Table 2.
AI application in hematologic lymphoid malignancies.
| Study | Publication year | Disease | Digital image type | Model | Training set size | Valuation set size | Performance evaluation |
|---|---|---|---|---|---|---|---|
| Putzu et al24 | 2014 | ALL | Microscopic images | SVM, K-NN, NB, DT | 267 | NA | 93.63% accuracy |
| Neoh et al25 | 2015 | ALL | Microscopic images | Multi-layer perceptron, SVM | 180 | 18 | 96.72% accuracy |
| Alferez et al26 | 2015 | FL, HCL, CLL, MCL | Microscopic images | SVM | 4389 | 439 | 97.67% accuracy |
| MoradiAmin et al27 | 2016 | ALL | Microscopic images | SVM | 5625 | 625 | 96.76% accuracy, 94.23% precision |
| Shafique et al28 | 2018 | ALL | Microscopic images | AlexNet | 221 | 147 | 96.06% accuracy |
| Rehman et al29 | 2018 | ALL | Microscopic images | NB, SVM, CNN | 264 | 66 | 97.78% accuracy |
| El Achi et al30 | 2019 | Lymphoma | Microscopic images | CNN | 1856 | 464 | 95% accuracy |
| Sahlol et al31 | 2020 | ALL | Microscopic image | VGGNet | 8737 | 2184 | 97.1% accuracy |
| Mohlman et al32 | 2020 | Diffuse large B-cell lymphoma | H&E staining images | CNN | 8796 | 2022 | 0.92 AUC |
| Syrykh et al33 | 2020 | FL | Microscopic images | Bayesian neural network | 160,000 | 80,000 | 0.99 AUC |
AI = artificial intelligence, ALL = acute lymphoblastic leukemia, CLL = chronic lymphocytic leukemia, CNN = convolutional neural network, DT = Decision Trees, FL = follicular lymphoma, HCL = hairy cell leukemia, K-NN = K-Nearest Neighbor, MCL= mantle cell leukemia, NB = Naïve Bayesian, RF = Random Forest, SVM = Support Vector Machines.