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Abstract

Decision models can combine information from different sources to simulate the long-term 

consequences of alternative strategies in the presence of uncertainty. A cohort state-transition 

model (cSTM) is a decision model commonly used in medical decision-making to simulate the 

transitions of a hypothetical cohort among various health states over time. This tutorial focuses on 

time-independent cSTM, where transition probabilities among health states remain constant over 

time. We implement time-independent cSTM in R, an open-source mathematical and statistical 

programming language. We illustrate time-independent cSTMs using a previously published 

decision model, calculate costs and effectiveness outcomes, conduct a cost-effectiveness analysis 

of multiple strategies, including a probabilistic sensitivity analysis. We provide open-source code 

in R to facilitate wider adoption. In a second, more advanced tutorial, we illustrate time-dependent 

cSTMs.

1 Introduction

Policymakers are often tasked with allocating limited healthcare resources under constrained 

budgets and uncertainty about future outcomes. Health economic evaluations might inform 

their final decisions. These economic evaluations often rely on decision models to synthesize 

evidence from different sources and project long-term outcomes of various alternative 

strategies. A commonly used decision model is the discrete-time cohort state-transition 

model (cSTM), often referred to as a Markov model.1
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A cSTM is a dynamic mathematical model in which a hypothetical cohort of individuals 

transition between different health states over time. A cSTM is most appropriate when 

the decision problem has a dynamic component (e.g., the disease process can vary over 

time) and can be described using a reasonable number of health states. cSTMs are often 

used because of their transparency, efficiency, ease of development, and debugging. cSTMs 

are usually computationally less demanding than individual-based state-transition models 

(iSTMs), providing the ability to conduct PSA and value-of-information (VOI) analyses 

that otherwise might not be computationally feasible with iSTMs.2 cSTMs have been 

used to evaluate screening and surveillance programs,3,4 diagnostic procedures,5 disease 

management programs,6 interventions,7 and policies.8

In a recent review, we illustrated the increased use of R’s statistical programming framework 

in health decision sciences. We provided a summary of available resources to apply to 

medical decision making.9 Many packages have been explicitly developed to estimate 

and construct cSTMs in R. For example, the markovchain10 and heemod11 packages 

are designed to build cSTMs using a pre-defined structure. The markovchain package 

simulates time-independent, and time-dependent Markov chains but is not designed to 

conduct economic evaluations. heemod is a well-structured R package for economic 

evaluations. However, these packages are necessarily stylized and require users to specify 

the structure and inputs of their cSTM in a particular way potentially without fully 

understanding how cSTMs work. Using these packages can be challenging if the desired 

cSTM does not fit within this structure.

This tutorial demonstrates how to conduct a full cost-effectiveness analysis (CEA) 

comparing multiple interventions and implementing probabilistic sensitivity analysis (PSA) 

without needing a specialized cSTM package. We first describe each of the components of 

a time-independent cSTM. Then, we illustrate the implementation of these components 

with an example. Our general conceptualization should apply to other programming 

languages (e.g., MATLAB, Python, C++, and Julia). The reader can find the most up-to-

date R code of the time-independent cSTM and the R code to create the tutorial graphs 

in the accompanying GitHub repository (https://github.com/DARTH-git/cohort-modeling-

tutorial-intro) to replicate and modify the example to fit their needs. We assume that the 

reader is familiar with the basics of decision modeling and has a basic understanding of 

programming. Thus, a prior introduction to R, “for” loops, and linear algebra for decision 

modelers is recommended. The linear algebra concepts used throughout the code are 

explained in more detail in the Supplementary Material.

This introductory tutorial aims to (1) conceptualize time-independent cSTMs for 

implementation in a programming language and (2) provide a template for implementing 

these cSTMs in base R. We focus on using R base packages, ensuring modelers understand 

the concept and structure of cSTMs and avoid the limitation of constructing cSTMs in a 

package-specific structure. We used previously developed R packages for visualizing CEA 

results and checking cSTMs are correctly specified.
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2 Cohort state-transition models (cSTMs)

A cSTM consists of a set of nS mutually exclusive and collectively exhaustive health states. 

The cohort is assumed to be homogeneous within each health state. Individuals in the cohort 

residing in a particular health state are assumed to have the same characteristics and are 

indistinguishable from one another. The cohort could transition between health states with 

defined probabilities, which are called “transition probabilities”. A transition probability 

represents the chance that individuals in the cohort residing in a state in a given cycle 

transition to another state or remain in the same state. In a cSTM, a one-cycle transition 

probability reflects a conditional probability of transitioning during the cycle, given that the 

person is alive at the beginning of the cycle.12

In a cSTM, the transition probabilities only depend on the current health state in a given 

cycle, meaning that the transition probabilities do not depend on the history of past 

transitions or time spent in a given state. This property is often referred to as the “Markovian 

assumption.”13-15 This tutorial focuses on time-independent cSTM, meaning that model 

parameters, such as transition probabilities or reward (e.g., costs or utilities associated with 

being in a particular health state), do not vary with time. We discuss time-dependence in 

cSTMs in an accompanying advanced tutorial.16

2.1 Rates versus probabilities

In discrete-time cSTMs, cohort dynamics are described by the probability of transitioning 

between states. However, these transitions might be reported in terms of rates in the 

literature, or probabilities may not always be available in the desired cycle length. For 

example, transition probabilities might be available from published literature in one time 

period (e.g., annual) and might differ from the model’s cycle length scale (e.g., monthly). 

Below, we illustrate a simple approach to converting from rates to probabilities and using 

rates to convert probabilities from one time scale to another.

While probabilities and rates are often numerically similar in practice, there is a subtle but 

important conceptual difference between them. A rate represents the instantaneous force of 

an event occurrence per unit time, while a probability represents the cumulative risk of an 

event over a defined period.

To illustrate this difference further, let us assume that after 10,000 person-years of 

observation of healthy individuals (e.g., 10,000 individuals observed for an average of 1 

year, or 5,000 individuals observed for an average of 2 years, etc.), we observe 500 events 

of interest (e.g., becoming sick from some disease). The annual event rate of becoming sick, 

μyearly, is then equal to μyearly = 500/10, 000 = 0.05.

If we then wanted to know what proportion of an initially healthy cohort becomes sick at the 

end of the year, we can convert the annual rate of becoming sick into an annual probability 

of becoming sick using the following equation:

pyearly = 1 − exp ( − μyearly), (1)
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resulting in pyearly = 1 − exp (−0.05) = 0.0488. Equation (1) assumes that the rate of 

becoming sick is constant over the year, implying that the time until a healthy person 

becomes sick is exponentially distributed. The parameter pyearly is the transition probability 

from healthy to sick in a cSTM when using an annual cycle length.

If we were concerned that an annual cycle length was too long to capture disease dynamics 

accurately, we could use a monthly cycle length. To calculate monthly rates, we divide the 

annual rate by 12:

μmontℎly = μyearly ∕ 12 . (2)

To convert to monthly transition probabilities, we apply equation (1):

pmontℎly = 1 − exp ( − μmontℎly) . (3)

We divide by 12 because of the number of months (desired cycle length) in a year (cycle 

length of the given data). If the original or desired cycle length differed, we would divide 

by a different factor (e.g., annual to weekly: 52; monthly to annual: 1/12; annual to daily: 

365.25, etc.).

These equations are also helpful for computing probabilities when studies (e.g., survival 

analyses) provide rates rather than transition probabilities assuming exponentially distributed 

transition times.

3 Time-independent cSTM dynamics

A cSTM consists of three core components: (1) a state vector, mt, that stores the distribution 

of the cohort across all health states in cycle t where t = 0, …, nT; (2) the cohort trace 

matrix, M, that stacks mt for all t and represents the distribution of the cohort in the various 

states over time; and (3) a transition probability matrix, P.17 If the cSTM is comprised of nS 

discrete health states, mt is a 1 × nS vector and P is a nS × nS matrix. The i-th element of mt, 

where i = 1, …, nS, represents the proportion of the cohort in the i-th health state in cycle t, 
referred to as m[t,i]. Thus, mt is written as:

mt = m[t, 1] m[t, 2] ⋯ m[t, nS] .

The elements of P are the transition probabilities of moving from state i to state j, p[i,j], 

where {i, j} = 1, …, nS and all should have values between 0 and 1.

P =

p[1, 1] p[1, 2] ⋯ p[1, nS]
p[2, 1] p[2, 2] ⋯ p[2, nS]

⋮ ⋮ ⋱ ⋮
p[nS, 1] p[nS, 2] ⋯ p[nS, nS]

.
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For P to be a correctly specified transition probability matrix, each row of the transition 

probability matrix must sum to one, ∑j = 1
nS p[i, j] = 1 for all i = 1, …, nS.

The state vector at cycle t + 1 (mt+1) is then calculated as the matrix product of the state 

vector at cycle t, mt, and the transition probability matrix, P, such that

mt + 1 = mtP for t = 0, …, (nT − 1),

where m1 is computed from m0, the initial state vector with the distribution of the cohort 

across all health states at the start of the simulation (cycle 0). Then, we iteratively apply this 

equation through t = (nT − 1).

The cohort trace matrix, M, is a matrix of dimensions (nT + 1) × nS where each row is a state 

vector (−mt−), such that

M =

−m0 −
−m1 −

⋮
−mnT −

.

Note that the initial cycle (i.e., cycle 0) corresponds to t = 0, which is on the first row 

of M. Thus, M stores the output of the cSTM, which could be used to compute various 

epidemiological, and economic outcomes, such as life expectancy, prevalence, cumulative 

resource use, and costs, etc. Table 1 describes the elements related to the core components 

of cSTM and their suggested R code names. For a more detailed description of the variable 

types, data structure, R name for all cSTM elements, please see the Supplementary Material.

4 Case study: Sick-Sicker model

Here, we use the previously published 4-state “Sick-Sicker” model for conducting a CEA of 

multiple strategies to illustrate the various aspects of cSTM implementation in R.18,19 Figure 

1 represents the state-transition diagram of the Sick-Sicker model.

The model simulates a cohort at risk of a hypothetical disease with two stages, “Sick” and 

“Sicker”, to compute the expected costs and quality-adjusted life years (QALYs) of the 

cohort over time. All the parameters of the Sick-Sicker model and the corresponding R 

variable names are presented in Table 2. The naming of these parameters and variables 

follows the notation described in the DARTH coding framework.20 Briefly, we define 

variables by <x>_<y>_<var_name>, where x is the prefix that indicates the data type 

(e.g., scalar (no prefix), v for vector, m for matrix, a for array, df for data frame, etc.), y is 

the prefix indicating variable type (e.g., p for probability, r for rate, hr for hazard ratio, c 

for cost c, u for utility, etc.), and var_name is some description of the variable presented 

separated by underscores. For example, v_p_HD denotes the vector of transition probabilities 

from health state “H” to health state “D”. In later sections we will define and name all the 

other parameters.
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In this model, we simulate a hypothetical cohort of 25-year-olds in the “Healthy” state 

(denoted “H”) until they reach a maximum age of 100 years. We will simulate the cohort 

dynamics in annual cycle lengths, requiring a total of 75 one-year cycles. The total number 

of cycles is denoted as nT and defined in R as n_cycles. The model setup is as follows. 

Healthy individuals are at risk of developing the disease when they transition to the “Sick” 

state (denoted by “S1”) with an annual rate of r_HS1. Sick individuals are at risk of 

further progressing to a more severe disease stage, the “Sicker” health state (denoted by 

“S2”) with an annual rate of r_S1S2. Individuals in S1 can recover and return to H, as 

depicted in Figure 1 by the arc labeled p_S1H. However, once individuals reach S2, they 

cannot recover; the rate of transitioning to S1 or H from S2 is zero. Individuals in H face 

a constant background mortality (labeled p_HD in Figure 1) due to other causes of death. 

Individuals in S1 and S2 face an increased hazard of death, compared to healthy individuals, 

in the form of a hazard ratio (HR) of 3 and 10, respectively, relative to the background 

mortality rate. We transform all transition rates to probabilities following the Section “Rates 

versus probabilities” approach. All transitions between non-death states are assumed to be 

conditional on surviving each cycle. Individuals in S1 and S2 also experience increased 

health care costs and reduced quality of life (QoL) compared to individuals in H. When 

individuals die, they transition to the absorbing “Dead” state (denoted by “D”), meaning that 

once the proportion of the cohort arrives in that state, they remain. We discount both costs 

and QALYs at an annual rate of 3%.

We are interested in evaluating the cost-effectiveness of four strategies: the standard of 

care (strategy SoC), strategy A, strategy B, and a combination of strategies A and B 

(strategy AB). Strategy A involves administering treatment A that increases the QoL of 

individuals in S1 from 0.75 (utility without treatment, u_S1) to 0.95 (utility with treatment 

A, u_trtA). Treatment A costs $12,000 per year (c_trtA).19 This strategy does not 

impact the QoL of individuals in S2, nor does it change the risk of becoming sick or 

progressing through the sick states. Strategy B uses treatment B to reduce only the rate of 

Sick individuals progressing to the Sicker state by 40% (i.e., a hazard ratio (HR) of 0.6, 

hr_S1S2_trtB), costs $13,000 per year (c_trtB), and does not affect QoL. Strategy AB 

involves administering both treatments A and B.

We assume that it is not possible to distinguish between Sick and Sicker patients; therefore, 

individuals in both disease states receive the treatment under the treatment strategies. After 

comparing the four strategies in terms of expected QALYs and costs, we calculate the 

incremental cost per QALY gained between non-dominated strategies.

The following sections include R code snippets. All R code is stored as a GitHub repository 

and can be accessed at https://github.com/DARTH-git/cohort-modeling-tutorial-intro. We 

initialize the input parameters in the R code below by setting the variables to their base-case 

values. We do this process as the first coding step, all in one place, so the updated value will 

carry through the rest of the code when a parameter value changes.

## General setup

cycle_length <- 1 # cycle length equal one year (use 1/12 for monthly)
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n_age_init <- 25 # age at baseline

n_age_max <- 100 # maximum age of follow up

n_cycles <- (n_age_max - n_age_init)/cycle_length # time horizon, number of 

cycles

v_names_states <- c("H", "S1", "S2", "D") # the 4 health states of the 

model: # Healthy (H), Sick (S1), Sicker (S2), Dead (D)

n_states <- length(v_names_states) # number of health states

d_e <- 0.03 # annual discount rate for QALYs of 3%

d_c <- 0.03 # annual discount rate for costs of 3%

v_names_str <- c("Standard of care", # store the strategy names

                 "Strategy A",

                 "Strategy B",

                 "Strategy AB")

## Transition probabilities (annual), and hazard ratios (HRs)

r_HD <- 0.002 # constant annual rate of dying when Healthy (all-cause 

mortality rate)

r_HS1 <- 0.15 # constant annual rate of becoming Sick when Healthy

r_S1H <- 0.5 # constant annual rate of becoming Healthy when Sick

r_S1S2 <- 0.105 # constant annual rate of becoming Sicker when Sick

hr_S1 <- 3 # hazard ratio of death in Sick vs Healthy

hr_S2 <- 10 # hazard ratio of death in Sicker vs Healthy

### Process model inputs

## Constant transition probability of becoming Sick when Healthy

# transform rate to probability and scale by the cycle length

p_HS1 <- 1 - exp(-r_HS1 * cycle_length)

## Constant transition probability of becoming Healthy when Sick

# transform rate to probability and scale by the cycle length

p_S1H <- 1 - exp(-r_S1H * cycle_length)

## Constant transition probability of becoming Sicker when Sick

# transform rate to probability and scale by the cycle length

p_S1S2 <- 1 - exp(-r_S1S2 * cycle_length)

# Effectiveness of treatment B

hr_S1S2_trtB <- 0.6 # hazard ratio of becoming Sicker when Sick under 

treatment B

## State rewardy

## Costs

c_H <-2000 # annual cost of being Healthy

c_S1 <- 4000 # annual cost of being Sick

c_S2 <- 15000 # annual cost of being Sicker

c_D <- 0 # annual cost of being dead
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c_trtA <- 12000 # annual cost of receiving treatment A

c_trtB <- 13000 # annual cost of receiving treatment B

# Utilities

u_H <- 1 # annual utility of being Healthy

u_S1 <- 0.75 # annual utility of being Sick

u_S2 <- 0.5 # annual utility of being Sicker

u_D <- 0 # annual utility of being dead

u_trtA <- 0.95 # annual utility when receiving treatment A

To compute the background mortality risk, p_HD, from the background mortality rate for the 

same cycle length (i.e., cycle_length = 1), we apply Equation (1) to r_HD. To compute 

the mortality risks of the cohort in S1 and S2, we multiply the background mortality 

rate r_HD by the hazard ratios hr_S1 and hr_S2, respectively, and then convert back to 

probabilities using Equation (1). These calculations are required because hazard ratios only 

apply to rates and not to probabilities. The code below performs the computation in R. In the 

darthtools package (https://github.com/DARTH-git/darthtools), we provide R functions 

that compute transformations between rates and probabilities since these transformations are 

frequently used.

## Mortality rates

r_S1D <- r_HD * hr_S1 # annual rate of dying when Sick

r_S2D <- r_HD * hr_S2 # annual rate of dying when Sicker

## Cycle-specific probabilities of dying

cycle_length <- 1

p_HD <- 1 - exp(-r_HD * cycle_length) # annual background mortality risk 

(i.e., probability)

p_S1D <- 1 - exp(-r_S1D * cycle_length) # annual probability of dying when 

Sick

p_S2D <- 1 - exp(-r_S2D * cycle_length) # annual probability of dying when 

Sicker

To compute the risk of progression from S1 to S2 under treatment B, we multiply the hazard 

ratio of treatment B by the rate of progressing from S1 to S2 and transform it to probability 

by applying Equation (1).

## Transition probability of becoming Sicker when Sick for treatment B

# apply hazard ratio to rate to obtain transition rate of becoming Sicker 

when Sick

# for treatment B

r_S1S2_trtB <- r_S1S2 * hr_S1S2_trtB

# transform rate to probability

# probability to become Sicker when Sick under treatment B

p_S1S2_trtB <- 1 - exp(-r_S1S2_trtB * cycle_length)
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For the Sick-Sicker model, the entire cohort starts in the H state. Therefore, we create the 1 

× nS initial state vector v_m_init with all of the cohort assigned to the H state:

v_m_init <- c(H = 1, S1 = 0, S2 = 0, D = 0) # initial state vector

The variable v_m_init is used to initialize M represented by m_M for the cohort under 

strategy SoC. We also create a trace for each of the other treatment-based strategies.

## Initialize cohort trace for SoC

m_M <- matrix(NA,

              nrow = (n_cycles + 1), ncol = n_states,

              dimnames = list(0:n_cycles, v_names_states))

# Store the initial state vector in the first row of the cohort trace

m_M[1, ] <- v_m_init

## Initialize cohort trace for strategies A, B, and AB

# Structure and initial states are the same as for SoC

m_M_strA <- m_M # Strategy A

m_M_strB <- m_M # Strategy B

m_M_strAB <- m_M # Strategy AB

Note that the initial state vector, v_m_init, can be modified to account for the cohort’s 

distribution across the states at the start of the simulation. This distribution can also vary by 

strategy if needed.

Since the Sick-Sicker model consists of 4 states, we create a 4 × 4 transition probability 

matrix for strategy SoC, m_P. We initialize the matrix with default values of zero for all 

transition probabilities and then populate it with the corresponding transition probabilities. 

To access an element of m_P, we specify first the row name (or number) and then the column 

name (or number) separated by a comma. For example, we could access the transition 

probability from state Healthy (H) to state Sick (S1) using the corresponding row or column 

state-names as characters m_P["H", "S1"]. We assume that all transitions to non-death 

states are conditional on surviving to the end of a cycle. Thus, we first condition on 

surviving by multiplying the transition probabilities times 1 - p_HD, the probability of 

surviving a cycle. For example, to obtain the probability of transitioning from H to S1, 

we multiply the transition probability from H to S1 conditional on being alive, p_HS1 by 

1 - p_HD. We create the transition probability matrix for strategy A as a copy of the 

SoC’s transition probability matrix because treatment A does not alter the cohort’s transition 

probabilities.

## Initialize transition probability matrix for strategy SoC

m_P <- matrix (0,

               nrow = n_states, ncol = n_states,
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               dimnames = list(v_names_states, v_names_states)) # row and 

column names

## Fill in matrix

# From H

m_P["H", "H"] <- (1 - p_HD) * (1 - p_HS1)

m_P["H", "S1"] <- (1 - p_HD) * p_HS1

m_P["H", "D"] <- p_HD

# From S1

m_P["S1", "H"] <- (1 - p_S1D) * p_S1H

m_P["S1", "S1"] <- (1 - p_S1D) * (1 - (p_S1H + p_S1S2))

m_P["S1", "S2"] <- (1 - p_S1D) * p_S1S2

m_P["S1", "D"] <- p_S1D

# From S2

m_P["S2", "S2"] <- 1 - p_S2D

m_P["S2", "D"] <- p_S2D

# From D

m_P["D", "D"] <- 1

## Initialize transition probability matrix for strategy A as a copy of SoC's

m_P_strA <- m_P

Because treatment B alters progression from S1 to S2, we created a different transition 

probability matrix to model this treatment, m_P_strB. We initialize m_P_strB as a copy of 

m_P and update only the transition probabilities from S1 to S2 (i.e., p_S1S2 is replaced with 

p_S1S2_trtB). Strategy AB also alters progression from S1 to S2 because it uses treatment 

B, so we create this strategy’s transition probability matrix as a copy of the transition 

probability matrix of strategy B.

## Initialize transition probability matrix for strategy B

m_P_strB <- m_P

## Update only transition probabilities from S1 involving p_S1S2

m_P_strB["S1", "S1"] <- (1 - p_S1D) * (1 - (p_S1H + p_S1S2_trtB))

m_P_strB["S1", "S2"] <- (1 - p_S1D) * p_S1S2_trtB

## Initialize transition probability matrix for strategy AB as a copy of B's

m_P_strAB <- m_P_strB

Once all transition matrices are created, we verify they are valid by checking that each 

row sums to one and that each entry is between 0 and 1. In the darthtools package 

(https://github.com/DARTH-git/darthtools), we provide R functions that do these checks and 

have been described previously.20

### Check if transition probability matrices are valid
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## Check that transition probabilities are [0, 1]

m_P >= 0 && m_P <= 1

m_P_strA >= 0 && m_P_strA <= 1

m_P_strB >= 0 && m_P_strB <= 1

m_P_strAB >= 0 && m_P_strAB <= 1

## Check that all rows sum to 1

rowSums(m_P) == 1

rowSums(m_P_strA) == 1

rowSums(m_P_strB) == 1

rowSums(m_P_strAB) == 1

Next, we obtain the cohort distribution across the 4 states over 75 cycles using a time-

independent cSTM under all four strategies. To achieve this, we iteratively compute the 

matrix product between each of the rows of m_M and m_P, and between m_M_strB and 

m_P_strB, respectively, using the %*% symbol in R at each cycle using a for loop

# Iterative solution of time-independent cSTM

for(t in 1:n_cycles){

  # For SoC

  m_M[t + 1, ] <- m_M[t, ] %*% m_P

  # For strategy A

  m_M_strA[t + 1, ] <- m_M_strA[t, ] %*% m_P_strA

  # For strategy B

  m_M_strB[t + 1, ] <- m_M_strB[t, ] %*% m_P_strB

  # For strategy AB

  m_M_strAB[t + 1, ] <- m_M_strAB[t, ] %*% m_P_strAB

}

Table 3 shows the cohort trace matrix M of the Sick-Sicker model under strategies SoC and 

A for the first six cycles. The whole cohort starts in the H state and transitions to the rest of 

the states over time. Given that the D state is absorbing, the proportion in this state increases 

over time. A graphical representation of the cohort trace for all the cycles is shown in Figure 

2.

5 Cost and effectiveness outcomes

We are interested in computing the total QALYs and costs accrued by the cohort over a 

predefined time horizon for a CEA. In the advanced cSTM tutorial,16 we describe how 

to compute epidemiological outcomes from cSTMs, such as survival, prevalence, and life 

expectancy.2 These epidemiological outcomes are often used to produce other measures of 

interest for model calibration and validation.
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5.1 State rewards

A state reward refers to a value assigned to individuals for being in a given health state. 

These could be either utilities or costs associated with remaining in a specific health state 

for one cycle in a CEA context. The column vector y of size nT + 1 can represent the total 

expected reward of an outcome of interest for the entire cohort at each cycle. To calculate y, 

we compute the matrix product of the cohort trace matrix times a vector of state rewards r of 

the same dimension as the number of states (nS), such that

y = Mr . (4)

For the Sick-Sicker model, we create a vector of utilities and costs for each of the four 

strategies considered. The vectors of utilities and costs in R, v_u_SoC and v_c_SoC, 

respectively, represent the utilities and costs in each of the four health states under SoC, 

scaled by the cycle length (values are shown in Table 2).

# Vector of state utilities under SOC

v_u_SoC <- c(H = u_H, S1 = u_S1, S2 = u_S2, D = u_D) * cycle_length

# Vector of state costs under SoC

v_c_SoC <- c(H = c_H, S1 = c_S1, S2 = c_S2, D = c_D) * cycle_length

We account for the benefits and costs of both treatments individually and their combination 

to create the state-reward vectors under treatments A and B (strategies A and B, 

respectively) and when applied jointly (strategy AB). Only treatment A affects QoL, so 

we create a vector of utilities specific to strategies involving treatment A (strategies A and 

AB), v_u_strA and v_u_strAB. These vectors will have the same utility weights as for 

strategy SoC except for being in S1. We assign the utility associated with the benefit of 

treatment A in that state, u_trtA. Treatment B does not affect QoL, so the vector of utilities 

for strategy involving treatment B, v_u_strB, is the same as for SoC.

# Vector of state utilities for strategy A

v_u_strA <- c(H = u_H, S1 = u_trtA, S2 = u_S2, D = u_D) * cycle_length

# Vector of state utilities for strategy B

v_u_strB <- c(H = u_H, S1 = u_S1, S2 = u_S2, D = u_D) * cycle_length

# Vector of state utilities for strategy AB

v_u_strAB <- c(H = u_H, S1 = u_trtA, S2 = u_S2, D = u_D) * cycle_length

Both treatments A and B incur a cost. To create the vector of state costs for strategy A, 

v_c_strA, we add the cost of treatment A, c_trtA, to the state costs of S1 and S2. 

Similarly, when constructing the vector of state costs for strategy B, v_c_strB, we add the 

cost of treatment B, c_trtB, to the state costs of S1 and S2. Finally, for the vector of state 

costs for strategy AB, v_c_strAB, we add both treatment costs to the state costs of S1 and 

S2.
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# Vector of state costs for strategy A

v_c_strA <- c(H = c_H,

              S1 = c_S1 +c_trtA,

              S2 = c_S2 + c_trtA,

              D = c_D) * cycle_length

# Vector of state costs for strategy B

v_c_strB <- c(H = c_H,

              S1 = c_S1 + c_trtB,

              S2 = c_S2 + c_trtB,

              D = c_D) * cycle_length

# Vector of state costs for strategy AB

v_c_strAB <- c(H = c_H,

               S1 = c_S1 + (c_trtA + c_trtB),

               S2 = c_S2 + (c_trtA + c_trtB),

               D = c_D) * cycle_length

To compute the expected QALYs and costs for the Sick-Sicker model under SoC and 

strategy A, we apply Equation (4) by multiplying the cohort trace matrix, m_M, times the 

corresponding strategy-specific state vectors of rewards. Similarly, to compute the expected 

rewards for strategies B and AB, we multiply the cohort trace matrix accounting for the 

effectiveness of treatment B, m_M_strB, times their corresponding state vectors of rewards.

# Vector of QALYs under SoC

v_qaly_SoC <- m_M %*% v_u_SoC

# Vector of costs under SoC

v_cost_SoC <- m_M %*% v_c_SoC

# Vector of QALYs for strategy A

v_qaly_strA <- m_M_strA %*% v_u_strA

# Vector of costs for strategy A

v_cost_strA <- m_M_strA %*% v_c_strA

# Vector of QALYs for strategy B

v_qaly_strB <- m_M_strB %*% v_u_strB

# Vector of costs for strategy B

v_cost_strB <- m_M_strB %*% v_c_strB

# Vector of QALYs for strategy AB

v_qaly_strAB <- m_M_strAB %*% v_u_strAB

# Vector of costs for strategy AB

v_cost_strAB <- m_M_strAB %*% v_c_strAB

5.2 Within-cycle correction

A discrete-time cSTM involves an approximation of continuous-time dynamics to discrete 

points in time. The discretization might introduce biases when estimating outcomes based 

on state occupancy.21 One approach to reducing these biases is to shorten the cycle length, 
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requiring simulating the model for a larger number of cycles, which can be computationally 

burdensome. Another approach is to use within-cycle corrections (WCC).2,22 In this tutorial, 

we use Simpson’s 1/3rd rule by multiplying the rewards (e.g., costs and effectiveness) by 1/3 

in the first and last cycles, by 4/3 for the odd cycles, and by 2/3 for the even cycles.23,24 

We implement the WCC by generating a column vector wcc of size nT + 1 with values 

corresponding to the first, t = 0, and last cycle, t = nT, equal to 1/3, and the entries 

corresponding to the even and odd cycles with 2/3 and 4/3, respectively.

wcc = 1
3, 2

3 , 4
3 , ⋯, 1

3

Since the WCC vector is the same for costs and QALYs, we only require one vector 

(v_wcc). We create v_wcc by defining two indicator functions that tell us whether the vector 

entries are even or odd, filled with the corresponding factors given by Simpson’s 1/3rd rule. 

We used the function command that reads a vector x and applies the modulo operation %% 

that returns the remainder of dividing each of the vector entries by 2. If the remainder of the 

i − th entry is 0, the entry is even, or it is odd if the remainder is 1 otherwise.

# First, we define two functions to identify if a number is even or odd

is_even <- function(x) x %% 2 == 0

is_odd <- function(x) x %% 2 != 0

## Vector with cycles

v_cycles <- seq(1, n_cycles + 1)

## Generate 2/3 and 4/3 multipliers for even and odd entries, respectively

v_wcc <- is_even(v_cycles)*(2/3) + is_odd(v_cycles)*(4/3)

## Substitute 1/3 in first and last entries

v_wcc[1] <- v_wcc[n_cycles + 1] <- 1/3

5.3 Discounting future rewards

We often discount future costs and benefits by a specific rate to calculate the net present 

value of these rewards. We then use this rate to generate a column vector with cycle-specific 

discount weights d of size nT + 1 where its t-th entry represents the discounting for cycle t

d = 1, 1
(1 + d)1

, 1
(1 + d)2

, ⋯, 1
(1 + d)nT

,

where d is the cycle-length discount rate. At the end of the simulation, we multiply 

the vector of expected rewards, y, by a discounting column vector. The total expected 

discounted outcome summed over the nT cycles, y, is obtained by the inner product between 

y transposed, y′, and d,

y = y′d . (5)
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The discount vectors for costs and QALYs for the Sick-Sicker model with annual cycles, 

v_dwc and v_dwe, respectively, scaled by the cycle length, are

# Discount weight for effects

v_dwe <- 1 / ((1 + (d_e * cycle_length)) ^ (0:n_cycles))

# Discount weight for costs

v_dwc <- 1 / ((1 + (d_c * cycle_length)) ^ (0:n_cycles))

The functions and code for creating the WCC and discounting vectors above are single 

lines of code that affect the entire vectors of rewards used to compute the health and 

economic outputs of the model. To compute the total expected discounted QALYs and costs 

under all four strategies accounting for both discounting and WCC, we incorporate wcc 
in equation (5) using an element-wise multiplication with d, indicated by the ⊙ sign. The 

element-wise multiplication computes a new vector with elements that are the products of 

the corresponding elements of wcc and d.

y = y′ (d ⊙ wcc) . (6)

To compute the total expected discounted and WCC-corrected QALYs under all four 

strategies in R, we apply Equation (6) to the reward vectors of each strategy.

## Expected discounted QALYs under SoC

n_tot_qaly_SoC <- t(v_qaly_SoC) %*% (v_dwe * v_wcc)

## Expected discounted costs under SoC

n_tot_cost_SoC <- t(v_cost_SoC) %*% (v_dwc * v_wcc)

## Expected discounted QALYs for strategy A

n_tot_qaly_strA <- t(v_qaly_strA) %*% (v_dwe * v_wcc)

## Expected discounted costs for strategy A

n_tot_cost_strA <- t(v_cost_strA) %*% (v_dwc * v_wcc)

## Expected discounted QALYs for strategy B

n_tot_qaly_strB <- t(v_qaly_strB) %*% (v_dwe * v_wcc)

## Expected discounted costs for strategy B

n_tot_cost_strB <- t(v_cost_strB) %*% (v_dwc * v_wcc)

## Expected discounted QALYs for strategy AB

n_tot_qaly_strAB <- t(v_qaly_strAB) %*% (v_dwe * v_wcc)

## Expected discounted costs for strategy AB

n_tot_cost_strAB <- t(v_cost_strAB) %*% (v_dwc * v_wcc)

The total expected discounted QALYs and costs for the Sick-Sicker model under the four 

strategies accounting for within-cycle correction are shown in Table 4.
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6 Incremental cost-effectiveness ratios (ICERs)

We combine the total expected discounted costs and QALYs for all four strategies into 

outcome-specific vectors, v_cost_str for costs and v_qaly_str for QALYs. So far, we 

have used base R to create and simulate cSTMs. For the CEA, we use the various functions 

from R package dampack (https://cran.r-project.org/web/packages/dampack/)25 that are also 

included as supplementary material to calculate the incremental costs and effectiveness and 

the incremental cost-effectiveness ratio (ICER) between non-dominated strategies and create 

the data frame df_cea with this information. These outcomes are required inputs to conduct 

a CEA. We included function from ‘dampack’ for the probabilistic sensitivity analysis (PSA) 

below.

### Vector of costs

v_cost_str <- c(n_tot_cost_SoC, n_tot_cost_strA, n_tot_cost_strB, 

n_tot_cost_strAB)

### Vector of effectiveness

v_qaly_str <- c(n_tot_qaly_SoC, n_tot_qaly_strA, n_tot_qaly_strB, 

n_tot_qaly_strAB)

### Calculate incremental cost-effectiveness ratios (ICERs)

df_cea <- dampack::calculate_icers(cost = v_cost_str,

                                   effect = v_qaly_str,

                                   strategies = v_names_str)

SoC is the least costly and effective strategy, followed by Strategy B producing an 

expected incremental benefit of 1.473 QALYs per individual for an additional expected 

cost of $107,521 with an ICER of $72,988/QALY followed by Strategy AB with an ICER 

$125,764/QALY. Strategy A is a dominated strategy (Table 5). Strategies SoC, B and AB 

form the cost-effectiveness efficient frontier (Figure 3).

7 Probabilistic sensitivity analysis

To quantify the effect of model parameter uncertainty on cost-effectiveness outcomes, we 

conducted a PSA by randomly drawing K parameter sets (n_sim) from distributions that 

reflect the current uncertainty in model parameter estimates.26 The distribution for all the 

parameters and their values are described in Table 2 and in more detail in the Supplementary 

Material. We compute model outcomes for each sampled set of parameter values (e.g., total 

discounted cost and QALYs) for each strategy. In a previously published manuscript, we 

describe the implementation of these steps in R.20 Briefly, to conduct the PSA, we create 

three R functions:

1. generate_psa_params(n_sim, seed): a function that generates a sample of 

size n_sim for the model parameters, df_psa_input, from their distributions 

defined in Table 2. The function input seed sets the seed of the pseudo-

random number generator used in sampling parameter values, which ensures 

reproducibility of the PSA results.
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2. decision_model(l_params_all, verbose = FALSE): a function that 

wraps the R code of the time-independent cSTM described in section 3. This 

function requires inputting a list of all model parameter values, l_params_all 

and whether the user wants print messages on whether transition probability 

matrices are valid via the verbose parameter.

3. calculate_ce_out(l_params_all, n_wtp = 100000): a function that 

calculates total discounted costs and QALYs based on the decision_model 

function output. This function also computes the net monetary benefit (NMB) 

for a given willingness-to-pay threshold, specified by the argument n_wtp. 

These functions are provided in the accompanying GitHub repository of this 

manuscript.

To conduct the PSA of the CEA using the time-independent Sick-Sicker cSTM, we sampled 

1,000 parameter sets from their distributions. We assumed commonly used distributions to 

describe their uncertainty for each type of parameter. For example, gamma for transition 

rates, lognormal for hazard ratios, and beta for utility weights.22,27-29 For each sampled 

parameter set, we simulated the cost and effectiveness of each strategy. Results from a PSA 

can be represented in various ways. For example, the joint distribution, 95% confidence 

ellipse, and the expected values of the total discounted costs and QALYs for each strategy 

can be plotted in a cost-effectiveness scatter plot (Figure 4),29 where each of the 1,000 

simulations are plotted as a point in the graph. The CE scatter plot for CEA using the 

time-independent model shows that strategy AB has the highest expected costs and QALYs. 

Standard of care has the lowest expected cost and QALYs. Strategy B is more effective and 

least costly than Strategy A. Strategy A is a strongly dominated strategy.

Figure 5 presents the cost-effectiveness acceptability curves (CEACs), which show the 

probability that each strategy is cost-effective, and the cost-effectiveness frontier (CEAF), 

which shows the strategy with the highest expected net monetary benefit (NMB), over a 

range of willingness-to-pay (WTP) thresholds. Each strategy’s NMB is computed using 

NMB = QALY × WTP − Cost30 for each PSA sample. At WTP thresholds less than $80,000 

per QALY gained, strategy SoC has both the highest probability of being cost-effective 

and the highest expected NMB. This switches to strategy B for WTP thresholds between 

$80,000 and $120,000 per QALY gained and to strategy AB for WTP thresholds greater 

than or equal to $120,000 per QALY gained.

The CEAC and CEAF do not show the magnitude of the expected net benefit lost (i.e., 

expected loss) when the chosen strategy is not the cost-effective strategy in all the samples 

of the PSA. To complement these results, we quantify expected loss from each strategy 

over a range of WTP thresholds with the expected loss curves (ELCs). These curves 

quantify the expected loss from each strategy over a range of WTP thresholds (Figure 

6). The expected loss considers both the probability of making the wrong decision and the 

magnitude of the loss due to this decision, representing the foregone benefits of choosing a 

suboptimal strategy. The expected loss of the optimal strategy represents the lowest envelope 

of the ELCs because, given current information, the loss cannot be minimized further. The 

lower bound of the ELCs represents the expected value of perfect information (EVPI), 

which quantifies the value of eliminating parameter uncertainty. We refer the reader to 
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previously published literature for a more detailed description of CEAC, CEAF, and ELC 

interpretations and the R code to generate them.31

8 Discussion

In this introductory tutorial, we provided a step-by-step mathematical conceptualization 

of time-independent cSTMs and a walk-through of their implementation in R using a 

hypothetical disease example with accompanying code throughout the tutorial. While some 

of the presented implementation details are specific to the R programming language, 

much of the code structure shown in this tutorial would be similar in other programming 

languages. Thus, readers may use this tutorial as a template for coding cSTMs more 

generally in different programming languages.

The parameterization of our example model assumes all parameters are known, or at 

least, the characterization of their uncertainty is known (i.e., we know their distributions). 

However, to construct a real-world cSTM, modelers must conduct a thorough synthesis 

of current evidence to determine these appropriate structures and inform all parameters 

based on the current evidence. For example, literature must be carefully considered when 

determining whether transitions between non-death health states are estimated conditional 

on being alive or are estimated as competing risks along with mortality risks.26 Similarly, 

our PSA analysis simplifies reality where all model parameters are assumed to be 

independent of each other. However, parameters could be correlated or have a rank order, 

and appropriate statistical methods that simulate these correlations or rank order might 

be needed.32 We encourage modelers to use appropriate statistical methods to accurately 

synthesize and quantify model parameters’ uncertainty. For example, for the PSA of our 

case study, we used distributions based on the type of parameters following standard 

recommendations. For a more detailed description of how to choose distributions, we refer 

the reader to other literature.29,33 In addition, modelers should appropriately specify all 

model parameters for the cycle length of the model.22

In general, cSTMs are recommended when the number of states is considered “not too 

large”2 This recommendation arises because it becomes more challenging to keep track 

of their construction as the number of states increases. It is possible to build reasonably 

complex cSTMs in R as long as the computer’s RAM can store the size of the transition 

probability matrix and outputs of interest. For time-independent cSTMs, in general, this 

should not be a problem with the capacity of current RAM in personal computers. An 

alternative to reduce the explosion of disease states is iSTMs, a type of STM where 

simulated individuals transition between health states over time.2 We have previously 

published a tutorial on the implementation of iSTMs in R.19

With increasing model complexity and interdependency of functions to conduct various 

analyses like PSA, it is essential to ensure all code and functions work as expected and 

all elements of the cSTM are valid. We can achieve this by creating functions that help 

with model debugging, validation, and thorough unit testing. In the accompanying GitHub 

repository, we provide functions to check that transition probability matrices and their 

elements are valid. These functions are an example of a broader standard practice in 
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software development called unit testing that requires building functions to test and check 

that the model and model-based analysis perform as intended.34 However, unit testing is 

beyond the scope of this tutorial. We refer the reader to a previously published manuscript 

that describes unit testing in more detail and provides accompanying code.20

In this tutorial, we implemented a cSTM using a (discrete-time) transition matrix. However, 

cSTM can also be implemented via (discrete-time) difference equations or (continuous-time) 

differential equations in R.35,36 We refer readers interested in learning more on continuous-

time cSTMs to previously published manuscripts21,37-39 and a tutorial using R.40 Finally, the 

variable names used in this paper reflect our coding style. While we provide standardized 

variable names, adopting these conventions is ultimately a personal preference.

In summary, this tutorial provides a conceptualization of time-independent cSTMs and a 

step-by-step guide to implement them in R. We aim to add to the current body of literature 

and material on building this type of decision model so that health decision scientists and 

health economists can develop cSTMs in a more flexible, efficient, open-source manner and 

to encourage increased transparency and reproducibility. In the advanced cSTM tutorial, we 

explore generalizing this framework to time-dependent cSTM, generating epidemiological 

outcomes, and incorporating transition rewards.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
State-transition diagram of the time-independent Sick-Sicker cohort state-transition model, 

showing all possible states (labeled with state names) and transitions (labeled with transition 

probability variable names).
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Figure 2: 
Cohort trace of the time-independent cSTM under strategies SoC and A.
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Figure 3: 
Cost-effectiveness efficient frontier of the cost-effectiveness analysis based on the time-

independent Sick-Sicker model.
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Figure 4: 
Cost-effectiveness scatter plot.
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Figure 5: 
Cost-effectiveness acceptability curves (CEACs) and frontier (CEAF).
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Figure 6: 
Expected loss curves (ELCs) and expected value of perfect information (EVPI).

Alarid-Escudero et al. Page 28

Med Decis Making. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alarid-Escudero et al. Page 29

Table 1:

Components of a cSTM with their R name.

Element Description R name

nS Number of states n_states

m0 Initial state vector v_m_init

m t State vector in cycle t v_mt

M Cohort trace matrix m_M

P Time-independent transition probability matrix m_P
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Table 2:

Description of parameters, their R variable name, base-case values and distribution.

Parameter R name Base-case Distribution

Number of cycles (nT) n_cycles 75 years -

Names of health states (n) v_names_states H, S1, S2, D -

Annual discount rate for costs d_c 3% -

Annual discount rate for QALYs d_e 3% -

Number of PSA samples (K) n_sim 1,000 -

Annual constant transition rates

- Disease onset (H to S1) r_HS1 0.150 gamma(30, 200)

- Recovery (S1 to H) r_S1H 0.500 gamma(60, 120)

- Disease progression (S1 to S2) r_S1S2 0.105 gamma(84, 800)

Annual mortality

- Background mortality rate (H to D) r_HD 0.002 gamma(20, 10000)

- Hazard ratio of death in S1 vs H hr_S1 3.0 lognormal(log(3.0), 0.01)

- Hazard ratio of death in S2 vs H hr_S2 10.0 lognormal(log(10.0), 0.02)

Annual costs

- Healthy individuals c_H $2,000 gamma(100.0, 20.0)

- Sick individuals in S1 c_S1 $4,000 gamma(177.8, 22.5)

- Sick individuals in S2 c_S2 $15,000 gamma(225.0, 66.7)

- Dead individuals c_D $0 -

Utility weights

- Healthy individuals u_H 1.00 beta(200, 3)

- Sick individuals in S1 u_S1 0.75 beta(130, 45)

- Sick individuals in S2 u_S2 0.50 beta(230, 230)

- Dead individuals u_D 0.00 -

Treatment A cost and effectiveness

- Cost of treatment A, additional to state-specific health care costs c_trtA $12,000 gamma(73.5, 163.3)

- Utility for treated individuals in S1 u_trtA 0.95 beta(300, 15)

Treatment B cost and effectiveness

- Cost of treatment B, additional to state-specific health care costs c_trtB $12,000 gamma(86.2, 150.8)

- Reduction in rate of disease progression (S1 to S2) as hazard ratio 
(HR)

hr_S1S2_trtB log(0.6) lognormal(log(0.6), 0.02)
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Table 3:

The distribution of the cohort under strategies SoC and A for the first six cycles of the time-independent 

Sick-Sicker model. The first row, labeled with cycle 0, contains the distribution of the cohort at time zero.

Cycle H S1 S2 D

0 1.000 0.000 0.000 0.000

1 0.859 0.139 0.000 0.002

2 0.792 0.189 0.014 0.005

3 0.755 0.206 0.032 0.008

4 0.729 0.208 0.052 0.011

5 0.707 0.206 0.072 0.015
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Table 4:

Total expected discounted QALYs and costs per average individual in the cohort of the Sick-Sicker model by 

strategy accounting for within-cycle correction.

Costs QALYs

 Standard of care $151,580 20.711

Strategy A $284,805 21.499

Strategy B $259,100 22.184

Strategy AB $378,875 23.137
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Table 5:

Cost-effectiveness analysis results for the Sick-Sicker model. ND: Non-dominated strategy; D: Dominated 

strategy.

Strategy Costs ($) QALYs Incremental Costs ($) Incremental QALYs ICER ($/QALY) Status

Standard of care 151,580 20.711 NA NA NA ND

Strategy B 259,100 22.184 107,521 1.473 72,988 ND

Strategy AB 378,875 23.137 119,775 0.952 125,764 ND

Strategy A 284,805 21.499 NA NA NA D
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