Table 5.
Sentiment AUC comparison on binomial dataset
| Algorithm | Train–test split percentage | 10-FCV | ||||||
|---|---|---|---|---|---|---|---|---|
| 10% | 20% | 30% | 40% | 50% | 60% | 70% | ||
| KNN | 0.749 | 0.800 | 0.828 | 0.845 | 0.863 | 0.871 | 0.868 | 0.876 |
| DT | 0.579 | 0.579 | 0.610 | 0.604 | 0.619 | 0.601 | 0.625 | 0.604 |
| SVM | 0.793 | 0.847 | 0.878 | 0.897 | 0.917 | 0.913 | 0.929 | 0.932 |
| NB | 0.495 | 0.550 | 0.556 | 0.608 | 0.643 | 0.637 | 0.655 | 0.601 |
| Voting | 0.598 | 0.670 | 0.704 | 0.731 | 0.779 | 0.745 | 0.761 | 0.794 |
| Bagging (KNN) | 0.741 | 0.792 | 0.825 | 0.839 | 0.861 | 0.865 | 0.861 | 0.877 |
| Bagging (DT) | 0.618 | 0.637 | 0.641 | 0.624 | 0.652 | 0.651 | 0.647 | 0.638 |
| Bagging (SVM) | 0.795 | 0.849 | 0.879 | 0.898 | 0.918 | 0.917 | 0.929 | 0.934 |
| Bagging (NB) | 0.706 | 0.753 | 0.768 | 0.787 | 0.821 | 0.813 | 0.817 | 0.824 |