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Abstract

There is a possible accelerated biological aging in patients with substance use disorders 

(SUD). The evaluation of epigenetic clocks, which are accurate estimators of biological aging 

based on DNA methylation changes, has been limited to blood tissue in patients with SUD. 

Consequently, the impact of biological aging in the brain of individuals with SUD remains 

unknown. In this study, we evaluated multiple epigenetic clocks (DNAmAge, DNAmAgeHannum, 

DNAmAgeSkinBlood, DNAmPhenoAge, DNAmGrimAge, and DNAmTL) in individuals with 

SUD (n=42), including alcohol (n=10), opioid (n=19), and stimulant use disorder (n=13), and 

controls (n=10) in postmortem brain (prefrontal cortex) and blood tissue obtained from the 

same individuals. We found a higher DNAmPhenoAge (beta=0.191, p-value=0.0104) and a 

nominally lower DNAmTL (beta=−0.149, p-value=0.0603) in blood from individuals with SUD 

compared to controls. SUD subgroup analysis showed a nominally lower brain DNAmTL in 

subjects with alcohol use disorder, compared to stimulant use disorder and controls (beta=0.0150, 

p-value=0.087). Cross-tissue analyses indicated a lower blood DNAmTL and a higher blood 

DNAmAge compared to their respective brain values in the SUD group. This study highlights the 

relevance of tissue specificity in biological aging studies and suggests that peripheral measures of 

epigenetic clocks in SUD may depend on the specific type of drug used.
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1. Introduction

Substance use disorders (SUD) have been associated with an increased risk of premature all-

cause mortality and an early onset of age-related diseases, such as cardiac, cerebrovascular, 

kidney, and liver diseases (Chesney et al., 2014, Hjemsæter et al., 2019). A possible 

increase in aging acceleration in patients with SUD, i.e., an outpace of biological age over 

chronological age, is considered one of the main contributors to the adverse outcomes in 

SUD (Bachi, Sierra, Volkow, Goldstein, & Alia-Klein, 2017). While studies of accelerated 

biological aging have been most extensively done using telomere length as the biological 

measure (Monroy-Jaramillo, Dyukova, & Walss-Bass, 2018), DNA methylation-based 

epigenetic clocks, better known as epigenetic clocks, have more recently been demonstrated 

as highly accurate molecular correlates of biological age (Bell et al., 2019).

Several epigenetic clocks have been developed in the last years, including DNAmAge, 

DNAmAgeHannum and DNAmAgeSkinBlood. The available epigenetic clocks were built 

based on the DNA methylation of different CpG sites, varying from 3 to 353 CpG sites 

(Field et al., 2018). Overall, epigenetic clocks have exhibited high accuracy in the estimation 

of biological age in different tissues including whole blood, skeletal muscle, and bone 

(Voisin et al., 2020; Gopalan, Gaige, & Henn, 2019; Fransquet, Wrigglesworth, Woods, 

Ernst, & Ryan, 2019). Furthermore, the most recent epigenetic clocks, i.e., DNAmPhenoAge 

(Levine et al., 2018) and DNAmGrimAge, besides estimating biological age, have been 

shown to predict clinical health measures, including blood pressure (Quach et al., 2017), 

cognitive and physical functioning (Marioni et al., 2015), frailty (Breitling et al., 2016), 

and the incidence of age-related diseases such as cancer (Ambatipudi et al., 2017; Durso 

et al., 2017), ischemic stroke (Soriano-Tárraga et al., 2016), and mortality (Fransquet, 

Wrigglesworth, Woods, Ernst, & Ryan, 2019; Shireby et al., 2020). Furthermore, epigenetic 

clocks have allowed the identification of individuals with substantial deviations from 

their actual chronological age, better known as ‘accelerated biological aging’ (Fransquet, 

Wrigglesworth, Woods, Ernst, & Ryan, 2019).

The hypothesis of an increased age acceleration in SUD is supported by the association 

between SUD, particularly alcohol and smoking use disorder, with leukocyte telomere 

shortening (Yang et al., 2013) and accelerated epigenetic aging, as demonstrated by 

measures of epigenetic clocks in blood (Luo et al., 2020; Rosen et al., 2018; Gao, Zhang, 

Breitling, & Brenner, 2016). Given that DNA methylation is highly tissue-specific, it is 

crucial to evaluate epigenetic clocks in different tissues in individuals with SUD (Gao, 

Zhang, Breitling, & Brenner, 2016). The cross-tissue study of epigenetic clocks could 

provide insights on tissue-specific aging alterations associated with SUD.

Moreover, the simultaneous assessment of epigenetic clocks in both brain and peripheral 

tissues may ultimately help to determine the potential use of peripheral estimates, such 

as those evaluated in whole blood, as surrogates of brain measures. In this study, we 

assessed and compared several epigenetic clocks that capture different aging aspects in 

individuals with and without SUD in both postmortem brain and blood tissues. First, we 

evaluated single tissue, i.e., brain and blood, separately, to identify epigenetic clocks and 

biological aging differences between individuals with SUD and non-psychiatric controls. 
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Then, we evaluated the cross-tissue differences in these epigenetic aging estimates in brain 

and blood samples from the same individuals. Finally, we evaluated brain-blood correlations 

on epigenetic aging estimates to evaluate the use of blood measures as proxies for brain 

measures.

2. Materials and methods

2.1 Brain and blood tissue samples

Postmortem brain and peripheral blood tissue from 42 individuals with SUD and 11 controls 

were obtained from The University of Texas Health Science Center at Houston (UTHealth) 

Brain Collection in collaboration with the Harris County Institute of Forensic Science 

(HCIFS), with Institutional Review Board approval. Informed consent was obtained from 

the next of kin to include the samples in the present study. Of note, both brain and 

blood samples were obtained from most individuals. Upon receipt of the brain, the right 

hemisphere was coronally sectioned, immediately frozen, and stored at −80° C. Dissections 

of Brodmann area 9 (BA9), defined within the dorsolateral prefrontal cortex between the 

superior frontal gyrus and the cingulate sulcus, were obtained using a 4mm cortical punch, 

yielding approximately 100mg of tissue. We considered dorsolateral prefrontal cortex of 

particular interest for SUD as it is crucially involved in cognitive processes implicated in 

this group of disorders, i.e., decision-making, inhibition, craving, and memory (Zhai et al., 

2021). Furthermore, patients with SUD have exhibited functional and structural alterations 

in this area in neuroimaging studies (Goldstein & Volkow, 2011; Beylergil et al., 2017; Lin 

et al., 2018), and postmortem studies have identified molecular alterations in this region in 

individuals with SUD (Zhang et al., 2014; Ribeiro et al., 2017). Postmortem interval (PMI) 

was calculated from the estimated time of death until tissue preservation, and cerebellar pH 

was calculated as previously described (Monoranu et al., 2009). Peripheral blood samples 

were collected into EDTA-containing tubes, and then stored as whole blood at −80 °C until 

further use.

For each subject, demographic information, autopsy and toxicology reports, and medical 

and psychiatric notes were obtained. A structured interview (psychological autopsy) 

was performed with each subject’s next-of-kin to obtain detailed information regarding 

psychiatric clinical phenotypes (evidence of depression, mania, psychosis, etc.), age at onset 

of drug use, types of drugs used, drinking history, and co-morbidities. After review of all the 

available case information by an independent panel of three trained clinicians, a consensus 

diagnosis of a specific SUD, or non-psychiatric control, was reached for each subject. For 

brain tissue analysis, the specific SUD diagnoses were alcohol use disorder (AUD, n=10), 

opioid use disorder (OUD, n=19), and stimulant use disorder (amphetamines and cocaine, 

StUD, n=13). For peripheral blood samples, the specific SUD diagnoses were AUD (n=7), 

OUD (n=20), and StUD (n=13). Classification of the individuals in the mentioned groups 

was made based on the primary diagnosis as determined in the consensus diagnosis. The 

primary diagnosis was associated with the underlying primary disease of the deceased. 

Three individuals in the OUD group and two from the stimulant use disorder group had an 

additional SUD or secondary diagnosis. A summary of the demographic characteristics of 
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the subgroups analyzed in brain and blood tissue is shown in Supplementary Table S6 and 

Supplementary Table S7, respectively.

2.2 Statistical analysis

Differences on continuous demographic variables between the main groups, i.e., SUD and 

controls, were assessed by t-tests or Wilcoxon rank-sum tests, according to their distribution 

determined by Shapiro–Wilk test. While differences among the subgroups were assessed 

by analysis of variance, differences on categorical variables between the main groups and 

the subgroups of different SUDs were assessed by Fisher’s exact and chi-squared tests, 

respectively.

2.3 DNA isolation and microarray hybridization

Total DNA was isolated from brain and peripheral blood samples with the DNeasy Blood & 

Tissue kit (cat. 69504) (Qiagen, USA) according to the manufacturer’s instructions. Isolated 

DNA samples were quantified on NanoDrop (Thermo, Waltham, MA, USA) and 500 ng 

of DNA from each sample were bisulfite-converted using the EZ DNA Methylation™ Kit 

(Zymo Research, Irvine, CA, USA). Then, samples DNA methylation of the samples was 

evaluated using the Infinium Human Methylation EPIC BeadChip (Illumina, San Diego, CA, 

USA). For genotyping, DNA samples (200 ng) were hybridized into the Illumina Global 

Screening Array-24 (Illumina, USA) according to standard protocols.

Briefly, the processing of samples for both microarrays consisted in the amplification of 

DNA, its fragmentation and hybridization into the BeadChip followed by fluorescence 

staining. As part of the standard microarray processing, an assessment of control 

metrics monitoring the various experimental steps such as bisulfite conversion and 

fluorescence staining was performed. Also, sample-independent controls were included 

in the assay to monitor and verify every step in the hybridization and visualization 

processes. Sample-dependent behavior such as call rate and intensity, were also evaluated 

(Infinium Methylation Beadchip - www.illumina.com; Infinium Global Screening - 

www.illumina.com). Microarrays were scanned with an iScan Microarray Scanner (Illumina, 

San Diego, CA, USA) for microarray signal detection, according to their respective 

protocols.

2.4 DNA methylation age estimates

We used the New DNA Methylation Age Calculator (https://horvath.genetics.ucla.edu; 

Horvath, 2013) to calculate DNA methylation age estimates and other measures of age 

acceleration. DNA methylation beta values were normalized by the Beta MIxture Quantile 

dilation (BMIQ) method (Teschendorff et al., 2013) using the ChAMP package (Tian et 

al., 2017) as suggested by the developer. The DNA methylation age estimates evaluated in 

this study were DNAmAge, DNAmAgeHannum, DNAmAgeSkinBlood, DNAmPhenoAge, 

DNAmGrimAge, and a DNAm-based estimate of telomere length (DNAmTL) (Horvath et 

al., 2018; Levine et al., 2018; Lu, Seeboth, et al., 2019; Horvath, 2013; Hannum et al., 2013; 

Kwiatkowska et al., 2020).
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The evaluated DNA methylation age estimates are based on DNA methylation levels of 

different CpG sites sets and had been correlated with different biological traits and clinical 

measures (Roshandel et al., 2020; Bergsma & Rogaeva, 2020). Thus, each one of them 

is expected to capture different aging aspects. Hence, it has been suggested that the 

evaluation of multiple DNA methylation age estimates is likely to better describe the aging 

complexity (Bergsma & Rogaeva, 2020). Both, the multi-tissue clock DNAmAge (based on 

353 CpG sites) and the blood-based DNAmAgeHannum (71 CpG sites) stand out by their 

correlation with chronological age (r = 0.96 for Horvath and r = 0.91 for Hannum) and 

all-cause mortality (Horvath & Raj, 2018). Despite their similar correlates, DNAmAge and 

DNAmAgeHannum have only six CpG sites in common (Jylhävä, Pedersen & Hägg, 2017). 

Although DNAmAgeSkinBlood (391 CpG sites) was developed to estimate aging in human 

fibroblasts, keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells, skin, blood, 

and saliva samples, it has also exhibited high age correlations in brain, liver, and bone tissues 

(Horvath et al., 2018).

The called ‘second-generation’ DNA methylation clocks, DNAmPhenoAge and 

DNAmGrimAge, include DNAm correlates of lab tests for their calculation, which has 

resulted in a higher accuracy in the prediction of morbidity and mortality compared 

to previous epigenetic clocks (Levine, 2020; McCrory et al., 2020). For example, 

DNAmGrimAge (1030 CpG sites) calculation is based on age, and DNAm surrogates 

of smoking pack-years and seven blood proteins -adrenomedullin, beta-2 microglobulin, 

cystatin C, growth differentiation factor 15, leptin, plasminogen activation inhibitor 1, tissue 

inhibitor metalloproteinase 1- (Lu et al., 2019). While, DNAmPhenoAge (513 CpG sites) is 

based on DNAm surrogates of albumin, alkaline phosphatase, creatinine, C-reactive protein, 

lymphocyte percent, mean cell volume, red cell distribution width, white cells count, and 

serum glucose (Levine et al., 2018).

In addition, we evaluated a DNAm-based estimate of telomere length (DNAmTL) (140 CpG 

sites), which is one of the most widely used aging estimators. Of note, DNAmTL exhibited 

a higher accuracy than southern blot-measured telomere length in the prediction of coronary 

heart disease (Lu et al., 2019). Aging Acceleration (AA) is the difference between DNA 

methylation age and chronological age and was estimated by calculating the residuals from 

linear regressions of each epigenetic clock on the chronological age. A positive value of 

epigenetic age acceleration indicates that the DNA methylation-predicted age is older than 

chronological age i.e., the analyzed tissue has aged faster than expected (Mendelson, 2018).

Furthermore, we calculated extrinsic epigenetic age acceleration (EEAA), which is an 

estimate of immune system aging, and intrinsic epigenetic age acceleration (IEAA), an 

estimate of cellular age acceleration independent of cell proportions (Chen et al., 2016; 

Horvath et al., 2016). Also, we estimated DNA methylation-based cell proportion for the 

different blood cell types (monocytes, CD4 + T-lymphocytes, B-lymphocytes, granulocytes, 

natural killer cells, and CD8 + T-lymphocytes) and neuronal cells in blood and brain 

samples, respectively (Horvath & Levine, 2015; Guintivano, Aryee, & Kaminsky, 2013; 

Houseman et al., 2012). We compared the estimates of cell proportions between the SUD 

and control groups using a two-side Wilcoxon rank sum test for each cellular type.
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In addition, we estimated the smoking status (i.e., current, former, and never smokers) and 

smoking score from the analyzed individuals using the EpiSmokEr R package (Bollepalli 

et al., 2019). Briefly, such estimations were performed based on blood DNA methylation 

profiles of targeted CpG sites known to be strongly associated with smoking. Smoking status 

was estimated based on the DNA methylation levels of 121 CpGs, while the smoking score 

was calculated based on 187 smoking-associated CpGs, as described in Elliott et al. 2014.

Since the evaluated age estimates are based on DNA methylation changes, we estimated 

the statistical power of the analyzed sample to detect differences between the SUD and 

control groups with the pwr.t2n.test function of the R package pwr (Champely et al., 2020). 

For calculating the statistical power of detecting differences among the SUD subgroups 

we used the pwr.anova.test function. The power analyses for the detection of cross-tissue 

correlations (r=0.75) and differences were performed with the pwr.r.test and pwr.t.test (for 

paired samples) functions, respectively. Power analyses were calculated for a large effect 

size of 1.0 (chosen to facilitate interpretation) and a significance p-value of 0.05. The effect 

size was provided as Cohen’s d, which is the expected difference between the two group 

means divided by their pooled standard deviation (Cohen, 1988). Also, we performed a 

sensitivity analysis to test whether our results were different after excluding individuals with 

an additional SUD (or secondary diagnosis) by t-tests or Wilcoxon rank-sum tests, according 

to their distribution determined by Shapiro–Wilk tests.

2.5 Correlations between epigenetic variables and age

Distributions and homoscedasticity of the epigenetic variables were evaluated by Shapiro–

Wilk and Levene’s tests, respectively. Those variables with a distribution other than 

normal, were log-transformed. In case of epigenetic variables with negative numbers, we 

log-transformed the absolute value of the variable plus one and multiplied those values that 

were originally negative by minus one (John & Draper, 1980). First, correlations between 

brain and blood epigenetic variables and chronological age were tested for the SUD and 

control groups separately, as well as for each subgroup per tissue, using either Pearson or 

Spearman tests, depending on their distribution, with the Hmisc R package. Then, we plotted 

the correlation results using the corrplot package (Taiyun, 2021). Finally, we compared 

the correlation coefficients between both groups of those significant correlations using 

the Fisher r-to-z transformation with the compcorr function from the DiffCorr R package 

(Fukushima, 2013).

2.6 Correlations among epigenetic variables

The correlations between the epigenetic aging variables in both brain and blood tissues 

were tested for the SUD and control groups separately. For this, we used either Pearson or 

Spearman tests, depending on their distribution, using the cor.test function of the R stats 
package (R Core Team, 2013). Again, we compared the correlation coefficients of those 

significant correlations between both groups using the Fisher r-to-z transformation with the 

compcorr function from the DiffCorr R package (Fukushima, 2013).
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2.7 Single-tissue measures of epigenetic aging variables among groups

Differences on epigenetic aging variables in blood and brain tissue were compared, 

separately, between the main groups, i.e., SUD and controls, by linear regression models 

using chronological age, sex, blood cell count estimates (for blood), neuronal proportion, 

PMI and tissue pH (for brain), and the top three ancestry principal components as covariates, 

as they accounted for the highest proportion of the ancestry variability, with 34.84%, 

26.69%, and 13.43%, respectively. Furthermore, we performed an additional analysis 

including the estimated smoking score as covariate. We performed a quality control of the 

genetic data prior to the estimation of ancestry principal components. This quality control 

was performed using PLINK 2.0 (Purcell et al., 2007) and consisted in the exclusion of 

SNPs of with a variant calling >95% and a minor allele frequency (MAF) greater than 5%. 

Those individuals with >10% of missing genotypes and related individuals were excluded 

(PI_HAT ≥0.5). All individuals passed the latter quality control filter. Finally, in order 

to include only linkage disequilibrium (LD)-independent SNPs in the ancestry principal 

components analysis, we performed a LD pruning considering a window size of 50 kb, a 

variant count to shift the window at the end of each step of 5, and a pair pairwise correlation 

threshold of 0.2. Principal ancestry component analysis was performed with smartPCA from 

the EIGENSOFT package (Price et al., 2006; Patterson, Price, & Reich, 2006), using the 

genome-wide genotype information from each subject. Ancestry-informative markers were 

obtained from the Human Genome Diversity Project (HGDP) (Cavalli-Sforza, 2005).

We then evaluated differences on epigenetic aging variables among the SUD subgroups 

using linear regression models with the same covariates as in the main groups’ comparisons. 

Beta coefficients, which correspond to the degree of change in the epigenetic age variable 

for every 1-unit change in the predictor variables, were calculated with the lm.beta 
package (Behrendt, 2014). P-values were corrected for multiple comparisons using the 

Benjamini-Hochberg method for controlling the false discovery rate (FDR) – which is 

the expected proportion of positive tests that are false, i.e., incorrect rejections of the 

null hypothesis (Benjamini & Hochberg, 1995). Briefly, this method ranks the individual 

p-values corresponding to each tested hypothesis in ascending order. Then, each FDR-

corrected p-value is recalculated considering its ranking place, the number of total tests 

performed (or hypothesis testes) and the selected FDR (Haynes, 2013). For this study, the 

FDR value was 0.05 and we considered as nominally significant a FDR value of 0.1 or 

lower.

2.8 Comparisons of epigenetic variables across tissues

For the cross-tissue analysis we included data from 39 individuals with SUD and 10 

controls, selected based on the availability of matching samples from both brain and blood 

tissues. No significant differences were found regarding age, sex, PMI, pH, and ethnicity 

proportions between individuals with SUD and controls included in the cross-tissue analyses 

using a linear model recoding the original groups (SUD and control) to a new variable 

including the examined tissue, i.e., SUD brain, SUD blood, Control brain, and Control 

blood. Sex, chronological age, and the top three ancestry principal components were used 

as covariates. Furthermore, we performed an additional analysis including the estimated 

smoking score as covariate. Interaction terms among between the variables included in the 
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model were tested and discarded if their associated p-value was lower than 0.05. A summary 

of demographic characteristics from the individuals included in the cross-tissue analyses in 

shown in Table 2.

We evaluated cross-tissue correlations between blood and brain epigenetic variables within 

each group, i.e., SUD and control groups, with either Pearson or Spearman tests, depending 

on their distribution, using the cor.test function of the R stats package (R Core Team, 2013). 

Then, we compared the correlation coefficients between both groups of those significant 

correlations using the Fisher r-to-z transformation with the compcorr function from the 

DiffCorr R package (Fukushima, 2013).

3. Results

Brain BA9 samples from 53 individuals and blood samples from 51 individuals were 

analyzed. BA9 was selected based on the reported disruption of cognitive functions 

and executive processes regulated by the prefrontal cortex such as attention, inhibitory 

control, working memory, and cognitive flexibility, in individuals with SUD (Sullivan 

& Pfefferbaum, 2019; Zahr, Pfefferbaum, & Sullivan, 2017). No significant differences 

were found regarding chronological age, sex, PMI, tissue pH, and ethnicity proportions 

between SUD and control groups in either brain or blood. A summary of the demographic 

characteristics from the sample analyzed in each tissue is shown in Table 1. Sample 

characteristics of the subgroups is shown in Supplementary Table S2 and S3. Detailed 

individual-level information regarding cause of death and toxicology at time of death is 

shown in Supplementary Table 1 (Supplementary File 1).

Statistical power of the analyzed sample to detect differences between the SUD and control 

groups was 0.825 and 0.821 for brain and blood tissues, respectively. For subgroup analyses 

the calculated power was 0.99 for both brain and blood tissues. For cross-tissue differences, 

power was estimated as 0.99, and for cross-tissue correlations we estimated a power of 0.99 

for detecting a correlation of 0.75. Power estimations were calculated for an effect size of 

1.0 provided as Cohen’s d, and a significance p-value of 0.05.

No significant differences were found between the SUD and control groups regarding 

the proportion of CD4 + T-lymphocytes (p-value = 0.2568), B-lymphocytes (p-value = 

0.5733), granulocytes (p-value = 0.7923), natural killer cells (p-value = 0.8011), CD8 

+ T-lymphocytes (p-value = 0.936), and monocytes (p-value = 0.1722) in blood tissue 

samples. Similarly, we did not find significant differences in the estimation of neuronal 

cells proportion (p-value = 0.1336) between the SUD and control groups. Descriptive 

statistics (median and interquartile range) of the estimated cell proportions are shown in 

the Supplementary Table S1. Finally, we did not identify significant differences in the 

proportion of individuals with the predicted smoking status (p-value for blood tissue = 0.09; 

p-value for brain tissue = 0.243) nor the smoking score of the included individuals (p-value 

for blood tissue = 0.242; p-value for brain tissue = 0.320).
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3.1 Correlations of epigenetic variables with chronological age

Results of the correlations between epigenetic clocks and chronological age correlations in 

brain and blood are shown in Figure 1. All evaluated epigenetic variables were normally 

distributed according to the Shapiro-Wilk’s test, except for DNAmAge-based epigenetic 

age acceleration (AAR) (Shapiro-Wilk’s P = 0.0005) and PhenoAge-based epigenetic age 

acceleration (AAPheno) (Shapiro-Wilk’s P = 0.002) in blood. After log-transformation, both 

variables fitted to a normal distribution (AAR- Shapiro-Wilk’s P = 0.5881; AAPheno - 

Shapiro-Wilk’s P = 0.4231).

In brain tissue, DNAmGrimAge had the highest correlation with chronological age, with 

a correlation coefficient ranging from 0.97 in the control, AUD and StUD groups, to 

0.98 in the SUD and OUD groups. We also observed substance-specific correlations in 

our sample; specifically, a negative correlation between IEAA, EEAA, and AAHannum 

and chronological age in the StUD subgroup, as well as between chronological age and 

DNAmTL in the OUD group.

In blood tissue, DNAmAgeSkinBlood exhibited the highest correlation with chronological 

age with a correlation coefficient ranging from 0.75 in the control group to 0.98 in the 

OUD subgroup. We found a significant negative correlation between blood DNAmTL and 

chronological age in the SUD group and in all SUD subgroups, and there was a significant 

difference in the correlation coefficients between the control and the SUD groups (z=2.0716, 

p-value = 0.03). However, the differences were not significant when comparing the control 

with the individual SUD subgroups, i.e., AUD (z=1.12, p-value = 0.26), StUD (z=1.55, 

p-value = 0.11) and OUD (z=1.18, p-value = 0.23).

3.2 Correlations among epigenetic variables

We found positive correlations between DNAmAge, DNAmAgeHannum, DNAmPhenoAge, 

DNAmGrimAge, and DNAmSkinBlood in the blood samples from both control and SUD 

individuals. We found positive correlations between these same age measures in brain 

samples of control and SUD subjects, except for DNAmPhenoAge, which was only found in 

brains of the SUD group.

Except for DNAmAgeHannum, we found negative correlations between DNAmTL and all 

evaluated epigenetic clocks in both brain and blood of the SUD group, as well as in blood 

from the control group. These negative correlations between DNAmTL and the epigenetic 

clocks were not significant in the brain samples of the control group. The correlations 

among the epigenetic variables in the SUD and control groups are plotted in Figure 2.

In the SUD subgroup analysis, we observed a similar pattern of correlations in the blood 

samples as in the whole SUD group, with positive correlations between DNAmAge, 

DNAmAgeHannum, DNAmPhenoAge, DNAmGrimAge, and DNAmSkinBlood and 

negative correlations between DNAmTL and all evaluated epigenetic clocks. In contrast, 

in the brain samples there was a very different pattern of correlation among the epigenetic 

variables. Most noteworthy, there was an absence of significant correlations between the 

epigenetic variables compared to those found in the blood tissue samples. The correlations 

between the epigenetic variables in the subgroups are plotted in Figure 3.
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3.3 Single-tissue measures of epigenetic aging variables

In brain samples, we found no significant differences in epigenetic aging variables between 

SUD subjects and controls after controlling for chronological age, PMI, sex, age, smoking 

score, top three ancestry principal components, pH, and neuronal proportion. Regarding 

blood tissue, we found a higher DNAmPhenoAge (FDR corrected p-value= 0.0104) and 

a nominally significant lower DNAmTL (FDR corrected p-value= 0.0603) in individuals 

with SUD compared to controls after controlling for chronological age, sex, smoking score, 

the top three ancestry principal components and blood cell count estimates (Figure 4). 

The mean and standard deviation of the evaluated epigenetic variables per group, as well 

as the beta and FDR-corrected p-values associated to each comparison as well as results 

excluding smoking score as covariate are shown in Supplementary Tables S4 and S5. We 

did not detect significant differences in the mean of the evaluated epigenetic aging estimates 

when excluding individuals with an additional SUD (or secondary diagnosis), as shown in 

Supplementary Table S6.

When comparing epigenetic variables in BA9 among SUD subgroups, we found a lower 

brain DNAmTL in AUD compared to Controls and StUD (FDR corrected p-value = 

0.087) (Figure 5). Nominal differences on other epigenetic variables (DNAmAgeHannum, 

DNAmPhenoAge, DNAmTL, EEAA, and AAHannum) in blood tissue were identified 

among the subgroups before multiple-comparison correction; however, these were not 

significant after FDR correction. These results are available in Supplementary Table S7.

3.4 Comparisons of epigenetic variables across tissues

We found significant differences between brain and blood measures for DNAmAgeHannum, 

DNAmPhenoAge, and DNAmGrimAge and AAGrim within both control and SUD groups 

after controlling by sex, chronological age, smoking score, and the top three ancestry 

principal components (Figure 6). Also, we found a significantly lower blood DNAmTL and 

a higher blood DNAmAge, compared to their respective brain values, in the SUD group 

(Figure 6A, J). The complete results from these comparisons as well as results excluding 

smoking score as covariate are shown in Supplementary Tables S8 and S9.

3.5 Cross-tissue correlations (main groups)

We found a positive correlation between brain and blood DNAmAge, DNAmAgeHannum, 

DNAmPhenoAge, DNAmGrimAge and DNAmAgeSkinBlood in the control group. In 

the SUD group, we did not find any significant correlation between brain and blood 

epigenetic variables. We found a significant difference between both groups regarding 

correlation coefficients for DNAmAge (z = 3.8578, p-value = 0.0001). Furthermore, 

correlations between brain-blood epigenetic variables varied among the SUD subgroups 

in their correlation coefficients and statistical significance, with OUD showing the highest 

number of positive correlations, and StUD the least. Complete results from cross-tissue 

correlations are shown in Figure 7.
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4. Discussion

Comparisons of epigenetic clocks across tissues obtained from the same subjects may 

provide insight on the neural substrates of accelerated aging and the feasibility of using 

peripheral measures to estimate aging effects in the brain. Previous studies have evaluated 

associations between brain and blood epigenetic clocks in patients with schizophrenia 

(McKinney, Lin, Ding, Lewis, & Sweet, 2018; Stevenson et al., 2020). To the best of our 

knowledge, this is the first cross-tissue study investigating the relationship between brain 

and blood epigenetic age measures in postmortem tissues from individuals with SUD.

We evaluated potential differences and correlations on epigenetic aging using several 

different epigenetic clocks. The available epigenetic clocks have been developed using 

different methods and are composed of different measures (Yang et al., 2020). For 

example, DNAmGrimAge consists of the DNA methylation surrogates of seven plasma 

proteins, while DNAmHannum is defined by the DNA methylation values of 71 CpG sites. 

Furthermore, they have been associated with different diseases and health outcomes, as 

mentioned previously in the Methods section. Therefore, they are likely to capture different 

aspects of aging (Bergsma & Rogaeva, 2020; Horvath & Raj, 2018). This study permitted us 

to evaluate potential variations in these different aging mechanisms across tissues, and their 

association with SUD.

Even though DNAmGrimAge was trained with blood data (Lu, Quach, et al., 2019), this 

epigenetic clock exhibited the highest correlation with chronological age in brain tissue. 

This is consistent with the fact that the estimation of DNAmGrimAge uses age, along 

with the DNA methylation estimates of smoking pack-years and seven serum proteins, 

as parameters in its calculation (Gutman et al., 2020). DNAmGrimAge has been shown 

to outperform other epigenetic clocks in their association with all-cause mortality and 

incidence of age-related diseases, i.e., chronic obstructive pulmonary disease, type 2 

diabetes, and ischemic heart disease (Hillary et al., 2020; Protsenko et al., 2020). Also, 

AgeAccelGrim was found to be positively correlated with PTSD symptom severity scores, 

outperforming other epigenetic clocks (Yang et al., 2020). It has been hypothesized 

that DNAmGrimAge could be more sensitive in studies of accelerated cellular aging in 

psychiatric conditions compared to other epigenetic measures (Protsenko et al., 2020). 

In blood, DNAmAgeSkinBlood exhibited the highest correlation with chronological age. 

This is in line with this measure being considered a highly sensitive age estimator and 

previous reports of high correlations between this epigenetic clock in peripheral blood and 

chronological age (Horvath et al., 2018).

The observed negative correlation between IEAA, EEAA, and AAHannum and 

chronological age in the StUD subgroup was remarkable. Although these epigenetic 

measures may not necessarily correlate with chronological age (Chen et al., 2016), their 

negative correlation in our study suggests that young individuals with StUD may have a 

higher vulnerability to the effects of stimulants on epigenetic aging. In regards to group 

comparisons, we identified a significantly higher blood DNAmPhenoAge in subjects with 

SUD compared to controls. Luo et al., (Luo et al., 2020) reported a higher epigenetic age 

acceleration derived from this epigenetic clock in the blood of patients with AUD compared 
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to controls. Our SUD subgroup analyses indicated a trend for higher blood DNAmPhenoAge 

in patients with AUD, StUD and OUD compared to controls. Although not significant 

for specific SUDs, likely due to the small sample size of our study, our findings provide 

additional evidence for the presence of possible alterations in blood DNAmPhenoAge in 

individuals with SUD.

Similar to our results, Montalvo-Ortiz et al., did not detect significant differences in blood 

AAR between European-American women with and without OUD (Montalvo-Ortiz et al., 

2019). However, we did not detect differences on brain AAR and AAPheno between OUD 

and other subgroups as those reported in previous studies in brain tissue (Kozlenkov et 

al., 2017; Shu et al., 2021). Such discrepancies could be due to the small number of 

individuals with OUD included in our sample (20 for brain tissue) compared to that 

included in the Kozlenkov et al. and Shu et al. studies with 37 and 72 individuals with 

OUD, respectively. Of note, the mentioned OUD studies did not evaluate differences on the 

epigenetic clocks where we detected differences among the subgroups and evaluated only 

epigenetic acceleration measures. Thus, we are not able to compare our results regarding 

other epigenetic aging measures to them. Future studies examining both epigenetic clocks 

and its associated age acceleration in larger samples will provide insight into the epigenetic 

aging alterations related with OUD.

The DNAmPhenoAge clock is based on chronological age and nine clinical measures 

including albumin, alkaline phosphatase, creatinine, C-reactive protein, lymphocyte percent, 

mean cell volume, red cell distribution width, white cells count, and serum glucose 

(Levine et al., 2018). Thus, the higher blood DNAmPhenoAge in individuals with SUD 

could reflect alterations of clinical measures secondary to liver damage (albumin and 

alkaline phosphatase), metabolic (glucose serum), immune (lymphocyte percent, mean cell 

volume, red cell distribution width and white cells count), and inflammatory disturbances 

(C-reactive protein). In this regard, there is evidence of alterations in blood cells counts 

(Soder et al., 2020; Haghpanah, Afarinesh, & Divsalar, 2010), C-reactive protein (Costello, 

Copeland, Shanahan, Worthman, & Angold, 2013), mean corpuscular volume (Ng et al., 

2019), red cell distribution width (Tajuddin, Nalls, Zonderman, & Evans, 2017), and 

fasting blood glucose in patients with SUD (Ojo, Ojo, Adebowale, & Wang, 2018). Liver 

damage has been extensively demonstrated in patients with AUD, and its presence has 

been recently associated with an accelerated epigenetic aging (Luo et al., 2020; Osna, 

Donohue, & Kharbanda, 2017). However, hepatic alterations have also been associated 

with other SUDs (Pateria, de Boer, & MacQuillan, 2013), which could be a consequence 

of the drug abuse, but also of the high incidence of hepatitis C virus infection in 

patients with SUD, particularly in those individuals using parenteral drugs, i.e., opioids 

(Zeremski & Martinez, 2017, Verna, Schluger, & Brown, 2019). Our findings of increased 

DNAmPhenoAge in blood but not in brain could reflect the importance of this measure 

in reflecting consequences of drug abuse related to peripheral tissues. In this regard, 

DNAmPhenoAge may capture aspects of immunosenescence in blood (Levine et al., 2018). 

The DNAmPhenoAge clock has also been associated with age-related diseases and all-cause 

mortality, which are known to occur at a higher incidence in individuals with SUD compared 

with individuals without this disorder (Hjemsæter et al., 2019). Future studies with larger 
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sample sizes are needed to further investigate the factors implicated in the DNAmPhenoAge 

variations in patients with SUD.

We found a nominally lower blood DNAmTL in individuals with SUD, as well as a 

negative correlation between blood DNAmTL and chronological age in the SUD group, 

and within all the SUD subgroups. These findings are in line with previous reports of 

telomere shortening in patients with SUD (for review see (Monroy-Jaramillo, Dyukova, & 

Walss-Bass, 2018, Navarro-Mateu et al., 2019), which is hypothesized to be secondary to 

a drug-induced increase in oxidative stress (Yang et al., 2013). Importantly, cross-tissue 

comparisons indicated a significant difference between brain and blood DNAmTL measures 

in the SUD group, whereas in the control group this difference was not significant. The 

subgroup analysis indicated a nominally lower brain DNAmTL in individuals with AUD 

compared to StUD, OUD, and controls. Further, we found a negative correlation between 

DNAmTL and epigenetic clocks (DNAmAge, DNAmAgeHannum, DNAmPhenoAge, 

DNAmGrimAge, and DNAmSkinBlood) in both brain and blood of the SUD group, 

including the SUD subgroups, while in the control group these correlations were found only 

in the blood tissue. These results suggest possible substance- and tissue-specific effects on 

accelerated aging, which could be secondary to vulnerability to DNA methylation changes 

captured by the DNAmTL estimator. DNAmTL has been found to be fairly correlated 

with quantitative polymerase chain reaction and Southern blotting TL measures, with a 

correlation coefficient of 0.39 and 0.40, respectively (Lu, Seeboth, et al., 2019). Therefore, 

our findings are consistent with previous reports of negative correlations between leucocyte 

telomere length and epigenetic age measures (Bergsma & Rogaeva, 2020; Vetter et al., 2019; 

Vyas et al., 2019) and are in line with increased accelerated aging causing a decrease in 

telomere length in subjects with SUDs.

The presence of positive and significant brain-blood correlations in controls indicate that 

peripheral measures of the epigenetic clocks might provide a good estimate of brain aging 

in subjects with no history of substance use disorders. However, for subjects with SUD, we 

found that blood-brain correlations depend on the specific type of drug used, which might 

suggest a tissue-specific effect of the particular substance being used. Thus, correlates of 

epigenetic variables in peripheral tissue and their use as surrogates for brain measures in 

specific SUD should be further studied with larger cohorts.

Reduced DNAmTL in individuals with SUD was one of the most relevant findings of our 

study, as it was found in both brain and blood tissue. A mechanism potentially involved 

in DNAmTL reduction is telomerase activity. Telomerase activity is crucial for telomere 

restoration and was found to be lower in individuals with heroin use disorder compared 

with healthy controls (Cheng et al., 2013). Furthermore, telomerase activity was correlated 

with atrophy and functional changes (i.e., connectivity with other brain regions) in the 

dorsolateral prefrontal cortex, which is the brain area analyzed in this study (Cheng et 

al., 2013; Levandowski et al., 2016). Other possible contributors to reduced DNAmTL 

are oxidative stress and subsequent activation of an inflammatory response (Bachi, Sierra, 

Volkow, Goldstein, & Alia-Klein, 2017; Monroy-Jaramillo, Dyukova, & Walss-Bass, 2018).
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Drug-induced oxidative stress has been hypothesized to be involved in the SUD aging 

acceleration. Oxidative stress can enhance an inflammatory response in brain and peripheral 

organs (heart, kidney and liver) (Bachi, Sierra, Volkow, Goldstein, & Alia-Klein, 2017)and 

also leads to modifications in macromolecules such as RNA, DNA, proteins and lipids, 

ultimately leading to cell death and tissue injury (Bachi, Sierra, Volkow, Goldstein, & Alia-

Klein, 2017; Ames & Shigenaga 1992; Pizzino et al., 2017). These cell and tissue changes 

have been associated with age-related diseases including as cardiac, cerebrovascular, kidney, 

and liver diseases (Liguori et al., 2018). Further research is needed to confirm our findings 

on epigenetic clocks in brain and blood of individuals with SUD and to elucidate the specific 

mechanisms involved in these changes.

The limitations of the present study should be acknowledged. First, our sample size is 

relatively small and might have hampered the identification of correlations in specific 

groups due to a possible type II error. Future studies with larger sample sizes are required 

to confirm our findings and to further elucidate the mechanisms of accelerated aging in 

SUD. In this regard, longitudinal studies on epigenetic clocks in SUD are particularly 

relevant to better understand SUD-associated biological aging alterations, its course, and 

related factors. For their nature, longitudinal studies are only feasible using blood samples. 

Thus, correlations of brain measures with epigenetic clock measures in blood at different 

time points on epigenetic clocks require further research. Second, both brain and blood 

samples were obtained postmortem. Thus, the onset and duration of the SUD, which might 

influence our results, could not be considered due to the limitations of the psychological 

autopsy approach. Furthermore, the classification of the individuals in the comparison 

groups was based only on the primary diagnosis determined by consensus diagnosis. 

Although we performed sensitivity analyses to test whether our results were different after 

excluding individuals with an additional SUD (or secondary diagnosis) and we did not 

detect a significant difference in these results, we cannot rule out the potential effect of 

comorbid SUD in our results. Also, the information we included regarding smoking status 

(smoking score) was estimated based on DNA methylation information. Even though this 

estimation has shown an adequate performance, the use of more precise data, as those 

obtained from medical records, could benefit future studies. Future research considering 

the comorbid use of other drugs, including self-reported tobacco consumption, will be 

necessary to estimate their effect in the epigenetic aging of individuals with SUD. Finally, 

our analyses were limited to a single brain region (BA9). Further studies analyzing other 

brain regions relevant for SUD, such as other areas of the prefrontal cortex (orbitofrontal and 

ventromedial prefrontal cortex), basal ganglia, and amygdala (Substance Abuse and Mental 

Health Services Administration, 2016) will be helpful to delineate the extension of aging 

brain changes associated with SUD.

Conclusions

This study suggests that epigenetic clocks measured in peripheral blood may be good 

estimators of brain aging in controls subjects. Moreover, our results highlight the relevance 

of tissue specificity in studies of epigenetic aging measures and suggest that peripheral 

measures of epigenetic clocks in SUD may depend on the specific type of drug used.
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Figure 1. 
Matrix plot of correlations between epigenetic variables and chronological age in brain and 

blood tissues. Cells with a significant correlation (p-value <0.05) are colored according 

to their correlation coefficient for epigenetic variable-chronological age correlation, with 

green and pink indicating a negative and a positive correlation, respectively. The correlation 

coefficient is indicated in the number within each cell. Abbreviations: Substance use 

disorder (SUD); Alcohol use disorder (AUD); Stimulant use disorder (StUD); Opioid use 

disorder (OUD); DNAmAge-based epigenetic age acceleration (AAR); Extrinsic epigenetic 

age acceleration (EEAA); Intrinsic epigenetic age acceleration (IEAA); Hannum-based 

epigenetic age acceleration (AAHannum); GrimAge-based epigenetic age acceleration 

(AAGrim); PhenoAge-based epigenetic age acceleration (AAPheno).
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Figure 2. 
Matrix plot of the correlations between epigenetic variables. The colors represent the 

degree of pairwise correlation regarding Pearson’s rank correlation coefficient (rho). Blank 

squares indicate the absence of correlation (p-value > 0.05). Abbreviations: Substance use 

disorder (SUD); DNAmAge-based epigenetic age acceleration (AAR); Extrinsic epigenetic 

age acceleration (EEAA); Intrinsic epigenetic age acceleration (IEAA); Hannum-based 

epigenetic age acceleration (AAHannum); GrimAge-based epigenetic age acceleration 

(AAGrim); PhenoAge-based epigenetic age acceleration (AAPheno).
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Figure 3. 
Matrix plot of the correlations between epigenetic variables per subgroups. The colors 

represent the degree of pairwise correlation regarding Pearson’s rank correlation coefficient 

(rho). Blank squares indicate the absence of correlation (p-value > 0.05). Abbreviations: 

Alcohol use disorder (AUD); Stimulants use disorder (StUD); Opioid use disorder (OUD); 

DNAmAge-based epigenetic age acceleration (AAR); Extrinsic epigenetic age acceleration 

(EEAA); Intrinsic epigenetic age acceleration (IEAA); Hannum-based epigenetic age 

acceleration (AAHannum); GrimAge-based epigenetic age acceleration (AAAGrim); 

PhenoAge-based epigenetic age acceleration (AAPheno).
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Figure 4. 
Epigenetic variables with significant differences between SUD and control groups in blood 

tissue. A) Blood DNAmPhenoAge was higher in individuals with SUD compared to the 

controls (beta=0.191, FDR corrected p-value= 0.0104) after controlling for chronological 

age, sex, smoking score, three top ancestry principal components and blood cell count 

estimates. B) Blood DNAmTL was nominally lower in individuals with SUD compared to 

the controls (beta=−0.149, FDR corrected p-value= 0.0603). Data are presented as means 

with their standard error. Abbreviations: Alcohol use disorder (AUD); Stimulant use disorder 

(StUD); Opioid use disorder (OUD).
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Figure 5. 
DNAm-based estimate of telomere length (DNAmTL) among SUD subgroups in brain 

tissue. DNAmTL was higher in the Controls and StUD subgroups compared to the AUD 

subgroup (FDR corrected p-value = 0.087) after controlling for chronological age, sex, 

smoking score, three top ancestry principal components and blood cell count estimates. 

Data are presented as means with their standard error. Abbreviations: Alcohol use disorder 

(AUD); Stimulants use disorder (StUD); Opioid use disorder (OUD).
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Figure 6. 
Boxplots of epigenetic variables in individuals with SUD and controls. The horizontal 

line in each box indicates the median, boxes indicate 25–75% interquartile ranges, 

whiskers indicate 1.5 (IQR) boundaries. The p-value associated to each comparison is 

indicated under each boxplot. Asterisk indicates a significant difference between the 

groups (FDR corrected < .01). The y-axis indicates the scale of each epigenetic variable. 

Abbreviations: DNAmAge-based epigenetic age acceleration (AAR); Extrinsic epigenetic 

age acceleration (EEAA); Intrinsic epigenetic age acceleration (IEAA); Hannum-based 

epigenetic age acceleration (AAHannum); GrimAge-based epigenetic age acceleration 

(AAGrim); PhenoAge-based epigenetic age acceleration (AAPheno).
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Figure 7. 
Matrix plot of correlations between brain and blood epigenetic variables. Cells with a 

significant correlation (p-value <0.05) are colored according to their correlation coefficient 

for epigenetic variable-chronological age correlation, with red and blue indicating a negative 

and a positive correlation, respectively. The correlation coefficient is indicated in the 

number within each cell. Abbreviations: Substance use disorder (SUD); Alcohol use 

disorder (AUD); Stimulants use disorder (StUD); Opioid use disorder (OUD); DNAmAge-

based epigenetic age acceleration (AAR); Extrinsic epigenetic age acceleration (EEAA); 

Intrinsic epigenetic age acceleration (IEAA); Hannum-based epigenetic age acceleration 

(AAHannum); GrimAge-based epigenetic age acceleration (AAGrim); PhenoAge-based 

epigenetic age acceleration (AAPheno).
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Table 1.

Sample characteristics of individuals included in single tissue analyses

Tissue Brain Blood

Variable SUD Control p-value SUD Control p-value

N 42 11 -- 40 11 --

Age, years 45.21 ± 13.05 50 ± 13.74 0.2359 45.12 ±13.34 48.90 ± 12.5 0.3358

Sex (M: F) 29:13 9:2 0.4821 28:12 10:1 0.3084

PMI, hours 26.86 ± 9.11 26.79 ± 9.93 0.9225 -- --

pH 6.62 ± 0.27 6.47 ± 0.26 0.1357 -- --

Ethnicity
† 28/2/12 7/2/2 0.294 0/2/38 0/2/9 0.4197

Psychiatric diagnosis
‡ 0/10/13/19 11 /0 /0 /0 0/7/13/20 11/0/0/0

Predicted smoking status
§ 28/4/7 5/3/2 0.243 29/4/7 5/4/2 0.09202

Smoking score 3.25 ± 8.95 5.74 ±6.28 0.3203 2.97 ± 8.54 5.62 ± 6.25 0.242

Continuous data are presented as mean ± standard deviation. Abbreviations: Substance use disorder (SUD); Male (M), female (F); Post-mortem 
interval (PMI).

†
Caucasian/Hispanic/African American

‡
No comorbidities/Alcohol use disorder/ Stimulants use disorder (amphetamines and cocaine)/ Opioid use disorder

§
Current/Former/Never smoker. Note: In the brain group, we report the estimates only from those individuals with blood DNA methylation data 

from which smoking status and smoking score were available.
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Table 2.

Sample characteristics of individuals included in the cross-tissue (brain and blood) analysis.

Variable SUD Control p-value

N 39 10 --

Age, years 45 ± 12.49 48.1 ± 12.87 0.4716

Sex (M: F) 27:12 9:1 0.1844

PMI, hours 26.28 ± 8.54 26.99 ± 10.44 0.9708

pH 6.62 ± 0.27 6.48 ± 0.27 0.1884

Ethnicity
† 26/2/11 6/2/2 0.2993

Psychiatric diagnosis
‡ 0/7/13/19 10/0/0/0

Predicted smoking status
§ 28/4/7 5/3/2 0.243

Smoking score 3.25 ± 8.95 5.74 ±6.28 0.3203

Continuous data are presented as mean ± standard deviation. Abbreviations: Substance use disorder (SUD); Male (M), female (F); Post-mortem 
interval (PMI).

†
Caucasian/Hispanic/African American

‡
No comorbidities/Alcohol use disorder/ Stimulants use disorder (amphetamines and cocaine)/ Opioid use disorder

§
Current/Former/Never smoker
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