Skip to main content
. 2022 Jul 14;4(3):136–142. doi: 10.1097/BS9.0000000000000130

Table 2.

AI application in hematologic lymphoid malignancies.

Study Publication year Disease Digital image type Model Training set size Valuation set size Performance evaluation
Putzu et al24 2014 ALL Microscopic images SVM, K-NN, NB, DT 267 NA 93.63% accuracy
Neoh et al25 2015 ALL Microscopic images Multi-layer perceptron, SVM 180 18 96.72% accuracy
Alferez et al26 2015 FL, HCL, CLL, MCL Microscopic images SVM 4389 439 97.67% accuracy
MoradiAmin et al27 2016 ALL Microscopic images SVM 5625 625 96.76% accuracy, 94.23% precision
Shafique et al28 2018 ALL Microscopic images AlexNet 221 147 96.06% accuracy
Rehman et al29 2018 ALL Microscopic images NB, SVM, CNN 264 66 97.78% accuracy
El Achi et al30 2019 Lymphoma Microscopic images CNN 1856 464 95% accuracy
Sahlol et al31 2020 ALL Microscopic image VGGNet 8737 2184 97.1% accuracy
Mohlman et al32 2020 Diffuse large B-cell lymphoma H&E staining images CNN 8796 2022 0.92 AUC
Syrykh et al33 2020 FL Microscopic images Bayesian neural network 160,000 80,000 0.99 AUC

AI = artificial intelligence, ALL = acute lymphoblastic leukemia, CLL = chronic lymphocytic leukemia, CNN = convolutional neural network, DT = Decision Trees, FL = follicular lymphoma, HCL = hairy cell leukemia, K-NN = K-Nearest Neighbor, MCL= mantle cell leukemia, NB = Naïve Bayesian, RF = Random Forest, SVM = Support Vector Machines.