-3p expression decreases in CSCC cells and biopsies. Hence, the protein
expression of RAP2B should increase in CSCC cells and tissues. Indeed, as shown in
Figure 6A,B, in both CSCC cell-lines, the expression of RAP2B is higher than in PHK.
In addition, as shown by immunohistochemistry of CSCC FFPE preparations, RAP2B is
expressed only in the basal epidermal layer of healthy skin (Figure 6C) but in almost all
cells of the tumor (Figure 6D).
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Figure 6. Expression of RAP2B in CSCC cells and CSCC biopsies. (A) WB analysis of RAP2B in
MET1, SCL-II, and PHK cells, and respective densitometry (B). The plot presents 3 independent
measurements of WB experiments and shows the relative expression of RAP2B to HSP70. Statistics
were performed using t-tests * p < 0.05. FFPE biopsy slides with mounted normal skin (C) and CSCC
(D) were immune stained with anti-RAP2B antibodies. Antibody binding was visualized with DAB
(3,3′-Diaminobenzidine) which yields an insoluble brown shade.



Int. J. Mol. Sci. 2022, 23, 15401 11 of 20

3. Discussion

Along the stages of transformation from healthy skin to CSCC, we found that miR-
199-3p is highly expressed in healthy skin, SE, and AK-KIN1/2 epidermis, but decreases
significantly in later stages: KIN3 and CSSC [20]. This finding was confirmed by Wang
et al. [24], and by Gillespie et al. [36]. In our screening, miR-199a-3p was one of the most
abundant miRNAs in healthy skin biopsies [20]. To understand the expression regulation
of miR-199a-3p in CSCC cells/biopsies, two aspects were evaluated. First, miR-199a-3p
can be transcribed from two different chromosomal loci. In both the miRNA is located
within another gene intron; DNM2 and DNM3OS. Hence, the expression of miR-199a may
correlate with the expression of these genes. However, our results disprove this correlation
with DNM2 and support the existence of a negative correlation with DNM3OS expression
(Figure 1C–F). A similar discrepancy between DNM30S and miR-199a expression was found
in hepatocellular carcinoma cells upon induction of hypoxia, Zhang L-F et al. demonstrate
that hypoxia suppressed miR-199a expression while enhancing DNM3OS expression [37].
Second, DNA methylation might play a role in miR-199a-3p expression. In several cancers,
the silencing of miR-199a is correlated with DNA methylation of its putative promoter
region. In papillary thyroid cancer, both loci are methylated and unmethylated in normal
thyroid tissue [38]. Likewise, in ovarian cancer [39]. In testicular tumor malignancy that
the promoter region of miR-199a-1 is hypermethylated compared to the healthy tissue, and
increased methylation correlates with the malignancy stage [25]. However, this is not the
case in all cancers. In both normal brain tissue and in glioblastomas miR-199a-1 promoter
is methylated [40]. miR-199a-2 loci is only methylated in normal brain tissue but not in
glioblastomas [40]. The methylation of the promoter regions miR-199a-1 or miR-199a-2
in KC or in CSCC is unknown. Indeed, treatment of CSCC cells with 5-AZA enhances
miR-199a-3p expression, suggesting that methylation plays a role in its silencing in CSCC
(Figure 2A). Interestingly the expression of both DNM2 and DNM3OS were not affected by
this treatment (Figure 2B), reinforcing the conclusion that the regulation of miR-199a-3p
is not correlated with these two genes. miRNAs are classified as either intragenic when
transcribed within protein-coding or non-coding genes. Intergenic miRNAs are further
categorized as miRNAs that are transcribed from intronic regions. Intergenic miRNAs,
located between genes, are believed to be transcribed from their own promoters [41].
miRNA location is the main factor determining the mechanism of its expression regulation.
Liu B. et al. show that from 1881 miRNAs that were in the miRBase data at the time,
918 were transcribed from intronic regions [41]. Baskerville and Bartel found that in
most intragenic miRNAs, there is a correlation between miRNAs’ and their host genes’
expression [42]. Obviously, there are exceptions. Liu et al. point to three miRNAs that even
show a negative correlation between the host gene and the miRNA expression [41].

Both miR-199a-1 and miR-199a-2 are intronic miRNAs. Data from different cancer
types suggest that both are regulated by their promoters and not by the host gene pro-
moter [25,38–40]. However, their regulation differs among various cancers and seems to be
tissue-dependent.

Although the expression of miR-199a is regulated through methylation, our results
suggest that the methylation of the putative promoter regions of both miR-199a-1 and miR-
199a-1 does not play a role in this regulation (Figure 2C) in CSCC. These results suggest that
an additional factor that regulated the expression of miR-199a but not DNM2 or DNM3OS,
and that this factor seems to be silenced by methylation in CSCC cells.

Our results show that miR-199-3p induced MET in CSCC cell-lines. We aimed to
identify the biochemical target of miR-199a-3p that mediates its MET-inducing function. To
this end, we compared mRNA expression arrays between CSCC overexpressing miR-199a-
3p and control CSCC cells. Of the 297 mRNAs that decreased by at least, 2-fold in both
cell-lines overexpressing miR-199a-3p, fifty had putative miR-199a-3p binding sites and
33 of the latter are possibly involved in EMT promotion or enhancement of proliferation
or migration. These results independently point to the important role of miR-199a-3p in
regulating KC proliferation and migration and the transition between mesenchymal to
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an epithelial phenotype. However, a decrease in specific mRNA expression and in silico
prediction of targeting does not prove that the miRNA indeed regulates a given mRNA.
Indeed, of the 33-gene list of downregulated putative targets of miR-199a-3p we analyzed
two genes; SMAD4 and FN1, which are involved in EMT [29,43] and decreased by more than
two-fold in CSCC cells overexpressing miR-199a-3p. The luciferase reporter assays however
failed to prove them as biochemical targets of miR-199a-3p, thus implying an indirect effect.
Similarly, one of the miR-199a-3p targets that might affect cell migration and proliferation
is CD44, which is involved in cell migration, tumorigenesis, and metastasis [44]. CD44 was
proven as target of miR-199a-3p in osteosarcoma [45] and in CSCC [24].

Other targets of miR-199a that may affect tumor proliferation and metastasis are
ROCK1, HIF1α, BCAM, FZD6, and DDR1 [46,47]. However, these targets are targets of
miR-199a-5p and not miR-199a-3p.

The second strategy we applied was the Ago2-PAR-CLIP system. Using this tech-
nology, we identified 50 mRNAs bound by Ago2 adjacent to a potential binding site for
miR-199a-3p (Supplementary-Data Table S3). Among them only two genes, AMIGO2 and
TRAF3, appeared in both lists of genes, bound by Ago2 and decreased by more than two-
fold in both cell-lines overexpressing miR-199a-3p. Nevertheless, of the 50 genes bound to
Ago2 and containing miR-199a-3p putative binding sites. Of these genes, 12 which play a
role in EMT, cell proliferation or migration were chosen for further study (Supplementary-
Data Table S3). Although all 12 genes were bound by Ago2 and have putative binding
sites for miR-199a-3p, only the 3′UTR of 4 of them had a significant effect on a reporter
expression in cells overexpressing miR-199a-3p. Ago2 binding is not an evidence of repres-
sion by the miRNA. Indeed, it was shown recently that the assumption that the complex of
Argonaute and miRNA bound to the 3′UTR of a protein-coding transcript would lead to
repression of gene expression, is not true in many cases [48].

Among the 12 investigated transcripts, RAP2B-3′UTR was the most effective in repress-
ing the reporter gene in cells overexpressing miR-199a-3p. We found that the miR-199a-3p
seed-complementary sequences in the RAP2B-3′UTR, which bound Ago2 and imposed
repression on its expression, are located at bases 780–786 of the 3′UTR (Figure 4C). This site
is not predicted by bioinformatics algorithm probably because it is considered a “week”
6-mer seed. However, this site is evolutionally conserved in mammals (Figure 4C).

RAP2B is a member of the Ras oncogene family, its function and structure are reviewed
by Qu et al. [49]. It promotes migration, proliferation, and invasion in renal carcinoma
cells [50], and lung cancer cells [51]. Part of the signaling of RAP2B is through FAK [33].
Hence, inhibition of FAK-phosphorylation should result in inhibition of EMT-related gene
expression. The results shown in Figure 5 confirm our hypothesis: The effect of this inhibitor
is similar to the effect of miR-199a-3p, which inhibits the expression of RAP2B. RAP2B
through FAK-phosphorylation activates the EMT process and inhibition of phosphorylation
causes a decrease in EMT-associated gene expression. Moreover, in cells overexpressing
miR-199a-3p, there is a significant decrease in FAK phosphorylation, emphasizing that in
CSCC, RAP2B through FAK-signaling, induces EMT.

The role of FAK and specifically p-FAK in CSCC cell migration was shown in the FAK
knockout model [52]. In addition, increased expression of FAK, and p-FAK was shown in
the premalignant and CSCC lesion, as compared to healthy skin [53]. Here, we found that
miR-199a-3p regulates FAK activity through regulating RAP2B. Figure 6 shows that RAP2B
is expressed in CSCC throughout the tumor cell layers while in healthy skin it is expressed
only at the basal layer. The expression of FAK and pFAK showed by Choi et al. is similar to
what we found for RAP2B in CSCC lesions [53].

4. Materials and Methods

Biopsies used in the study and cells cultures. The samples, skin biopsies, and cultured
cells used in this study have been described in our previous study, Formalin fixed paraffin
embedded (FFPE) biopsies of 55 cases were obtained from the pathology institute at the
Sheba Medical Center, cSCC (n = 19), AK KIN3 (n = 6), AK KIN1-2 (n = 6), SE (n = 15) and
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normal epidermis (n = 9) [20]. Primary human keratinocytes (PHK) cells were grown in
an 8% CO2 incubator at 37 ◦C, in high Ca++ (1.5mM) medium: DMEM/HAM (Biologi-
cal Industries, Beit Haemek LTD, Beit Haemek, Israel)/10%FBS (Gibco, Thermo Fisher
Scientific, Waltham, MA, 02451, USA). Keratinocytes were harvested from mashed skin
(left over from plastic surgery) and grown on a feeder layer of 5000 rad γ irradiated 3T3
mice fibroblast cells as described in [54,55]. The study was approved by the institutional
review board of the Sheba Medical Center and conducted in adherence to the Declaration
of Helsinki protocols number 9776-12-SMC.

4.1. Plasmids Cloning

All restriction enzymes used in this study were from (New England Biolabs (NEB),
Hitchin, UK). The miR-199a-pre-miRNA oligonucleotides primers (Table 1A) were annealed
and were cloned into the HindIII + EcoRI cut pcDNA3.1 (+) plasmid [15,56]. 3′UTRs were
cloned into psiCHECK-II vectors (Promega, Madison, WI, 53711, USA). SMAD4 and FN1
3′UTRs were amplified with primers as listed in Table 1B. The amplified PCR fragments
were cut with XhoI+NotI and cloned into a psiCHECK-II plasmid that was digested
with XhoI + NotI. All other 3′UTRs were amplified by PCR using In-Fusion cloning kit
(Clontech Laboratories, Inc. A Takara Bio Company, Mountain View, CA, 95131, USA)
and cloned into the PmeI cut site of psiCHECK-II with the In-Fusion cloning kit. Primers
used for amplification are shown in Table 1B. To create mut-RAP2B-3′UTR in the miR-
199a-3p seed-complimentary region, the Q5® Site-Directed Mutagenesis Kit (New England
Biolabs, Ipswich, MA 01938-2723, USA) was used with primers that were designed with
the NEBaseChanger tool (Table 1C).

Table 1. Primers used in this study.

A: Oligonucleotides Primers for Cloning miR-199a-1 and miR-199a-2

Primer-1 Complementary primer

Pre-mir-199a-1
5′agcttGCCAACCCAGTGTTCAGACTACCTGTTC
AGGAGGCTCTCAATGTGT
ACAGTAGTCTGCACATTGGTTA GGCg-3′

3′aCGGTTGGGTCACAAGTCTGATGGACAAGTCCT
CCGAGAGTTACACATGTCATCAGACGTGTAACCA
ATCCGctta-5′

Sequences were downloaded from miRBase for miR-199a-1, MI0000242. The bold underline marks the sequence of miR-199a-5p
(MIMAT0000231) and the bold italic marks the sequence of miR-199a-3p (MIMAT0000232). The lowercase underline letters marks
the nucleotides added to the primers to generate HindIII and EcoRI sites.

B: Primers used to amplify 3′UTRs

Gene symbol NCBI Reference
Sequence: Forward primer Reverse primer Legends of PCR

product

FN1 NM_002026.3 GTCTCGAGCAGCCAACCAA
GATGCAAA

TTTTCCTTTTGCGGCCGCAGGT
GGAGGGAAGAAGGGAA 727

SMAD4 NM_005359.5 GTCTCGAGTGGGGCAAGAC
TGCAAAC

TTTTCCTTTTGCGGCCGCCTCAT
TCACAGTAA AATGGACCT 877

The added nucleotides to generate XhoI site in the 5′ and NotI of the 3′ PCR product are marked by underline (sequences were
added as recommended on the NEB website) https://international.neb.com//media/nebus/files/chartimage/cleavage_
olignucleotides_old.pdf?rev=c2f94e1cdcd549c5bf8fdb59f7b63f67&hash=0C83C8F3C59132BE6A5B9A6D4050E3A0.

RAP2B NM_002886.3 CCCGGGAATTCGTTTGTG
GCTCTTTGCAGCATGTA

GGCCGCTCTAGGTTTCAAA
TTCATTGCAAGAGATGGA 1033

VANGL1 NG_016548.1 CCCGGGAATTCGTTTGCA
GGTGTGTAGCTCAGCAG

GGCCGCTCTAGGTTTCCAGA
AGTGCCGAATCATTT 1024

https://international.neb.com//media/nebus/files/chartimage/cleavage_olignucleotides_old.pdf?rev=c2f94e1cdcd549c5bf8fdb59f7b63f67&hash=0C83C8F3C59132BE6A5B9A6D4050E3A0
https://international.neb.com//media/nebus/files/chartimage/cleavage_olignucleotides_old.pdf?rev=c2f94e1cdcd549c5bf8fdb59f7b63f67&hash=0C83C8F3C59132BE6A5B9A6D4050E3A0
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Table 1. Cont.

AKT3 NG_029764.1 CCCGGGAATTCGTTTTCC
ACCCTCTGAGACTCCAT

GGCCGCTCTAGGTTTCCAGC
TGGGGCTATTAAAAA 1073

TGFBR3 NG_027757.1 CCCGGGAATTCGTTTGGG
CTGAGATTTCCAGGCTA

GGCCGCTCTAGGTTTTTG
GAGTTTGGGGCATTTTA 1016

GGA3 NM_138619.3 CCCGGGAATTCGTTTGAA
CCAAACTGCTGCTGTGA

GGCCGCTCTAGGTTTAGCT
AGAGTGGCTGGGACAA 1006

DERL1 NM_024295.5 CCCGGGAATTCGTTTTTC
TTGCACACATGCCTCTC

GGCCGCTCTAGGTTTTTG
CCTCAAAGTGTGACAGC 1022

SYTL2 NG_029712.1 CCCGGGAATTCGTTTAAT
GAGCCCAAATTCCACTG

GGCCGCTCTAGGTTTGCC
CACTTAGGGGAGATGAT 1066

BIRC5 NG_029069.1 CCCGGGAATTCGTTTCTG
GGAAGCTCTGGTTTCAG

GGCCGCTCTAGGTTTAGC
ATCGAGCCAAGTCATTT 1006

YWHAE NG_009233.1 CCCGGGAATTCGTTTTTT
AGGTTCCTGCCCTGTTG

GGCCGCTCTAGGTTTCTGGA
GGACAAGACACACCA 1000

TFAP2A NG_016151.1 CCCGGGAATTCGTTTGAG
CAGGGAAGAGGGTCTTT

GGCCGCTCTAGGTTTCAC
GGCCTGTTCTGTTCTCT 1002

GRHL3 NG_009308.2 CCCGGGAATTCGTTTCCG
TACCCCAAAACAATGTC

GGCCGCTCTAGGTTTGTG
CCAACATGACCACACTC 1060

TNS4 NM_032865.5 CCCGGGAATTCGTTTCCC
CCTTGCAGATGAGTATC

GGCCGCTCTAGGTTTGCC
TGTGACCTTGAGAACCT

The underlined sequences in both sets of primers are homologous to the 15 nucleotides up and downstream of the PmeI cut site
on psiCHECK-II.

C: Primer used to generate mutation in RAP2B miR-199a-3p binding site

Forward primer Reverse primer

RAP2B AAAATCAAAGGGGAGTCTGGG TCTTGTAAACAAAATAGATTTTTTTTCCACAAATATC

D: primers used for real-time mRNA real-time RT-PCR

Gene name Forward primer Reverse primer

DNM2 TACATGCTGCCTCTGGACAA CTGCTCCGTGTTGAAGATGG

DNM3OS AGCCTTCCAGTTTGTACCCT AGGCAGTTGTGAGCTTAAGT

SMAD3 ACTACATCGGAGGGGAGGTC TAGCGCTGGTTACAGTTGGG

SMAD4 CGCTTTTGTTTGGGTCAACT CCCAAACATCACCTTCACCT

SERPINE1 GGGCCATGGAACAAGGATGA CGGAACAGCCTGAAGAAGT

SERPINE2 GCAGGACCAAGAAGCAGCTCG CACGGCGTTAGCCACTGTCACAAT

COL4A1 GCCCTTCTGCTCCACGAG CAGTCACATTTGCCACAGCC

TWIST1 GAGCTGGACTCCAAGATGGC TCCATCCTCCAGACCGAGAA

TWIST2 GCAAGAAGTCGAGCGAAGAT GCTCTGCAGCTCCTCGAA

ID1 GGCTGTTACTCACGCCTCAA TGTAGTCGATGACGTGCTGG

ID2 AGGAAAAACAGCCTGTCGGA GAGCTTGGAGTAGCAGTCGT

VIM GGGAGAAATTGCAGGAGGAG ATTCCACTTTGCGTTCAAGG

GAPDH CTGACTTCAACAGCGACACC GGTGGTCCAGGGGTCTTACT

RPLPO CAGATCCGCATGTCCCTTCG GCAGCAGTTTCTCCAGAGCTGG

E. Primers used for amplification of putative promoters regions of miR-199a-1 and miR-199a-2 after DNA was subjected to
Bisulfite conversion
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Table 1. Cont.

Gene name Forward primer Reverse primer

miR-199a-1 CGGTACCCGGGGATCTGTTATATTTGGAATT
GTTTATA

CGACTCTAGAGGATCCAAACCCAACCTAACCA
ATATACA

miR-199a-2 CGGTACCCGGGGATCGTTTGAAGATGAAAT
GATTGTTTAA

CGACTCTAGAGGATCCTCCCTTACCCAATCTAA
CCAATATA

The underlined sequences in both sets of primers are homologous to the 15 nucleotides up and downstream of the BamHI cut site
on PUC19.

4.2. Generation of Stable CSCC Cell Lines

MET1 and SCL-II cell lines were transfected with a plasmid expressing miR-199a or
control as described in [57]. The selection was done with G418 antibiotics (Sigma-Aldrich
Israel Ltd., an affiliate of Merck, Rehovot, 7670603, Israel). PF-573228 a focal adhesion
kinase (FAK) inhibitor (Sigma-Aldrich Israel Ltd., an affiliate of Merck, Rehovot, 7670603,
Israel) was used to inhibit FAK phosphorylation.

4.3. mRNA Microarray Analysis

mRNA expression microarray analysis was done as described previously by Zehavi et al. [57].
mRNA array hybridization data were deposited in NCBI’s Gene Expression Omnibus, GEO
accession number GSE186031.

4.4. miRNA Real-Time RT-PCR

Total RNA was purified from cell lines with the Total RNA Purification Kit (Norgen
Biotek, Thorold, ON, L2V 4Y6, Canada). miRNAs were quantitated as described previously
by Mizrahi et al. [20]. Calculated expression values of miRNAs are presented as ∆∆CT
relatively to Rnu43 (SNORD43) or Rnu48 (SNORD48) amplification.

4.5. mRNA Real-Time RT-PCR

cDNA was prepared to form total RNA with Takara PrimeScript ™ RT reagent Kit
(Clontech Laboratories, Inc. A Takara Bio Company, Mountain View, CA, 95131, USA).
Amplification reactions were conducted with Power SYBR® Green Master mix (Applied
Biosystems Thermo Fisher Scientific, Waltham, MA, 02451, USA). All primers for RT-
PCR were designed using the Primer3 software and are shown in Table S1D. Calculated
expression values of studied mRNA were relative to the expression level of the RPLPO
gene or GAPDH.

4.6. Western Blot (WB) Analysis

WB analyses were performed as detailed in Mizrahi et al. [20]. The antibodies used
in the study are RAP2B (Anti-RAP2B antibody number ab101369) diluted 1:1000, and
HSP70 (Antibody (B-6): sc-7298, Santa Cruz Biotechnology Inc., Dallas, TX, 75220, USA)
diluted 1:40000. Goat anti-mouse-HRP IgG (Jackson Immuno- Research Lab., West Grove,
PA, 19390, USA), or goat anti-rabbit IgG (Sigma-Aldrich Israel Ltd., an affiliate of Merck,
Rehovot, 7670603, Israel) both diluted 1:10000, ECL with WESTAR ANTARES (Cyanagen,
Bologna, 40138, Italia). Quantitation was performed with the Image Lab program (Bio-Rad
Laboratories Ltd. Rishon-Le-Zion, 7565513, Israel), Anti-FAK antibody [EP695Y] (ab40794),
Anti-FAK (phospho Y397) antibody [EP2160Y] (ab81298). The WB analyses of EMT markers
were performed with the Epithelial-Mesenchymal Transition (EMT) Antibody Sampler Kit
#9782 (Cell Signaling Technology, Inc., Danvers, MA, 01923, USA).

4.7. Immunohistochemistry (IHC) Staining

Stainings were conducted as described previously by Harari-Steinberg et al. [58]. Paraf-
fin blocks were cut into five µm sections. Sections were pre-treated using OmniPrep solution
(pH 9.0) at 95 ◦C for one hour following the manufacturer protocol (Zytomed Systems,
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Berlin, 10587, Germany). Next, incubation with Cas-Block solution (Catalog number: 008120)
(Thermo Fisher Scientific Waltham, MA, 02451, USA) for 20 min was used for blocking.
Then, the slides were incubated O/N 4 ◦C with anti-RAP2B (Anti-RAP2B antibody number
ab101369) diluted 1:500. Detection was done using ImmPRESS™ Anti-Rabbit Ig Reagent Per-
oxidase (VE-MP-7401) and developed with ImmPACT™ DAB peroxidase (Catalog number:
SK-4100) (Vector Laboratories, Inc., Burlingame, CA, 94560, USA).

4.8. Real-Time-Cell-Analyzer (RTCA)

xCELLigence DP system (Agilent, Santa Clara, CA, 95051, USA) was used to character-
ize proliferation, as described previously [15,57,59]. Briefly, 5000–10,000 cells were seeded
in E-Plates xCELLigence system tissue culture dish. The E-plates contain micro-electrodes
integrated on the bottom which measures the electrical impedance of each bound cell,
which is translated into a cell number index. Data were collected continuously for 5 days
every 20 min automatically by the analyzer. For migration analysis, CIM-Plates were used.
This CIM-plate contains an upper chamber composed of a microporous membrane that cells
can migrate through. The analyzer automatically counts each cell that migrates through
the porous to the lower E-plates. 5000–10,000 cells were seeded in the upper chamber. Data
were collected continuously for 5 days every 20 min automatically by the analyzer.

4.9. Ago2 PAR-CLIP, Sequencing and Data Analysis

The assay was performed on SCL-II cells. Cells were grown in the presence of 100 µM
4-thiouridine (4SU) for 24 h and processed as described in Masalha et al. [60]. Ago2 PAR-CLIP
data were deposited in NCBI’s Gene Expression Omnibus, GEO accession number GSE155538.

4.10. Luciferase Assay for Target Validation

Five hundred thousand SCL-II cells that either stably express mir-199a or empty
pcDNA3.1 were seeded in 24-well tissue culture dishes. 24 h later, cells were transfected
with 50 ng of reported plasmid using LipofectamineTM 2000 Reagent (Invitrogen- Thermo
Fisher Scientific Waltham, MA, 02451, USA) according to the manufacturer’s protocol.
Luciferase assay, Dual-Luciferase Reporter (DLR) Assay System (Promega Corporation
Madison, WI, 53711, USA) was applied 24 h after transfection according to the manufac-
turer’s protocol.

4.11. Methylation Analysis

Cells were seeded at 50% confluence and were treated with 10µM 5-AZA-2′deoxycytidine
(5-AZA) (Sigma-Aldrich Israel Ltd., an affiliate of Merck, Rehovot, 7670603, Israel) for 5 days
(On each day a new medium+ 5-AZA was added). Next, RNA was extracted from the cells
and subjected to qRT-PCR of miR-199a-3p or DNM2 and DNM3OS.

4.12. Bisulfite Genomic Sequencing

Genomic DNA was extracted from cells or tissue using QIAamp DNA Mini Kit
(QIAGEN Sciences Inc, Germantown, MD, 20874, USA). Next, ~1–2 µg of genomic DNA
was subjected to bisulfite conversion using the EZ DNA Methylation-Gold Kit (ZYMO
research, Irvine, CA, USA).

Next, the bisulfite conversion was subjected to PCR amplification using EpiTaq HS
(for bisulfite-treated DNA) (Takara Bio USA, Inc. (TBUSA, formerly known as Clontech
Laboratories, Inc.). The PCR fragments were cloned into PUC-19 and cut with BamHI using
In-Fusion cloning kit (Clontech Laboratories, Inc. A Takara Bio Company, Mountain View,
CA, USA). Plasmid DNA was extracted using GeneJET Plasmid Miniprep Kit (Thermo
Fisher Scientific Waltham, MA, USA). At least 5 clones were sequenced from each sample
cell line or biopsy.

PCR-specific primers to the DNA converted by the bisulfite were designed using the
MethPrimer program [61] (Table 1E).
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5. Conclusions

This study shows that miR-199a-3p expression decreases in the shift from AK-KIN1/2
to AK-KIN3 and shows that miR-199a-3p plays a major role in controlling the EMT process
at least partially through targeting RAP2B in KC. Therefore, miR-199a-3p might be a
molecular marker for the state of KC tumor progression. Hence, inhibitors of RAP2B
phosphorylation might be potential therapeutic agents in CSCC. Moreover, advanced
knowledge of the EMT mechanisms will enhance the development of new therapies for
many human tumors, including CSCC, as suggested by Fernandez-Figueras et al. [62].
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