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Abstract

Objective: To evaluate gut microbiota (GMB) alterations and metabolite profile perturbations 

associated with bone mineral density (BMD) in the context of HIV infection.

Design: Cross-sectional studies of 58 women with chronic HIV infection receiving antiretroviral 

therapy and 33 women without HIV infection.
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Methods: We examined associations of GMB and metabolites with BMD among 91 women. 

BMD was measured by dual-energy X-ray absorptiometry, and T-scores of lumbar spine or 

total hip <−1 defined low BMD. GMB was measured by 16S rRNA V4 region sequencing on 

fecal samples and plasma metabolites were measured by liquid chromatography-tandem mass 

spectrometry. Associations of GMB with plasma metabolites were assessed in a larger sample 

(418 women; 280 HIV+ and 138 HIV−).

Results: Relative abundances of five predominant bacterial genera (Dorea, Megasphaera, 

unclassified Lachnospiraceae, Ruminococcus, and Mitsuokella) were higher in women with low 

BMD compared to those with normal BMD (all linear discriminant analysis scores >2.0). A 

distinct plasma metabolite profile was identified in women with low BMD, featuring lower levels 

of several metabolites belonging to amino acids, carnitines, caffeine, fatty acids, pyridines, and 

retinoids, compared to those with normal BMD. BMD-associated bacterial genera, especially 

Megasphaera, were inversely associated with several BMD-related metabolites (e.g., 4-pyridoxic 

acid, C4 carnitine, creatinine, and dimethylglycine). The inverse association of Megasphaera with 

dimethylglycine was more pronounced in women with HIV infection compared to those without 

HIV infection (P for interaction=0.016).

Conclusions: Among women with and at risk of HIV infection, we identified altered GMB and 

plasma metabolite profiles associated with low BMD.
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Introduction

Human immunodeficiency virus (HIV) infection has been associated with low bone mineral 

density (BMD) and increased fracture risk [1, 2]. HIV infection alone may cause bone loss, 

which can be accelerated with antiretroviral therapy (ART) initiation [3–6]. In the Women’s 

Interagency HIV Study (WIHS), we have shown that HIV infection was associated with 

decreased BMD [7]. However, no significant difference was observed in the rate of BMD 

decline by HIV status in another cohort [8]. Thus, the relationship between HIV infection, 

ART and bone health has not been fully understood.

Emerging evidence suggests a close relationship between the gut microbiota and bone 

metabolism, and alterations in gut microbiota have been associated with bone health. For 

example, in studies of participants without HIV infection, several genera of Clostridiales 

were higher in individuals with low BMD or osteoporosis compared to those with normal 

BMD [9–11]. Although mechanisms underlying the associations between gut microbiota 

and bone metabolism remain largely unknown, microbiota-related metabolites (e.g., short-

chain fatty acids) have been suggested as potential mediators linking gut microbiota to 

bone health and disease. In recent metabolomic studies, many metabolites such as lipids 

(particularly sphingolipids) and amino acids were associated with BMD [12–14]. However, 

host metabolomic data have not been well-integrated with gut microbiome data in previous 

bone studies, and data are sparse among people living with HIV.
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We previously found alterations in gut microbiota and related plasma metabolite profiles 

among women with HIV in the WIHS [15]. We conducted analyses utilizing data on gut 

microbiome, plasma metabolites, and dual-energy X-ray absorptiometry (DXA) scans in a 

subset of WIHS participants to identify potential gut microbiome and metabolite signatures 

for BMD among women living with and without HIV infection.

Methods

Study Population

The WIHS is a prospective cohort study of women living with HIV infection and 

sociodemographically similar women without HIV infection. Detailed information on study 

design and methods has been previously described [16]. WIHS participants underwent 

semiannual core study visits with the completion of a structured in-person interviewer, 

a physical examination, and collection of biological specimens. From 2015 to 2018, 516 

women enrolled in the Bronx, Brooklyn, and Chicago sites of the WIHS provided fecal 

samples. We excluded 27 participants who reported taking antibiotics in the prior six 

months. Among the 489 women remaining, a subset of 91 women (58 HIV+; 33 HIV−) 

who underwent DXA scanning during 2012–2016 was included in the primary analyses. A 

total of 418 women who had both gut microbiome and metabolome data (but not all with 

DXA data) were included in secondary association analyses of gut microbiota and plasma 

metabolites. The studies were reviewed and approved by each site’s Institutional Review 

Board. All individuals provided written informed consent.

BMD Assessment

BMD at the lumbar spine and total hip were measured by DXA (General Electric/Lunar 

Prodigy; Madison, WI) [17]. All BMD measurements were performed by trained technicians 

using a standardized protocol. Established instrument calibration and quality control 

procedures were performed every day. The T-scores for BMD of the lumbar spine and 

total hip were computed by comparing with the BMD of healthy young people of the same 

sex and race and used to categorize BMD based on World Health Organization criteria [18] 

as normal (T-scores of −1 and above), osteopenia (T-scores of −2.5 to −1), and osteoporosis 

(T-scores of −2.5 and below). The low-BMD group was defined as the T-scores for either 

lumbar spine or total hip were less than −1.0, and the normal-BMD group was defined as the 

T-scores for the lumbar spine and total hip were greater than or equal to −1.0.

Microbiome Measurement

Fecal samples were collected using a home-based self-collection kit, and genomic DNA 

extraction and 16S rRNA gene V4 hypervariable region PCR amplification were conducted 

according to previously described procedures [15, 19]. The size integrity of the amplicons 

with Illumina indices were validated using a 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA), and the high-throughput amplicon sequencing was performed on a 

MiSeq platform (Illumina, San Diego, CA. RRID: SCR_016379) using 2×300 paired-end 

fragment reads at the Genomics Core and Sequencing Core at the Albert Einstein College of 

Medicine. The bioinformatics analysis was performed using the QIIME2 (version 2020.2.0) 
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[20]. Detailed methods are described in the Supplementary Methods. Finally, the genus level 

was profiled for the downstream taxonomic analyses.

Plasma Metabolomic Profiling

Fasting plasma samples were collected and stored at −80°C at the core visit. 

Untargeted metabolomic profiling was performed at the Broad Institute Metabolomics 

Platform (Cambridge, MA). Briefly, metabolites were detected in plasma and quantified 

using a Nexera X2 Ultra-High Performance Liquid Chromatography (Shimadzu Corp., 

Marlborough, MA) coupled to an Exactive Plus mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA). Raw mass data were processed using TraceFinder software 

(Thermo Fisher Scientific, Waltham, Massachusetts) and Progenesis QI (Nonlinear 

Dynamics, Newcastle upon Tyne, United Kingdom). Detailed methods of plasma 

metabolomic profiling have been described previously [21]. A total of 504 metabolites were 

detected with known identification. Metabolites with coefficients of variation > 15% or 

missing rates > 20% were removed. Eventually, 467 metabolites were included in the current 

analysis. Missing values (under detectable levels) were imputed with half of the minimum 

value for a given metabolite. A rank-based inverse normal transformation was performed for 

the metabolite data before analyses [22, 23].

HIV Infection Related Assessments

HIV infection was ascertained at baseline and each follow-up visit for those who tested 

seronegative using enzyme-linked immunosorbent assay (ELISA) and when positive, 

confirmed by western blot. CD4+ T-cell counts were measured by flow cytometry in 

AIDS Clinical Trials Group-certified laboratories. HIV-1 viral load was quantified using 

the isothermal nucleic acid sequence-based amplification method. The lower limit of 

quantification for HIV-1 viral load was 20 copies per milliliter. Antiretroviral therapy 

exposure and virologic suppression status were assessed using a standard method [24].

Statistical Analysis

A total of 91 women who had both BMD data and gut microbiome data were included 

in the main analysis. Characteristics of participants were compared by normal versus low 

BMD status, using Fisher’s exact test for categorical variables and Mann-Whitney U test for 

continuous variables. The α-diversity indices (Chao 1 index, Shannon index, and Simpson’s 

index) at genus level were compared by BMD and HIV serostatus using the Mann-Whitney 

U test. β-diversity Bray-Curtis distance metrics were calculated to estimate the dissimilarity 

of microbial community compositions in different groups. Permutational multivariate 

ANOVA (PerMANOVA) and principal coordinates analysis (PCoA) were used for the 

microbial β-diversity analyses. Cumulative sum scaling normalization was applied to the 

genus-level abundance of taxonomic units for subsequent analyses [25]. Linear discriminant 

analysis (LDA) effect size (LefSe) was used to identify bacterial genera associated with low 

BMD, with an LDA score of 2.0 as cutoff [26]. Multivariable linear regression models were 

further used to examine the associations between identified gut bacterial genera and low 

BMD, after adjustment for age, race (Black, Hispanic, or other), annual income (≥$12,000 

or <$12,000), education (less than high school or high school and above), body mass index 

(BMI), a potential confounder of marijuana use (yes or no)[15, 27, 28], menopausal status 

MEI et al. Page 4

AIDS. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(yes, no, or N/A due to hysterectomy; defined by self-reported menopause at 2 consecutive 

visits for women aged ≥45 years), nucleoside reverse transcriptase inhibitor (NRTI) use (yes 

or no), non-nucleoside reverse transcriptase inhibitor (NNRTI) use (yes or no), protease 

inhibitors (PI) use (yes or no), HIV serostatus (positive or negative), and HIV viral load 

(detectable or undetectable). Sensitivity analyses were conducted by further adjustment 

for calcium and/or vitamin D supplement use and physical activity levels, and excluding 

pre-menopausal women.

From the 91 women, a subset of women (n=76) who also had metabolomic data was 

included in the association analysis of plasma metabolites with BMD status. Partial least-

squares discriminant analysis (PLS-DA) was used to identify plasma metabolites associated 

with low BMD with variable importance in projection (VIP) score of 2.0 as a cutoff 
[29]. We further used multivariable linear regression models to assess the associations 

between identified metabolites and low BMD, after adjustment for age, race, annual income, 

education, BMI, marijuana use, menopausal status, NRTI use, NNRTI use, PI use, HIV 

serostatus, and HIV viral load. Benjamini-Hochberg false discovery rate (FDR) method 

was used to correct multiple testing [30]. Sensitivity analyses were conducted by further 

adjustment for calcium and/or vitamin D supplement use and physical activity levels, and 

excluding pre-menopausal women. For the secondary correlation analyses of gut microbiota 

and plasma metabolites, we included 418 women who had both gut microbiome and 

metabolome data. Spearman correlation analysis was conducted to estimate the correlation 

coefficients among identified plasma metabolites and BMD-related gut bacterial genera. A 

two-sided P < 0.05 was considered statistically significant. All analyses were performed 

using R version 3.6.3 (https://www.r-project.org/) with the phyloseq [31] and vegan [32] 

packages.

Results

Participant Characteristics

A total of 91 women with a mean age of 53.8 years were included in the primary analyses. 

Table 1 shows the characteristics of study participants by BMD status including 31 with low 

BMD and 60 with BMD in the normal range. Comparisons of demographic, socioeconomic, 

and behavioral variables between the normal-BMD and low-BMD groups were generally 

similar, although not unexpectedly the women with low BMD tended to be older (P=0.053) 

and had lower BMI (P=0.034) compared to women with the normal-BMD. As expected, 

women with low BMD had a lower spine and hip BMD and T-scores (all P<0.001). The HIV 

status did not differ by BMD status. Among the women with HIV, all were receiving ART 

and the majority (81.0%) had CD4 counts 500 cells/mm3 or greater, as well as undetectable 

HIV RNA viral load (82.8%). There were no significant differences in CD4 T-cell count and 

viral suppression status between HIV+ BMD groups.

Gut Microbiome and BMD Status

First, we examined the relationship between three different measures of bacterial community 

α-diversity (i.e., Chao 1, Shannon, and Simpson) and BMD status, and did not find 

associations irrespective of HIV serostatus (all P > 0.05, Supplementary Figure 1A). We 
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also used PCoA to visualize the Bray-Curtis dissimilarity among the samples. As shown 

in Supplementary Figure 1B, the first and second principal coordinates explained 27% and 

17% of the total variance, and no clear separation was observed by BMD status or HIV 

serostatus. No significant associations of β-diversity with BMD or HIV serostatus were 

observed in the PerMANOVA analysis (both R2 < 0.1, P > 0.05).

Among the 81 identified gut microbial genera (relative abundance ≥ 0.01% and prevalence 

≥ 10%), the LEfSe analysis showed that six genera were associated with BMD status 

(all LDA scores > 2.0) (Figure 1A). Five of them (Dorea, Megasphaera, unclassified 

Lachnospiraceae, Ruminococcus, and Mitsuokella) were more abundant, and one other 

(unclassified Mollicutes RF39) was less abundant in the low-BMD group compared to 

the normal-BMD group. As the prevalence (17.6%) and relative abundance (0.9%) of 

unclassified Mollicutes RF39 were relatively low, and it can only be classified at the order 

level, we focused on the other five low BMD-associated genera in the subsequent analyses. 

All of the five genera belong to the Clostridiales order, within the most abundant phylum 

Firmicutes (Figure 1B). After multivariable adjustment and further adjustment for calcium 

and/or vitamin D supplement intake and physical activity levels, the associations between 

the five bacterial genera and low BMD did not change (Supplementary Tables 1 and 2). 

We also got similar results after excluding the pre-menopausal women (Supplementary table 

3). The associations of these bacterial genera with BMD were generally consistent between 

women with and without HIV infection, except for Mitsuokella. The positive association 

between Mitsuokella and low BMD was only observed in women with HIV infection but not 

in those without HIV infection (P for interaction = 0.03) (Supplementary Table 1).

We found no associations of these bacterial genera with HIV serostatus, CD4 T-cell count, 

and HIV viral load (Supplementary Table 4).

Plasma Metabolites and BMD Status

The PLS-DA revealed that the metabolite profile of women with low BMD was different 

from those with normal BMD (Figure 2A). A total of 27 metabolites were main contributors 

by BMD status (VIP scores > 2.0) as selected by PLS-DA in unadjusted analyses. After 

multivariable adjustment, 17 of the selected metabolites were still associated with BMD 

status (all FDR-adjusted P < 0.05, Supplementary Tables 5). The association results were 

similar after further adjustment for calcium and/or vitamin D supplement intake and physical 

activity levels (Supplementary Table 6), as well as excluding the pre-menopausal women 

(Supplementary table 7). Of the 17 identified metabolites, metabolites within the same 

class (e.g., 1,7-dimethyluric acid and 5-acetylamino-6-amino-3-methyluracil produced from 

caffeine) showed moderate-to-high correlations with each other (Supplementary Figure 2). 

Plasma serine was higher, while levels of the other 16 metabolites were lower in women 

with low BMD compared with those with normal BMD (Figure 2B). We did not find effect 

modification by HIV serostatus on the associations between these metabolites and low BMD 

(All P for interaction ≥ 0.09, Supplementary Table 5). We also examined the associations of 

these metabolites with HIV-specific characteristics and found that 5 metabolites (creatinine, 

N1-methyl-2-pyridone-5-carboxamide, dimethylglycine, 4-pyridoxic acid, and retinol) were 

higher, while 2 metabolites (homoarginine and serine) were lower in women with HIV 
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infection compared to those without infection (Supplementary Table 8). In addition, three 

metabolites (caffeine, retinol, and dimethylglycine) were associated with CD4 T-cell count. 

Caffeine and retinol were enriched, while dimethylglycine was depleted in women with 

higher CD4 T-cell counts. However, no metabolites were associated with viral load.

Gut Microbiome and Plasma Metabolites

We further examined correlations of the BMD status-associated gut bacterial genera and 

host plasma metabolites among 418 women who had both gut microbiome and plasma 

metabolomics data. As shown in Figure 3, four of the five BMD-related bacterial genera 

were associated with at least one of the selected 17 metabolites in all samples (r= −0.21 

to −0.14, all FDR-adjusted P < 0.05). The four genera (Dorea, Megasphaera, unclassified 

Lachonospiraceae, and Ruminococcus) were all inversely correlated with plasma creatinine 

(all FDR-adjusted P < 0.05). Megasphaera was inversely correlated with plasma 4-pyridoxic 

acid, C4 carnitine, C5 carnitine, and dimethylglycine (all FDR-adjusted P < 0.05). Dorea 
was also inversely associated with plasma 4-pyridoxic acid and C4 carnitine (both FDR-

adjusted P < 0.05). The correlations between bacterial genera and plasma metabolites 

identified from the total population were generally consistent in women with and without 

HIV infection, although most of them were not significant in women without HIV infection, 

which might be due to relatively small sample size in this group (n=138). In addition, 

the inverse correlation between Megasphaera and dimethylglycine was more pronounced in 

women with HIV infection compared to those without HIV infection (P for interaction = 

0.016).

Discussion

To the best of our knowledge, this is the first study to examine the associations of gut 

microbiota and plasma metabolites with BMD status in the context of HIV infection. 

Previous studies in populations without HIV have investigated the relationship between 

gut microbial composition and BMD but results are controversial [9–11, 33]. While one 

study reported that post-menopausal women with osteoporosis tended to have the lowest 

α-diversity compared with those with osteopenia and normal BMD [33], similar to our 

findings, other studies that included post-menopausal women or both sexes did not observe 

a significant difference in α-diversity among different BMD groups [9–11]. Future studies 

with larger sample sizes are warranted to investigate the relationship between gut bacterial 

composition and BMD status.

At the genus level, we observed that the relative abundances of five genera were higher in 

women with low BMD compared to those with normal BMD. These five genera belong to 

the order Clostridiales. Two genera (Megasphaera and Mitsuokella) belong to the family 

Veillonellaceae and three genera (Dorea, Ruminococcus, and unclassified Lachnospiraceae) 

belong to the family Lachnospiraceae. These results were partially consistent with studies 

that reported several genera from the Clostridiales order that were higher in low-BMD 

or osteoporosis groups compared to those with normal-BMD [9–11]. More specifically, 

in agreement with a study in post-menopausal women [33], we found that Megasphaera 
was enriched in women with low BMD. This study also observed that Megasphaera was 
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positively associated with markers of bone formation (N-terminal propeptide of type I 

procollagen) and resorption (C-telopeptide of type I collagen) [33], which indicated that this 

bacterial genus might reflect high bone metabolic turnover. We also found that Megasphaera 
was inversely associated with several metabolites that were associated with lower levels 

in the low-BMD group compared to the normal-BMD group. Taken together, these data 

suggest that gut Megasphaera might be associated with an unfavorable metabolite profile for 

bone health, though further population and experimental studies are needed to validate our 

findings and investigate the potential mechanisms.

Similar to Megasphaera, another genus Mitsuokella, in family Veillonellaceae, was enriched 

in the low-BMD group. This is partially consistent with the aforementioned study in 

post-menopausal women, which reported that family Veilonellaceae was enriched in the 

osteopenia group compared to women with normal BMD[33]. Interestingly, the association 

of Mitsuokella with low BMD was stronger in women with HIV compared to women 

without HIV, suggesting potential effect modification, which needs further investigation. The 

other three genera enriched in the low-BMD group all belong to family Lachnospiraceae. In 

support of our findings, a study using a two-sample Mendelian randomization approach 

found and successfully replicated an inverse causal association of Clostridiales and 

Lachnospiraceae with estimated heel BMD in the Caucasians [34]. In contrast, another study 

in the Chinese elderly reported that the abundance of Clostridiales and Lachnospiraceae was 

positively associated with BMD and T-scores [10]. More studies are needed to clarify the 

relationship between gut Lachnospiraceae and bone health and underlying mechanisms.

In agreement with previous metabolomic studies in populations without HIV[12, 35], we 

also observed distinct plasma metabolite profiles between women with low BMD and those 

with normal BMD. Interestingly, most of the metabolites were lower in the low-BMD than 

normal-BMD groups. Congruent with our findings, the Hordaland Health Study also found 

that lower dimethylglycine levels were associated with higher odds of low BMD [36]. Of 

note, HIV infection tended to modify this association, which was stronger among women 

without HIV compared to women with HIV (P-interaction = 0.088). Dimethylglycine 

belongs to the choline oxidation pathway and is demethylated for the formation of sarcosine 

and glycine in mitochondria [37]. It has been proposed that dimethylglycine might modulate 

bone metabolism by increasing the activity of peroxisome proliferator-activated receptor 

alpha [36, 38]. Notably, the genus Megasphaera was inversely associated with plasma 

dimethylglycine. This is concordant with a previous study showing that Megashpaera 
elsdenii carried electron-transferring flavoprotein [39], a substrate of the reaction converting 

dimethylglycine to sarcosine (glycine betaine degradation I pathway) [40]. Intriguingly, the 

association between Megasphaera and dimethylglycine was also modified by HIV infection 

status (P-interaction = 0.016). Together, these suggest a complex interplay of HIV infection, 

Megasphaera, and dimethylglycine on BMD, though further functional studies are warranted 

to unravel the underlying mechanisms. Consistent with published studies [41, 42], we also 

found that plasma creatinine level was lower in women with low BMD compared to 

those with normal BMD. In adults with normal kidney function, circulating creatinine is 

considered a surrogate marker of skeletal muscle mass [43], which has been positively 

associated with BMD [44]. Moreover, lower levels of creatinine were correlated with four 

gut bacterial genera enriched in the low-BMD group. It has been shown that creatinine 
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could be eliminated from the host by intestinal microbiota [45]. These data suggest that 

these unfavorable bacteria might reduce host creatinine levels, although their impact on bone 

health is unclear. Nevertheless, since diet influences serum creatinine levels [46] and gut 

microbiota [47], we cannot rule out potential confounding by dietary factors. In addition, 

previous studies in populations without HIV infection also found that caffeine-associated 

metabolites and homoarginine were associated with higher BMD [48, 49].

Our study has several limitations. The small sample size limits the power to identify 

associations of gut bacteria and plasma metabolites with BMD status, which may be 

modified by HIV serostatus. Due to the observational nature and cross-sectional study 

design, we are unable to demonstrate causal relationships among gut bacteria, plasma 

metabolites, and BMD. Future prospective studies with larger sample sizes are needed to 

better understand the relationships of gut microbiota and plasma metabolites with bone 

health in the context of HIV infection. Furthermore, dietary intake and immune activation 

were not measured in this study. In addition, the 16S sequencing method limits our 

investigation of the microbial species and functional profiles related to BMD. Finally, 

this study only focused on women, and findings need to be validated in men and other 

HIV-infected populations.

In summary, this study found that alterations of several gut microbial genera and 

related plasma metabolites were associated with BMD status in women with HIV 

infection or a group of women at risk of HIV infection. In addition, there was a 

potential effect modification of HIV infection on the interrelationships among the genus 

Megasphaera, plasma dimethylglycine, and BMD. Future studies with larger sample sizes 

and metagenomics data are warranted to shed light on the specific microbes and their 

functional roles along with metabolite profiles in bone metabolism in the context of HIV 

infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Microbial genera associated with BMD status.

A. Taxonomic linear discriminative analysis (LDA) effect size by BMD status.

B. Phylogenetic tree of taxonomic features associated with BMD status. Genera associated 

with BMD status were highlighted as solid stars and noted by capital letters.

Green bars and stars indicate the genus was enriched in the normal-BMD group, whereas red 

ones indicate the genus was enriched in the low-BMD group. BMD, bone mineral density.
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Figure 2. 
Plasma metabolites associated with BMD status.

A. PLS-DA plot on BMD status

B. Error bar plot of metabolites associated with low BMD among total, HIV+, and HIV− 

groups. The number of participants was 76, 50, and 26 in the total, HIV+, and HIV− 

groups, respectively. These metabolites were selected by PLS-DA (VIP scores ≥2) in total 

samples. Data are differences (95% confident intervals) in metabolites between women with 

low and normal BMD, after adjustment for age, race, education, annual income, smoking, 
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alcohol drinking, marijuana use, body mass index, menopausal status, three types of antiviral 

therapies and HIV viral load (HIV+ and total samples only), and HIV serostatus (total 

samples only).

BMD, bone mineral density.
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Figure 3. 
Spearman correlation heatmap of BMD-associated gut bacterial genera and BMD-associated 

plasma metabolites.

The number of participants was 418, 280, and 138 in the total, HIV+, and HIV− groups, 

respectively. HIV, human immunodeficiency virus.

*False discovery rate-adjusted P < 0.05; **False discovery rate-adjusted P < 0.01.
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Table 1.

Characteristics of study participants

Women with normal BMD (n=60) Women with low BMD (n=31) P-value

Age, years 53.2 ± 4.6 55.0 ± 4.5 0.053

BMI, kg/m 2 31.2 ± 6.4 28.6 ± 8.6 0.034

Race

 Black 44 (73.3) 20 (64.5) 0.13

 Hispanic 12 (20.0) 11 (35.5)

 Other 4 (6.7) 0 (0.0)

Annual income, ≥ $12,000 37 (61.7) 22 (71.0) 0.66

Education, less than high school 43 (71.7) 27 (87.1) 0.12

Smoking

 Never 8 (13.3) 1 (3.2) 0.25

 Current 30 (50.0) 20 (64.5)

 Former 22 (36.7) 10 (32.3)

Drinking

 Abstainer 33 (55.0) 18 (58.1) 0.59

 <7 drinks/week 21 (35.0) 9 (29.0)

 7–12 drinks/week 2 (3.3) 3 (9.7)

 >12 drinks/week 4 (6.7) 1 (3.2)

Physical activity 0.42

 Physically inactive 7 (11.7) 3 (9.7)

 Moderately active 32 (53.3) 21 (67.7)

 Very active 21 (35.0) 7 (22.6)

Calcium and/or vitamin D supplement use, yes 6 (10.0) 8 (25.8) 0.07

Marijuana use, yes 10 (16.7) 5 (16.1) 1.00

Menopause

 Yes 36 (60.0) 25 (80.6) 0.15

 No 17 (28.3) 4 (12.9)

 N/A due to hysterectomy 7 (11.7) 2 (6.5)

L1L4 BMD, g/cm 2 1.3 ± 0.1 1.0 ± 0.2 <0.001

L1L4 T-score 1.0 ± 1.2 −1.7 ± 1.3 <0.001

Hip BMD, g/cm 2 1.1 ± 0.1 0.9 ± 0.1 <0.001

Hip T-score 0.7 ± 1.0 −1.2 ± 0.9 <0.001

HIV+ serostatus 38 (63.3) 20 (64.5) 1.00

HIV-specific factors (HIV+ only)

 CD4 T-cell count ≥500 cells/mm3 30 (78.9) 17 (85.0) 0.73

 Undetectable viral load, ≤20 copies/ml 31 (81.6) 17 (85.0) 0.99

 HIV viral load, copies/ml* 46.0 (35.0, 5026.0) 91.0 (80.0, 480.0) <0.001
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Women with normal BMD (n=60) Women with low BMD (n=31) P-value

 NRTI use, yes 36 (94.7) 19 (95.0) 1.00

 NNRTI use, yes 10 (26.3) 8 (40.0) 0.37

 PI use, yes 15 (39.5) 6 (30.0) 0.57

Data are presented as mean ± standard error or median (interquartile range) for continuous variables or n (%) for categorical variables.

*
Median (interquartile range) of the HIV viral load was calculated among the women with detectable viral load only.

HIV-specific characteristics (high CD4 T-cell count, viral load, and undetectable viral load) were analyzed only in the HIV+ women.

P values for comparisons between normal and low BMD groups were estimated from the Mann-Whitney U test for continuous variables and 
Fisher’s exact test for categorical variables.

The low-BMD group was defined as the T-scores for either lumbar spine or total hip were less than −1.0, and the normal-BMD group was defined 
as the T-scores for the lumbar spine and total hip were greater than or equal to −1.0.

BMD, bone mineral density; BMI, body mass index; HIV, human immunodeficiency virus; NRTI, nucleoside reverse transcriptase inhibitors; 
NNRTI, non-nucleoside reverse transcriptase inhibitors; and PI, protease inhibitors.
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