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Abstract

Aims/hypothesis—Genetic predisposition to type 2 diabetes is well-established, and genetic 

risk scores (GRS) have been developed that capture heritable liabilities for type 2 diabetes 

phenotypes. However, the proteins through which these genetic variants influence risk have not 
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been thoroughly investigated. This study aimed to identify proteins and pathways through which 

type 2 diabetes risk variants may influence pathophysiology.

Methods—Using a proteomics data-driven approach in a discovery sample of 7241 White 

participants in the Atherosclerosis Risk in Communities Study (ARIC) cohort and a replication 

sample of 1674 Black ARIC participants, we interrogated plasma levels of 4870 proteins and 

four GRS of specific type 2 diabetes phenotypes related to beta cell function, insulin resistance, 

lipodystrophy, BMI/blood lipid abnormalities, and a composite score of all variants combined.

Results—Twenty-two plasma proteins were identified in White participants after Bonferroni 

correction. Of the 22 protein–GRS associations that were statistically significant, all but one were 

directionally consistent and 10 were replicated in Black participants. In a secondary analysis, 18 of 

the 22 proteins were found to be associated with prevalent type 2 diabetes and ten proteins were 

associated with incident type 2 diabetes. Two-sample Mendelian randomisation indicated that 

complement C2 may be causally related to greater type 2 diabetes risk (inverse variance weighted 

estimate: OR 1.65 per SD; p=7.0×10−3), while neuropilin-2 was inversely associated (OR 0.44 per 

SD; p=8.0×10−3).

Conclusions/interpretation—Identified proteins may represent viable intervention or 

pharmacological targets to prevent, reverse or slow type 2 diabetes progression, and further 

research is needed to pursue these targets.

Graphical Abstract
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Introduction

Type 2 diabetes is characterised by complex disruptions in cell signalling and metabolic 

homeostasis across multiple organ systems. Among these, peripheral and hepatic insulin 

resistance, pancreatic beta cell dysfunction and adipose tissue accumulation are typical, and 

individuals with type 2 diabetes often present with various combinations of these phenotypes 

[1–3]. While lifestyle risk factors such as physical inactivity and hyper-caloric diets are 
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well-established in disease development [4, 5], genetic liabilities also influence risk [6–9] 

and have been shown to contribute to the phenotypic heterogeneity of type 2 diabetes [9, 

10].

Genome-wide association studies (GWAS) have identified over 450 gene variants related 

to type 2 diabetes [7–12]—most showing modest magnitudes of association with disease 

risk, typically < 10% greater risk per allele [12–14]. Numerous additive genetic risk scores 

(GRS) for type 2 diabetes have been generated to integrate risk information across identified 

gene variants [6, 9]. Refining this approach to address the heterogeneity of type 2 diabetes, 

Goodarzi et al [10] developed four type 2 diabetes GRS for the distinct phenotypes of beta 

cell function, insulin resistance, lipodystrophy and BMI/aberrant blood lipids, which were 

comprised of independent clusters of gene variants. These type 2 diabetes risk variants may 

have cis or trans effects on gene expression, and the proteins and networks through which 

they affect metabolic dysfunction are unknown.

The present study aimed to identify proteins and pathways through which type 2 diabetes 

risk variants may collectively influence pathophysiology. To strengthen causal inference, 

a stepwise approach was applied in which (1) plasma proteins associated with the type 

2 diabetes phenotype GRSs were identified from a platform comprised of 4870 protein 

measures; (2) cross-sectional and prospective associations with type 2 diabetes were 

examined for identified proteins; and (3) a two-sample Mendelian randomisation (MR) 

analysis was conducted to investigate potential causal relationships between these proteins 

and type 2 diabetes. Collectively, these findings aim to provide greater understanding of 

genetic liability to type 2 diabetes.

Methods

Study population

The Atherosclerosis Risk in Communities Study (ARIC) of 15,792 individuals was 

originally designed to identify risk factors for cardiovascular disease and atherosclerosis and 

has been described in detail previously [15]. Male and female participants aged 45–64 years 

were recruited from four communities in the USA (Washington County, MD; the northwest 

suburbs of Minneapolis, MN; Jackson, MS; Forsyth County, NC). Information about risk 

factors was obtained at baseline (visit 1; 1987–1989) and in follow-up examinations: visit 

2 (1990–1992), visit 3 (1993–1995), visit 4 (1996–1998), visit 5 (2011–2013), visit 6 (2016–

2017) and visit 7 (2018–2019). visit 3 served as the baseline for this analysis. Information 

on risk factors and use of medications was also obtained through follow-up phone calls to 

participants (annually before 2012; twice-yearly thereafter). Institutional review boards at 

each site approved the study protocol, and written informed consent was obtained from all 

participants.

Genetic risk scores for type 2 diabetes

GRS for type 2 diabetes were constructed from SNP dosages and clustered into four 

mutually exclusive phenotypes of beta cell function (50 SNPs), insulin resistance (29 SNPs), 

lipodystrophy (12 SNPs) and BMI/lipid abnormalities (12 SNPs), using SNPs and weights 
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provided by Goodarzi et al [10]. Two additional GRS were generated from SNPs that 

remained uncategorised by Goodarzi et al in terms of diabetes phenotype (339 SNPs) and all 

SNPs combined (442 SNPs) [10]. For each participant, a weighted GRS was generated by 

multiplying the number of risk alleles at each variant by its corresponding diabetes-related 

risk value (logOR) and then summing the products. For variants unavailable in the ARIC 

GWAS data, a proxy variant in tight linkage disequilibrium (r2 ≥ 0.80) was substituted. 

In Black participants, no suitable proxy variants were available for rs145904381 (insulin 

resistance GRS) or rs1005752 (beta cell function GRS).

Genotyping

Genotyping, imputation and quality control procedures have been described previously 

[16]. Genome-Wide Human SNP array 6.0 (Affymetrix, USA) was used to genotype 

genomic DNA extracted from whole blood, and race-specific imputation of variant dosages 

to the TOPMed reference panel (freeze 5b) was performed to increase the number of 

genetic markers beyond this array [17]. Individuals who were first-degree relatives of 

each other, genetic outliers and those whose genotypes did not match genotype data from 

other platforms were removed prior to imputation. Based on the GWAS data, principal 

components reflecting population substructure or genetic ancestry were generated using 

EIGENSTRAT [18].

Proteomics measurement

Proteins were measured in plasma collected at visit 3 (1993–1995) using a modified DNA 

aptamer-based array that measures 4870 proteins (SomaScan version 4.0, SomaLogic, 

USA), described previously [19, 20]. Samples that had been stored at −70° C and not 

previously thawed were transferred to the SomaLogic laboratory and incubated with 

proprietary reagents. Protein levels were quantified using single-stranded DNA-based 

modified aptamers that bind to specific protein epitopes. Protein concentrations are reported 

as relative fluorescent units.

Proteomics quality control

Protein measurements by SomaScan were standardised and normalised as previously 

described [21, 22]. Briefly, hybridisation control normalisation was applied to each sample 

based on a set of hybridisation control sequences to correct for systematic biases during 

hybridisation. Median signal normalisation was applied to measures within plates to remove 

sample or assay biases due to variations in pipetting, reagent concentrations, assay timing, 

and other sources of systematic variability within single plate runs. Each plate contained 

calibrators for each aptamer reagent to correct for plate-to-plate variation based on global 

reference materials. ARIC investigators previously conducted a pilot study of SomaScan 

version 3 in 42 ARIC participants and reported excellent metrics of assay reproducibility: 

median coefficient of variance (Q1–Q3) of 5.0 (4.1–6.9) and median intraclass correlation 

(Q1–Q3) of 0.96 (0.92–0.98) [22].

Logarithmic transformations (base 2) were applied to all proteins prior to analysis. A total 

of 422 blind duplicate plasma aliquots were included, and the median inter-assay Bland–

Altman coefficient of variation was 6.3%. The median split sample reliability coefficient 
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was 0.85 after applying the following quality control filters on 5284 available aptamer 

measurements: Bland–Altman coefficient of variation > 50% or a variance of < 0.01 on the 

log scale (n = 94 excluded) and non-specific binding to non-proteins (n = 313 excluded). 

After all quality control measures were completed, 4870 aptamer measurements remained, 

corresponding to 4697 unique human proteins or protein complexes.

Assessment of kidney function

The eGFR at visit 3 was included as a covariate to account for the influences of kidney 

function on plasma proteins. The Chronic Kidney Disease Epidemiology Collaboration 

combined creatinine–cystatin C equation was used to estimate GFR (ml/min per 1.73 

m2) [23]. A creatinase enzymatic method using a Roche Modular P Chemistry Analyzer 

measured serum creatinine (Roche Diagnostics, USA) and was standardised to isotope-

dilution mass spectrometry as described previously [24]. A turbidimetric immunoassay 

(Gentian, Norway) calibrated and standardised to the International Federation of Clinical 

Chemistry and Laboratory Medicine reference was used to measure serum cystatin C level 

[25].

Diabetes ascertainment

Prevalent diabetes at visit 3 was defined by a fasting blood glucose level ≥ 7.0 mmol/l, 

non-fasting blood glucose ≥ 11.1 mmol/l, self-reported physician diagnosis of diabetes, 

or self-reported use of diabetes medications. Among those without prevalent diabetes at 

visit 3, incident diabetes was obtained by self-reported physician diagnosis of diabetes or 

self-reported use of diabetes medications at visit 4 (between 1996 and 1998) and in annual 

or semi-annual follow-up telephone interviews between 1999 and 2019.

Statistical analyses

A total of 12,887 participants attended visit 3. After excluding those with missing genetic 

data (n=2737), proteomic data (n=1041) or covariate data (n=194), 1674 Black and 7241 

White participants were available for the main analysis of GRS–protein associations. Race-

specific linear regression models were used to estimate associations between each of the six 

GRSs and proteins. Covariate adjustments were made for age, sex, field centre, eGFR at 

visit 3, and ten principal components of ancestry (unadjusted analyses shown in electronic 

supplementary material [ESM] Table 1). For each protein, participants with values that 

were more than 6 SD from the population mean were excluded. Bonferroni correction 

was applied to account for multiple testing: the 4870 protein outcomes and six GRSs 

stipulated a significance threshold of p < 1.71 × 10−6 in White participants. Analyses 

in Black participants were treated as a replication. Significant replication was defined as 

having the same direction of association observed in White participants and meeting a 

Bonferroni-corrected significance threshold that accounts for the number of proteins tested 

for each GRS in Black participants.

Proteins identified in the main GRS–protein analysis were tested for associations with 

prevalent and incident diabetes in a secondary analysis, and a schematic of analytical sample 

sizes is shown in ESM Fig. 1. Logistic regression was used to estimate ORs for each plasma 

protein with prevalent diabetes at visit 3 among those with all covariate data (n = 11,063 
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participants and 1733 cases), with adjustment for age, sex, field centre/race, physical activity 

based on the ARIC physical activity sport and exercise index [26], BMI, cigarette smoking 

status and eGFR (all assessed at the visit 3 time point). Field centre and race variables 

were combined as only Black participants were recruited at the field centre in Jackson, MS. 

A sensitivity analysis was conducted in which the definition of prevalent type 2 diabetes 

was limited to self-reported physician diagnosis or use of diabetes medications (n = 10,995 

participants and 1067 cases), since including laboratory values of fasting glucose may 

inflate the type I error rate. For prospective analysis, Cox regression was used to estimate 

HRs for incident diabetes over a median follow-up of 23.9 years (n = 6224 participants, 

2354 incident cases) with the same adjustments described above. Date of diagnosis was 

defined as the date of the interview at which diabetes was first reported; individuals who 

remained diabetes-free were censored at the time of their last available interview. For 

both cross-sectional and prospective analyses, Bonferroni correction was applied to correct 

for multiple testing: 22 proteins were tested, stipulating a significance threshold of p ≤ 

2.3×10−3.

Two-sample MR was performed using the MR-Base web application [27] and was 

restricted to proteins found to be related to both prevalent and incident type 2 diabetes 

in the secondary analysis. Instrumental variables consisted of protein quantitative trait loci 

(pQTLs) identified in White ARIC participants by GWAS analyses between the proteins 

and genetic dosages imputed based on the TOPMed (freeze 5b) reference, with adjustment 

for age, sex, field centre and ten principal components of ancestry. Clumping was used to 

prune pQTLs that did not reach the significance threshold (p ≤ 5 ×10−8), were in linkage 

disequilibrium (r2 for linkage disequilibrium < 0.2) or were within a clumping distance 

threshold of 10,000 kb. Identified pQTLs in the ARIC study were confirmed using published 

data from the INTERVAL [28] and AGES-Reykjavik [29] studies. For identified pQTLs, 

type 2 diabetes summary statistics were obtained from a large consortium study available 

through the MR-Base platform [12]; this study was selected based on the numbers of type 2 

diabetes cases (n for events = 62,892) and overlap with the TOPMed imputation panel used 

in the ARIC study. For pQTLs that were unavailable in the outcome summary data, proxy 

SNPs in tight linkage disequilibrium (r2 ≥ 0.8) were substituted. For proteins with only one 

pQTL, Wald ratios were calculated. Two and three pQTLs were identified for neurofascin 

and complement C2, respectively; inverse variance weighted (IVW) meta-analyses of Wald 

ratios were performed, and an MR-Egger sensitivity analysis [30] was conducted for C2. For 

significant two-sample MR results, reverse causality was evaluated. Type 2 diabetes-related 

SNPs were derived from the above consortium study [12]. Type 2 diabetes-related SNPs 

from this study were tested for their associations with neuropilin-2 and complement C2, and 

their associations with these proteins were obtained from GWAS by Sun et al [28] and Suhre 

et al [31], respectively. MR-Egger and IVW estimates were generated.

Canonical pathway enrichment was examined using the Ingenuity Pathway Analysis 

platform (Qiagen, USA) to determine potential mechanisms and signalling cascades through 

which GRSs may influence respective pathogenic phenotypes [32]. Entrez Gene IDs, log 

expression ratios (i.e. variant–protein association estimates) and false discovery rate q values 

from primary analyses were uploaded. To control for multiple comparisons, a Benjamini–

Hochberg false discovery rate was applied and proteins with q values ≤ 0.05 were deemed 
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significant. Core analysis was performed, and direct and indirect experimentally confirmed 

relationships across species were evaluated.

Results

The analytical sample comprised 8915 participants with a mean age of 60.1 years, of 

whom 54.1% were female. To assess the potential for selection bias, all 12,887 participants 

who attended visit 3 were compared to the analytical sample with complete genotype, 

proteomic and covariate data (Table 1). The analytical sample had a smaller proportion 

of Black participants than the visit 3 cohort; however, demographic, clinical and lifestyle 

characteristics were otherwise similar. Upon stratification into Black (n = 1674) and White 

(n = 7241) participant groups, it was found that, compared with White participants, Black 

participants showed higher proportions of current smokers (17.2% vs 21.7%) and never 

smokers (38.5% vs 45.4%), and a greater prevalence of type 2 diabetes (12.7% vs 27.7%).

Identification of GRS-related proteins

As shown in Fig. 1, the 12-variant type 2 diabetes GRS defining the BMI/lipid phenotype 

was associated with 14 plasma proteins in White participants. Of these, eight were replicated 

in Black participants: leucine-rich repeat neuronal protein 1 (p=2.1 × 10−14), MOB-like 

protein phocein (p=9.1 × 10−6), dehydrogenase/reductase SDR family member 9 (p=9.0 

× 10−7), ADP-ribosylation factor-like protein 2 (p=1.2 × 10−4), D-3-phosphoglycerate 

dehydrogenase (p=1.5 × 10−13), neurofilament light polypeptide (p=4.3 × 10−14), tubulin-

specific chaperone A (p=9.2 × 10−15) and protein S100-A13 (p=1.0 × 10−13).

As shown in ESM Table 3, the 29-variant type 2 diabetes GRS defining the insulin resistance 

phenotype was related to plasma chymotrypsinogen B2 (p=1.1 × 10−12) and SLIT and 

NTRK-like protein 3 (p=1.2 × 10−6) in White participants; the latter result was replicated in 

Black participants (p=0.02). The 12-variant type 2 diabetes GRS defining the lipodystrophy 

phenotype was related to plasma neuromedin-B (p=7.7 × 10−7) in White participants but this 

result was not replicated in Black participants (p > 0.05). The 50-variant type 2 diabetes 

GRS defining the beta cell function phenotype was related to cartilage intermediate layer 

protein 2 in White participants (p=2.2×10−10), but the association was not replicated in 

Black participants.

Over 300 GWAS-identified gene variants were previously associated with type 2 diabetes 

but remain uncategorised with respect to a distinct type 2 diabetes phenotype. When we 

combined these 339 variants into an ‘uncategorised’ phenotype GRS, one significant plasma 

protein association was observed in White participants: lactase-phlorizin hydrolase (p=8.5 

× 10−27); this result was replicated in Black participants (p=0.02). Finally, combining all 

GWAS-derived variants generated a 442-variant GRS that was related to seven proteins 

in White participants, as shown in Fig. 2. Of these, no associations were replicated in 

Black participants following Bonferroni correction (p>7.0×10−3), but all were directionally 

consistent. Point estimates, 95% CIs and p values for these associations are provided in 

ESM Table 3. Associations between GRS exposure variables and metabolic characteristics 

are shown in ESM Table 4.
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A sensitivity analysis was performed in which 555 participants with physician-diagnosed 

diabetes or those taking diabetes medications were excluded from the GRS–protein analysis; 

the results are shown in ESM Table 5. Most associations in the subset without diagnosed 

diabetes were similar in magnitude to those observed in the full analytic sample.

Associations of identified proteins and type 2 diabetes

In the secondary analysis, the 22 proteins identified in the main analysis were 

tested for associations with prevalent and incident diabetes. Among 11,063 Black and 

White participants at visit 3, there were 1733 individuals with type 2 diabetes. As 

shown in Fig. 3a, cross-sectional analysis showed that 18 of the 22 proteins were 

significantly related to prevalent diabetes (p≤2.2×10−3). Four of these 22 proteins were 

moderately to strongly correlated with one another. Specifically, neurofilament light 

polypeptide was correlated with tubulin-specific chaperone protein A (r=0.79; p<0.001), 

D-3-phosphoglycerate-dehydrogenase (r=0.69; p<0.001) and protein-S100-A13 (r=0.65; 

p<0.001). Despite these correlations, all proteins were tested for their associations with 

type 2 diabetes outcomes.

A sensitivity analysis was performed in which prevalent type 2 diabetes was defined as 

self-reported physician diagnosis or use of type 2 diabetes medications (n for cases = 1069). 

The results are shown in ESM Table 6 and are consistent with the previous model that used 

a more expansive definition of type 2 diabetes that included laboratory values of fasting 

glucose obtained at visit 3, indicating robust associations.

As shown in Fig. 3b, 10 of the 22 plasma proteins were significantly related to incident 

diabetes over a median follow-up of 23.9 years among 6224 Black and White participants 

without diabetes at visit 3 (n=2354 incident cases). ESM Table 7 provides point estimates, 

95% CIs and p values for cross-sectional and prospective analyses.

ESM Table 8 provides a summary of our main findings: protein–GRS associations (0 or 1), 

replication in Black participants, and protein associations with prevalent and incident type 2 

diabetes.

Two-sample MR analysis

For the ten proteins associated with both prevalent and incident type 2 diabetes, we 

performed a two-sample MR analysis to examine relationships between genetically 

determined protein levels and type 2 diabetes outcomes. Five of the ten proteins were found 

to have available genetic instruments. The results of this analysis are presented in Table 2, 

showing the target protein, corresponding pQTL(s) and r2 value specifying the percentage 

variance in protein level explained by the pQTL(s) in the ARIC study. A significant and 

inverse association was observed for neuropilin-2, suggesting that low neuropilin-2 levels 

promote type 2 diabetes development (OR per SD 0.44; p=0.008). Complement C2 was 

found to be positively related to type 2 diabetes (OR per SD 1.65; p=0.007); however, the 

MR-Egger results for complement C2 were not significant (OR per SD 1.07; p=0.96) and 

the test for directional horizontal pleiotropy was null (p=0.72). Further details of pQTLs are 

shown in ESM Table 9.
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The potential for reverse causality was evaluated for neuropilin-2 and complement C2 

(ESM Table 10). For neuropilin-2, 112 type 2 diabetes-related SNPs were available for 

analysis; estimates were null for IVW analyses (OR per SD 0.87; p=0.13) and MR-Egger 

sensitivity analyses (OR per SD 1.02; p=0.6) (ESM Fig. 2). For complement C2, 57 type 

2 diabetes-related SNPs were available for analysis; estimates were null for IVW analyses 

(OR per SD 1.06; p=0.76) and MR-Egger sensitivity analyses (OR per SD 1.00; p=0.96) 

(ESM Fig. 3). Tests for horizontal pleiotropy were null for both proteins but approached 

significance for neuropilin-2 (p=0.054).

Pathway enrichment analysis

Pathway analysis was performed for proteins associated with each GRS. One canonical 

pathway was identified, in which protein associations with the GRS defining the BMI/lipid 

phenotype and plasma proteins were indicative of retinoate biosynthesis I activation (z score 

2.24; p=2.3 × 10−7). Pathway components included alcohol dehydrogenase 4 (q value=0.03), 

aldo-keto reductase family 1 member C4 (q0.02), dehydrogenase/reductase SDR family 

member 9 (q0.0002) and retinol binding protein 5 (q0.03).

Discussion

Proteomics research has examined associations with prevalent and incident T2D, its 

complications, and responses to pharmacotherapies, but no proteomics study has examined 

the genetic liabilities captured by previously generated GRS specific for T2D phenotypes. 

Using a large-scale agnostic proteomics approach in White participants, we identified 

22 unique plasma proteins associated with GRSs for BMI, insulin resistance, beta cell 

dysfunction and lipodystrophy, or a composite of all type 2 diabetes-related variants. Of 

these, ten proteins were replicated in 1674 Black participants, and 21 of the 22 associations 

were directionally consistent between the discovery and replication samples. Of these 22 

proteins, 18 were statistically significantly related to prevalent type 2 diabetes, and ten of 

these were related to incident diabetes over a median of 24 years of follow-up. MR analysis 

showed that higher neuropilin-2 levels may be protective against type 2 diabetes, while 

higher complement C2 levels may be related to disease development based on the IVW 

estimate, although this is tempered by the MR-Egger result. Collectively, these findings 

suggest potential mechanisms through which the phenotype-specific GRSs confer greater 

risks of type 2 diabetes.

Of the identified proteins, plexin-B2, S100-A13 arfaptin-2, neurofascin and complement C2 

have previously been shown to be associated with prevalent and/or incident type 2 diabetes 

[33]. The plexin-B2 receptor and its ligand, semaphorin 6A (with a significance level of 

p=1.1 × 10−5 in the fully adjusted model, above the Bonferroni-corrected threshold), have 

been shown to be associated with HbA1c levels in individuals with type 2 diabetes [34], 

and circulating levels of plexin-B2 have been shown to be positively related to greater risk 

of prevalent type 2 diabetes, but not incident type 2 diabetes [33]. In contrast, protein S100-

A13 has been suggested to have a protective effect against adverse metabolic outcomes 

[33, 35]. As shown here and by Gudmundsdottir et al in the AGES-Reykjavik cohort [33], 

lower levels of protein S100-A13 were related to both prevalent and incident type 2 diabetes. 
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In agreement with these findings, hypomethylation of the S100A13 gene has been shown 

to be associated with lower protein levels and prevalent diabetic retinopathy, potentially 

through NF- κB activation and greater hyperglycaemia-induced vascular damage [35]. We 

were unable to identify a suitable genetic instrument for these proteins for evaluation in MR 

analysis.

Apart from the above five proteins, the remaining identified proteins are novel observations, 

and few have been characterised as having a role in type 2 diabetes development—

indeed, most have functions that are seemingly unrelated to metabolic health or disease. 

Leucine-rich repeat neuronal protein 1, neuromedin-B, neurofilament light polypeptide and 

neuropilin-2 have been characterised in gastric cancer [36], smooth muscle contraction [37], 

head and neck cancer [38], and angiogenesis [39], respectively. Despite this, we report 

here that the semaphorin receptor, neuropilin-2, may have a protective role against disease 

development based on MR results.

Afaptin-2 and neurofascin do not have any known physiological roles in metabolic function 

or adipogenesis despite their associations with type 2 diabetes shown here. However, 

consistent with a potential protective effect, the ubiquitously expressed arfaptin-2 protein 

has been shown to inhibit NF-κB activity [40]. Whether arfaptin-2 suppression of NF-κkB 

signalling influences adiposity or predisposition to adipose tissue accumulation has not been 

shown, but a central role for NF-κkB has been reported in models of obesity [41] and insulin 

resistance [42].

Finally, we confirm that plasma levels of complement C2 are positively associated with 

risk of type 2 diabetes as shown previously [33], and the results of the MR analysis 

suggest a causal relationship. These findings are consistent with the established role of 

the complement system in inflammation and its deleterious effects on metabolic function. 

Recent studies have shown that activation of complement components likely promote insulin 

resistance [43, 44] and microvascular complications including nephropathy [45–47] and 

retinopathy [48, 49]. However, the IVW result must be considered in combination with the 

non-significant result of the MR-Egger sensitivity analysis. Based on the latter finding and 

the null directional horizontal pleiotropy finding, it appears that the instrumental variable 

for complement C2 likely violated the ‘instrument strength independent of direct effect’ 

assumption [50]. Critically, of the three pQTL components of the C2 instrumental variable, 

the pQTL proximal to the C2 gene (rs558702) is an intron variant, showed the largest 

magnitude of association with type 2 diabetes (OR per SD 2.46; 95% CI1.45–4.18), and is 

more likely to be independent of horizontal pleiotropy. It may therefore provide a more 

reliable estimate of the effect of complement C2 on type 2 diabetes. Taken together, 

the potential causal effect of complement C2 on type 2 diabetes risk remains equivocal. 

Additional research is warranted to further characterise the role of C2 and other complement 

system components in type 2 diabetes.

An important consideration in evaluating the present findings is the degree of pathway 

convergence, which depends on the variant composition of the GRS. It has been suggested 

that a GRS may capture convergence in downstream disease pathways that originate with 

hundreds to thousands of genetic risk variants [33]. In that case, a GRS comprised of 
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variants that operate through a shared pathway(s) would be expected to show moderate to 

strong associations with protein components of that pathway. Conversely, a GRS comprised 

of variants that operate through different pathways would be expected to show more modest 

associations with proteins specific to one pathway. The relatively small magnitudes of 

association observed here suggest that the latter is occurring, and a few gene variants 

within each GRS may be driving the significant findings. In addition, these GRSs are 

likely incomplete as not all variants contributing to a specific type 2 diabetes phenotype are 

currently known. Taken together, these observations may have implications for future studies 

to (1) sub-classify known variants by shared pathways; and (2) identify new variants and 

epigenetic modifications to obtain a more complete representation of genetic liability, which 

may then inform the degree of pathway convergence for each diabetes phenotype.

Limitations

There are limitations in the present analysis that must be acknowledged. First, GRS 

construction assumed an additive genetic architecture of independent risk variants and did 

not account for the possibility of gene–gene or gene–environment interactions. Additionally, 

gold standard assessments of beta cell function, insulin resistance and lipodystrophy were 

not available in ARIC participants, and we were unable to assess relationships between 

identified proteins and these phenotypic manifestations of type 2 diabetes. Our two-sample 

MR analysis was limited by two factors: (1) no genetic instruments were found for cartilage 

intermediate layer protein-2 in the ARIC study; and (2) outcome summary statistics for 

the s100-A13, arfaptin-2, plexin-B2 and platelet activating factor-acetyl hydrolase pQTLs 

or identified proxy SNPs were unavailable in the study selected from MR-Base, which 

prevented MR analysis of these proteins. Limiting the generalisability of our findings, GRSs 

were comprised of variants identified from GWA studies comprised of individuals of largely 

European ancestry, and this may have contributed to the relatively moderate replication 

of GRS–protein associations among Black participants (ten of 22 proteins); however, the 

directional consistency in associations between groups was substantial: 21 of the 22 proteins 

identified in White participants were directionally consistent in Black participants. Finally, 

we had limited statistical power to identify pQTLs in Black participants and were therefore 

unable to perform MR analysis in that group; additional studies with larger samples of Black 

individuals are needed.

Conclusions

Using a large-scale agnostic proteomic approach, we identified 22 novel proteins associated 

with GRS for type 2 diabetes in the ARIC study. Most of these were found to be associated 

with prevalent or incident type 2 diabetes after adjustment for potential confounders. Two-

sample MR analysis provided evidence that complement C2 and neuropilin-2 levels may be 

causally related to type 2 diabetes risk, although the former finding should be interpreted 

with caution. Additional research is warranted to further interrogate these proteins and 

characterise their possible roles in the pathophysiology of type 2 diabetes and as potential 

targets for pharmacological intervention.
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Research in context

What is already known about this subject?

• Genetic liability to type 2 diabetes is well-established

• Genetic risk scores have been developed to capture heritable liabilities for 

type 2 diabetes phenotypes, including insulin resistance, beta cell dysfuction, 

BMI and lipodystrophy

What is the key question?

• Using a large-scale agnostic proteomic approach, is it possible to identify 

proteins and pathways through which type 2 diabetes phenotype risk scores 

influence type 2 diabetes pathophysiology?

What are the new findings?

• We identified 22 novel proteins associated with genetic risk scores for type 

2 diabetes, and most of these were found to be associated with prevalent or 

incident type 2 diabetes after adjustment for potential confounders

• Two-sample Mendelian randomisation analysis provided evidence that low 

levels of complement C2 and neuropilin-2 may be causally related to greater 

type 2 diabetes risk

How might this impact on clinical practice in the foreseeable future?

• Proteins identified through this genetic/proteomic approach may be viable 

targets for pharmacological or lifestyle interventions
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Fig. 1. 
Plasma proteins that were significantly associated with the type 2 diabetes GRS defining the 

BMI/lipid phenotype in 7241 White participants, with replication in 1674 Black participants. 

Results for a regression model examining the BMI GRS and protein outcomes (effect size 

expressed as difference in log2 protein level per SD in the GRS), adjusted for age, sex, 

field centre, ten principal components of ancestry, and eGFR at ARIC study visit 3. The 

Bonferroni correction for multiple testing was applied with a significance threshold of p 
< 1.7 × 10−6 in White participants; Black individuals were treated as a replication cohort 

with a significance threshold of p < 4.2 × 10−3 for correction of 12 tests. Asterisks indicate 

replication in Black participants
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Fig. 2. 
Plasma proteins that were significantly associated with the overall type 2 diabetes genetic 

risk score in 7241 White participants, with replication in 1674 Black participants. Results for 

a regression model examining the GRS of all diabetes-related variants and protein outcomes 

(effect size expressed as difference in log2 protein level per SD in the GRS), adjusted for 

age, sex, field centre, ten principal components of ancestry, and eGFR at ARIC study visit 3. 

The Bonferroni correction for multiple testing was applied with a significance threshold of 

p < 1.7 × 10−6 in White participants; Black individuals were treated as a replication cohort 

with a significance threshold of p < 7.1 × 10−3 for correction of seven tests
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Fig. 3. 
Associations between identified proteins and (a) prevalent type 2 diabetes, among 11,063 

participants at visit 3 (OR and 95% CI are shown; n for events = 1733), or (b) incident type 

2 diabetes, among 6224 ARIC participants over a median of 23.9 years of follow-up (HR 

ratios and 95% CI are shown; n = 2354 events). Models were adjusted for age, sex, field 

centre/race, physical activity, BMI, cigarette smoking status and eGFR at visit 3
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