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SUMMARY

Visual input during natural behavior is highly dependent on movements of the eyes and head, 

but how information about eye and head position is integrated with visual processing during 

free movement is unknown, since visual physiology is generally performed under head-fixation. 

To address this, we performed single-unit electrophysiology in V1 of freely moving mice while 

simultaneously measuring the mouse’s eye position, head orientation, and the visual scene from 

the mouse’s perspective. From these measures, we mapped spatiotemporal receptive fields during 

free movement based on the gaze-corrected visual input. Furthermore, we found a significant 

fraction of neurons tuned for eye and head position, and these signals were integrated with 

visual responses through a multiplicative mechanism in the majority of modulated neurons. These 

results provide new insight into coding in mouse V1, and more generally provide a paradigm for 

performing visual physiology under natural conditions, including active sensing and ethological 

behavior.

eTOC Blurb

Parker, Abe, et. al. recorded neural activity in freely moving mice together with visual input from 

the mouse’s perspective. They measured receptive fields during free movement and showed visual 

responses in many neurons are multiplicatively modulated by eye and head position.
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INTRODUCTION

A key aspect of natural behavior is movement through the environment, which has profound 

impacts on the incoming sensory information (Gibson 1979). In vision, movements of the 

eyes and head due to locomotion and orienting transform the visual scene in ways that 

are potentially both beneficial, by providing additional visual cues, and detrimental, by 

introducing confounds due to self-movement. By accounting for movement, the brain can 

therefore extract more complete and robust information to guide visual perception and 

behavior. Accordingly, a number of studies have demonstrated the impact of movement 

on activity in cortex (Parker et al. 2020; Froudarakis et al. 2019; Busse et al. 2017). In 

head-fixed mice, locomotion on a treadmill increases the gain of visual responses (Niell 

and Stryker 2010) and modifies spatial integration (Ayaz et al. 2013) in V1, while passive 

rotation generates vestibular signals (Bouvier, Senzai, and Scanziani 2020; Vélez-Fort et 

al. 2018). Likewise, in freely moving mice and rats, V1 neurons show robust responses 

to head and eye movements and head orientation tuning (Guitchounts, Masís, et al. 2020; 

Guitchounts, Lotter, et al. 2020; Meyer et al. 2018).

However, it is unknown how information about eye and head position is integrated into 

visual processing during natural movement, since studies of visual processing are generally 

performed during head-fixation to allow presentation of controlled stimuli, while natural 
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eye and head movements require a mouse to be freely moving. Quantifying visual coding 

in freely moving animals requires determining the visual input, which is no longer under 

the experimenter’s control and is dependent on both the visual scene from the mouse’s 

perspective and its eye position. In addition, natural scenes, particularly during free 

movement, pose difficulties for data analysis since they contain strong spatial and temporal 

correlations and are not uniformly sampled because they are under the animal’s control. 

Whether V1 receptive fields show similar properties under freely moving and restrained 

conditions is a question that goes back to the origins of cortical visual physiology (Hubel 

1959; Hubel and Wiesel 1959).

To address the experimental challenge, we combined high density silicon probe recordings 

with miniature head-mounted cameras (Michaiel, Abe, and Niell 2020; Meyer et al. 2018; 

Sattler and Wehr 2021), with one camera aimed outwards to capture the visual scene from 

the mouse’s perspective (“world camera”), and a second camera aimed at the eye to measure 

pupil position (“eye camera”), as well as an inertial measurement unit (IMU) to quantify 

head orientation. To address the data analysis challenge, we implemented a paradigm to 

correct the world camera video based on measured eye movements with a shifter network 

(Yates et al. 2021; Walker et al. 2019) and then use this as input to a generalized linear 

model (GLM) to predict neural activity (Pillow et al. 2008).

Using this approach, we first quantified the visual encoding alone during free movement, 

in terms of linear spatiotemporal receptive fields (RFs) from the GLM fit. For many units, 

the RF measured during free movement is similar to the RF measured with standard white 

noise stimuli during head-fixation within the same experiment, providing confirmation of 

this approach. We then extended the encoding model to incorporate eye position and head 

orientation, and found that these generally provide a multiplicative gain on the visual 

response. Together, this work provides new insights into the mechanisms of visual coding in 

V1 during natural movement, and opens the door to studying the neural basis of behavior 

under ethological conditions.

RESULTS

Visual physiology in freely moving mice

In order to study how visual processing in V1 incorporates self-motion, we developed a 

system to perform visual physiology in freely moving mice (Figure 1A). To estimate the 

visual input reaching the retina, a forward-facing world camera recorded a portion (~120 

deg) of the visual scene available to the right eye. A second miniature camera aimed at the 

right eye measured pupil position, and an IMU tracked head orientation. Finally, a driveable 

linear silicon probe implanted in left V1 recorded the activity of up to 100+ single units 

across layers. The same neurons were first recorded under head-fixed conditions to perform 

white noise RF mapping, and then under conditions of free movement (Figure 1B). Well 

isolated units were highly stable across the two conditions (Figure S1 and Methods). Figure 

1C and Video S1 show example data obtained using this system in a freely moving animal. 

Mice were allowed to explore a visually complex arena containing black and white blocks 

(three-dimensional sparse noise), static white noise and oriented gratings on the walls, and 

a monitor displaying moving spots. After several days of habituation, mice were active for 
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a majority of the time spent in the arena (82%), with an average movement speed of 2.6 

cm/s, which is comparable to other similar studies (see Methods; (Juavinett, Bekheet, and 

Churchland 2019; Meyer et al. 2018).

A generalized linear model accurately estimates spatiotemporal receptive fields during 
free movement

To quantify visual coding during free movement, both the neural activity and the 

corresponding visual input are needed. The world camera captures the visual scene in a 

head-centric point of view, while the visual input needed is in a retinocentric perspective. 

To tackle this problem, we used a shifter network to correct the world camera video for eye 

movements (Walker et al. 2019; Yates et al. 2021). The shifter network takes as input the 

horizontal (theta) and vertical (phi) eye angle, along with the vertical head orientation (pitch) 

to approximate cyclotorsion (Wallace et al. 2013), and outputs the affine transformation 

for horizontal and vertical translation and rotation, respectively (Figure S2). We trained 

the shifter network and a GLM end-to-end with a rectified linear activation function to 

determine the camera correction parameters that best enable prediction of neural activity for 

each recording session (Figure 2A). All GLM fits in this study were cross-validated using 

train-test splits (see Methods for details). This analysis draws on the relatively large numbers 

of simultaneously recorded units as it determines the best shift parameters by maximizing 

fits across all neurons, thereby determining the general parameters of the eye camera to 

world camera transformation rather than being tailored to individual neurons.

The outputs of the shifter network (Figure S2A–C) show that it converts the two axes of 

eye rotation (in degrees) into a continuous and approximately orthogonal combination of 

horizontal and vertical shifts of the worldcam video (in pixels), as expected to compensate 

for the alignment of the horizontal and vertical axes of the eye and world cameras. These 

outputs were also consistent in cross-validation across subsets of the data (coefficient of 

determination R2, dx=0.846, dy=0.792, dɑ=0.945; Figure S2A–C). When the shifts were 

applied to the raw world camera video it had the qualitative effect of stabilizing the visual 

scene in between rapid gaze shifts, as would be expected from the vestibulo-ocular reflex 

and “saccade-and-fixate” eye movement pattern described previously in mice (Video S2; 

(Meyer, O’Keefe, and Poort 2020; Michaiel, Abe, and Niell 2020). We quantified this 

by computing the total horizontal and vertical displacement of the raw and shifted world 

camera video based on image registration between sequential frames. When corrected for 

eye position, continuous motion of the image is converted into the step-like pattern of 

saccade-and-fixate (Figure S2D) and the image is stabilized to within 1 deg during the 

fixations (Figure S2E,F; (Michaiel, Abe, and Niell 2020). This eye-corrected retinocentric 

image was then used as input for the GLM network to predict neural activity in subsequent 

analysis.

We estimated spatiotemporal RFs during free movement using a GLM to predict single-

unit activity from the corrected world camera data. Single-unit RFs measured during free 

movement had clear on and off sub-regions and a transient temporal response (Figure 

2B). To our knowledge, these are the first visual receptive fields measured from a freely 

moving animal. It should be noted that the temporal response is still broader than would 
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be expected, which likely reflects the fact that the GLM cannot fully account for strong 

temporal correlations in the visual input. Furthermore, the GLM predicted the continuous 

time-varying firing rate of units during free movement (Figure 2C). Across the population 

of neurons recorded (N=268 units, 4 animals), neural activity predicted from the corrected 

world camera data was correlated with the actual continuous firing rate (CC mean 0.28, max 

0.69; Figure 2D). These values are on par with those obtained from mapping V1 RFs in 

awake and anesthetized head-fixed animals (Carandini et al. 2005).

To demonstrate the impact of correcting the visual input for eye movements, we computed 

RFs from the raw, uncorrected world camera data. This resulted in single-unit RFs becoming 

blurred, and reduced the ability to predict neural activity (Figure 2E,F; shifter on vs. off 

p=8.17e-23, paired t-test). Nonetheless, it is notable that the overall improvement was 

modest (mean increase in cc=0.06) and although some units required the shifter network, 

many units maintained a similar ability to predict firing rate even without the shifter. 

This is perhaps due to the large size of receptive fields relative to the amplitude of eye 

movements in the mouse (see Discussion). To determine the relative benefit of the GLM 

approach relative to a simpler reverse correlation spike-triggered average (Chichilnisky 

2001), we compared receptive fields and ability to predict firing rate from these two methods 

(Figure 2G–H). Receptive fields from the STA were much broader and appeared to reflect 

structure from the environment (Figure 2G), as expected since the STA will not account for 

spatiotemporal correlations in the input. Correspondingly, the STA performed much worse 

than the GLM in predicting neural activity (Figure 2H; p=2e-93). Finally, as an additional 

verification that the GLM method is able to accurately reconstruct RFs from limited data and 

that natural scene statistics are not biasing the RF estimates, we simulated neural activity 

based on Gabor RFs applied to the world camera data. The results demonstrate that the 

GLM can reconstruct simulated RFs with high accuracy, resulting in reconstructed RFs that 

are both qualitatively and quantitatively similar to the original (Figure S2F,G).

Comparison of receptive fields measured under freely moving versus head-fixed 
conditions

To determine whether RFs measured during free movement were comparable to those 

measured using traditional visual physiology methods, we compared them to RFs measured 

using a white noise stimulus under head-fixed conditions. The large majority of units were 

active (mean rate >1Hz) during each of these conditions (Figure 3A) and in each condition 

roughly half the units had a fit that significantly predicted neural activity, with slightly 

more in freely moving (Figure 3A). Overall, many neurons that had a clear white noise RF 

also had a clear RF from freely moving data (Figure 3B), which closely matched in spatial 

location, polarity, and number of sub-regions. To quantitatively compare RFs, we calculated 

the pixel-wise correlation coefficient between them. To provide a baseline for this metric, 

we first performed a cross-validation test-retest by comparing the RFs from the first and 

second half of each recording separately (Figure S3). The mean test-retest cc was 0.46 for 

head-fixed and 0.58 and freely moving. We considered a unit to have a robust test-retest RF 

if this pixel-wise cc was greater than 0.5 (Figure S3C), and then evaluated the similarity 

of RFs for units that had robust fits in both conditions. The distribution of correlation 

coefficients between head-fixed and freely moving RFs for these units (Figure 3C) shows 
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a strong correspondence for RFs across the two conditions (Figure 3C; 74% of units had 

a significant cc versus shuffled data). Taken together, these results show that for the units 

that had clearly defined RFs in both conditions, RFs measured with freely moving visual 

physiology are similar to those measured using traditional methods, despite the dramatically 

different visual input and behavior between these two conditions.

V1 integrates visual and position signals

Studies in head-fixed mice have shown a major impact of locomotion and arousal on activity 

in visual cortex (Busse et al. 2017; Niell and Stryker 2010; Ayaz et al. 2013; Vinck et al. 

2015). However, the impact of postural variables such as head position and eye position are 

not easily studied in head-fixed conditions, particularly since eye movements are closely 

coupled to head movement (Meyer, O’Keefe, and Poort 2020; Michaiel, Abe, and Niell 

2020). We therefore sought to determine whether and how eye/head position modulate V1 

neural activity during free movement, based on measurement of pupil position from the eye 

camera and head orientation from the IMU. Strikingly, many single units showed tuning 

for eye position and/or head orientation, with 25% (66/268) of units having a modulation 

index [MI; (ratemax−ratemin)/(ratemax+ratemin)] greater than 0.33 for at least one position 

parameter, which equates to a two-fold change in firing rate (Figure 4A–C). To determine 

whether single-unit activity was better explained by visual input or eye/head position, we fit 

GLMs using either one as input. For most units (189/268 units, 71%), firing rate was better 

explained by a visual model, although the activity of some units was better explained by 

eye/head position (Figure 4D,E; 78/268 units, 29%). It should be noted that the units that 

were better fit by position model might nonetheless be better described by a more elaborate 

visual model.

To gain a qualitative understanding of how V1 neurons might combine visual and position 

information, we plotted predicted firing rates from visual-only GLM fits against the actual 

firing rates binned into quartiles based on eye/head position (example in Figure 4F). While 

the data should lie on the unity line in the absence of position modulation, additive 

integration would shift the entire curve up or down, and multiplicative integration would 

cause a slope change. Across the population of recorded neurons, many units showed 

evidence of gain modulation that tended to appear more multiplicative than additive.

To directly quantify the integration of visual and eye/head position information, and in 

particular to test whether this was additive or multiplicative, we trained two additional 

models: additive and multiplicative joint-encoding of visual and position information. To 

train the joint fit of visual and position signals, we froze the weights of the initial visual fits 

and trained positional weights that either added to or multiplied the visual signal for each 

unit (Figure 4G). Incorporating eye position and head orientation enables the model to more 

accurately predict large changes in the firing rate (Figure 4H). The inclusion of positional 

information almost universally improved predicted neural activity compared to visual fits 

alone (Figure 4I). For units that had a significant visual fit (cc>0.22, cross-validated, N=173 

units), incorporating positional information resulted in an average fractional increase in 

correlation of 34% (0.07 average increase in cc). Multiplicatively combining visual and 

positional signals generated predictions that more closely matched actual firing rates than 
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an additive combination in a majority of units (Figure 4J,K; p=0.0005, one sample t-test 

ccmult-ccadd for units with significant visual-only fits versus gaussian distribution with 

mean=0), suggesting visual and position signals in mouse V1 are more often integrated 

nonlinearly, consistent with previous studies in primate visual and parietal cortex (Andersen 

and Mountcastle 1983; Morris and Krekelberg 2019).

To further characterize the head and eye position modulations, we performed additional 

experiments recording V1 activity during free movement in nearly total darkness, followed 

by recording in the standard light condition. A significant fraction of neurons were 

modulated by at least 2:1 in the dark (Figure S4A,B; dark: 17%, 41/241; light: 31%, 75/241 

units). Comparing the degree of modulation in the light vs dark for individual units revealed 

that the degree of tuning often shifted (Figure S4C), with some increasing their position 

tuning (consistent with an additive modulation that has a proportionally larger effect in 

the absence of visual drive) and others decreasing their position tuning (consistent with a 

multiplicative modulation that is diminished in the absence of a visual signal to multiply). 

In addition, to test whether position modulation might result from the abrupt transition from 

head-fixed recordings to free movement, we compared the degree of modulation during the 

first and second half of free movement sessions, and found no consistent change (Figure 

S4D). Finally, to test whether there was a bias in tuning for specific eye/head positions (e.g., 

upward versus downward pitch), we examined the weights of the position fits, which showed 

distributions centered around zero (Figure S4E), indicating that tuning for both directions 

was present for all position parameters, across the population.

Many response properties have been shown to vary across the cell types and layers of 

mouse V1 (Niell and Scanziani 2021). Separating recorded units into putative excitatory 

and inhibitory, based on spike waveform as performed previously (Niell and Stryker 2008), 

demonstrated that the visual fit performed better than than head/eye position for putative 

excitatory neurons, while the contributions were roughly equal for putative inhibitory cells 

(Figure S4F). This may be explained by the fact that putative excitatory neurons in mouse 

V1 have more linear visual responses (Niell and Stryker 2008). We also examined whether 

the contribution of visual versus position information varied by laminar depth, and found no 

clear dependence (Figure S4G,H).

Finally, we examined the role of two factors that are known to modulate activity in mouse 

V1: locomotor speed and pupil diameter (Vinck et al. 2015; Niell and Stryker 2010; Reimer 

et al. 2014). It is important to note that our GLM analysis excludes periods when the 

head is completely still, since that leads to dramatic over-representation of specific visual 

inputs that presents a confound in fitting the data. Therefore, the results presented above 

do not include the dramatic shift from non-alert/stationary to alert/moving that has been 

extensively studied (McGinley et al. 2015). Furthermore, changes in locomotor speed during 

free movement are associated with other changes (e.g., optic flow) that do not (occur 

under head-fixed locomotion, thus the model weights may represent other factors besides 

locomotion per se. Nonetheless, we find that including speed and pupil in the fit does 

indeed predict a part of the neural activity (Figure 4L). However this does not occlude the 

contribution from head/eye position or visual input. Examination of the weights in a joint 

fit of all parameters together demonstrates that although the contribution of locomotor speed 
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is greater than any one individual position parameter (Figure 4M), the summed weights 

of head/eye position parameters are still the largest contribution (Figure 4N). It is also 

interesting to note that although head and eye position are often strongly correlated in 

the mouse due to compensatory eye movements (Michaiel, Abe, and Niell 2020; Meyer, 

O’Keefe, and Poort 2020), the weights for each of these parameters are roughly equal in the 

GLM fit that can account for these correlations (Figure 4M), demonstrating that both head 

and eye may contribute independently to coding in V1, in addition to known factors such as 

locomotion and arousal.

DISCUSSION

Nearly all studies of neural coding in vision have been performed in subjects that are 

immobilized in some way, ranging from anesthesia to head and/or gaze fixation, which 

greatly limits the ability to study the visual processing that occurs as an animal moves 

through its environment. One important component of natural movement is the integration 

of the incoming visual information with one’s position relative to the scene. In order 

to determine how individual neurons in mouse V1 respond to visual input and eye/

head position, we implemented an integrated experimental and model-based data analysis 

approach to perform visual physiology in freely moving mice. Using this approach, 

we demonstrate the ability to estimate spatiotemporal visual receptive fields during free 

movement, show that individual neurons have diverse tuning to head and eye position, and 

find that these signals are often combined through a multiplicative interaction.

Integration of visual input and eye/head position

The ongoing activity of many units in V1 was modulated by both eye position and head 

orientation, as demonstrated by empirical tuning curves (Figure 4B) and model-based 

prediction of neural activity based on these parameters (Figure 4D). Modulation of neural 

activity in V1 and other visual areas by eye position (Weyand and Malpeli 1993; Trotter 

and Celebrini 1999; Rosenbluth and Allman 2002; Durand, Trotter, and Celebrini 2010; 

Andersen and Mountcastle 1983) and head orientation (Guitchounts, Lotter, et al. 2020; 

Brotchie et al. 1995) has been observed across rodents and primates, and fMRI evidence 

suggests human V1 encodes eye position (Merriam et al. 2013). Similar encoding of postural 

variables was also reported in posterior parietal cortex and secondary motor cortex using a 

GLM-based approach (Mimica et al. 2018). Many of the position-tuned units we observed 

were also visually responsive, with clear spatiotemporal receptive fields.

In order to determine how these position signals were integrated with visual input, we 

used the GLM model trained on visual input only and incorporated either an additive 

or multiplicative signal based on a linear model of the eye/head position parameters. 

For neurons that had both a significant visual and position component, we found that 

the majority were best described by a multiplicative combination. This multiplicative 

modulation corresponds to a gain field, a fundamental basis of neural computation (E. 

Salinas and Abbott 1996; Emilio Salinas and Sejnowski 2001). Gain fields have been shown 

to serve a number of roles, including providing an effective mechanism for coordinate 

transformations as they enable direct readout of additive or subtractive combinations of 
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input variables, such as the transformation from retinotopic to egocentric position of a 

visual stimulus. Studies in head-fixed primates have demonstrated gain fields for eye 

position (Morris and Krekelberg 2019; Andersen and Mountcastle 1983; Emilio Salinas and 

Sejnowski 2001) and head orientation (Brotchie et al. 1995), and similar gain modulation 

for other factors such as attention (E. Salinas and Abbott 1997). The demonstration of 

gain modulation by eye/head position in freely moving mice shows that this mechanism is 

engaged under natural conditions with complex movement.

Given the presence of gain fields in mouse visual cortex, two immediate questions arise: 

what are the sources of the position signals, and what are the cellular/circuit mechanisms 

that give rise to the gain modulation? Regarding sources, evidence suggests eye position 

signals arrive early in the visual system, perhaps even at the level of the thalamic lateral 

geniculate nucleus (Lal and Friedlander 1990), while head orientation information could be 

conveyed through secondary motor cortex (Guitchounts, Masís, et al. 2020) retrosplenial 

cortex (Vélez-Fort et al. 2018) or from neck muscle afferents (Crowell et al. 1998). 

Regarding the mechanism, multiplicative interactions have been suggested to arise from 

synaptic interactions including active dendritic integration, recurrent network interactions, 

changes in input synchrony, balanced excitatory/inhibitory modulatory inputs, and classic 

neuromodulators (E. Salinas and Abbott 1996; Emilio Salinas and Sejnowski 2001; Silver 

2010). Future research could take advantage of genetic methods available in mice to 

determine the neural circuit mechanisms that implement this computation (O’Connor, 

Huber, and Svoboda 2009; Niell and Scanziani 2021; Luo, Callaway, and Svoboda 2018).

This multiplicative interaction can also be viewed as a form of nonlinear mixed selectivity, 

which has been shown to greatly expand the discriminative capacity of a neural code 

(Rigotti et al. 2013; Nogueira et al. 2021). The implications of nonlinear mixed selectivity 

have primarily been explored in the context of categorical variables, rather than continuous 

variables as observed here. In this context it is interesting to note that a significant number 

of units were nonetheless best described by an additive interaction. In an additive interaction 

the two signals are linearly combined, providing a factorized code where each signal can 

be read out independently. It may be that having a fraction of neurons using this linear 

interaction provides flexibility by which the visual input and position can be directly 

read out, along with the nonlinear interaction that allows computations such as coordinate 

transformations.

Methodological considerations

We estimated the visual input to the retina based on two head-mounted cameras – one 

to determine the visual scene from the mouse’s perspective, and one to determine eye 

position and thereby correct the head-based visual scene to account for eye movements. 

Incorporation of eye position to correct the visual scene significantly improved the ability 

to estimate receptive fields and predict neural activity. Although head-fixed mice only make 

infrequent eye movements, freely moving mice (and other animals) make continual eye 

movements that both stabilize gaze by compensating for head movements and shift the gaze 

via saccades (Michaiel, Abe, and Niell 2020; Meyer, O’Keefe, and Poort 2020). As a result, 

eye position can vary over a range of ±30 degrees (theta std: 16.5 deg, phi std: 17.8 deg in 
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this study). Indeed, without eye movement correction many units did not have an estimated 

receptive field with predictive power (Figure 2F). Nonetheless, it is notable that some units 

were robustly fit even without correction – this likely reflects that fact that the eye is still 

within a central location a large fraction of the time (63% of timepoints within ±15 deg for 

theta, phi) and typical receptive fields in mouse V1 are on the order of 10–20 degrees (Niell 

and Stryker 2008; Van den Bergh et al. 2010).

We estimated spatiotemporal receptive fields and predicted neural activity during free 

movement using a GLM – a standard model-based approach in visual physiology (Pillow 

et al. 2008). Despite its simplicity – it estimates the linear kernel of a cell’s response 

– the GLM approach allowed us to estimate receptive fields in many neurons (39% of 

freely moving RFs significantly matched head-fixed white-noise RFs). These results are 

comparable to the fraction of units with defined STA receptive fields measured in head-fixed 

mice (64% of simple cells, 34% of total population in (Niell and Stryker 2008); 49% 

of total population in (Bonin et al. 2011). The model fits were also able to predict a 

significant amount of ongoing neural activity (CC mean=0.29, max=0.73). Although this is 

still generally a small fraction of total activity, this is in line with other studies (Carandini 

et al. 2005; de Vries et al. 2020) and likely represents the role of additional visual features 

beyond a linear kernel, as well as other non-visual factors that modulate neural activity 

(Musall et al. 2019; Stringer et al. 2019; Niell and Stryker 2010). A more elaborate model 

with nonlinear interactions would likely do a better job of explaining activity in a larger 

fraction of units; indeed, “complex” cells (Hubel and Wiesel 1962) are not accurately 

described by a single linear kernel. However, for this initial characterization of receptive 

fields in freely moving animals, we chose to use the GLM since it is a well-established 

method, it is a convex optimization guaranteed to reach a unique solution, and the resulting 

model is easily interpretable as a linear receptive field filter. The fact that even such a simple 

model can capture many neurons’ responses both shows the robustness of the experimental 

approach, and opens up the possibility for the use of more elaborate and nonlinear models, 

such as multi-component (Butts 2019) or deep neural networks (Walker et al. 2019; Ukita, 

Yoshida, and Ohki 2019; Bashivan, Kar, and DiCarlo 2019). Implementation of such models 

may require extensions to the experimental paradigm such as longer recording times to fit a 

greater number of parameters.

Freely moving visual physiology

Visual neuroscience is dominated by the use of head-restrained paradigms, in which the 

subject cannot move through the environment. As a result, many aspects of how vision 

operates in the natural world remain unexplored (Parker et al. 2020; Leopold and Park 

2020). Indeed, the importance of movement led psychologist J. J. Gibson to consider the 

legs a component of the human visual system, and provided the basis for his ecological 

approach to visual perception (Gibson 1979). The methods we developed here can be 

applied more broadly to enable a Gibsonian approach to visual physiology that extends 

beyond features that are present in standard head-fixed stimuli. While natural images and 

movies are increasingly used to probe responses of visual neurons in head-fixed conditions, 

these are still dramatically different from the visual input received during free movement 

through complex three-dimensional environments. This includes cues resulting from self-
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motion during active vision, such as motion parallax, loom, and optic flow that can provide 

information about the three-dimensional layout of the environment, distance, object speed, 

and other latent variables. Performing visual physiology in a freely moving subject may 

facilitate the study of the computations underlying these features.

Accordingly, a resurgent interest in natural behaviors (Juavinett, Erlich, and Churchland 

2018; Datta et al. 2019; Dennis et al. 2021; Miller et al. 2022) provides a variety 

of contexts in which to study visual computations in the mouse. However, studies of 

ethological visual behaviors typically rely on measurements of neural activity made during 

head-fixation, rather than during the behavior itself (Hoy, Bishop, and Niell 2019; Boone 

et al. 2021). Freely moving visual physiology is a powerful approach that ultimately can 

enable quantification of visual coding during ethological tasks to determine the neural basis 

of natural behavior.

STAR METHODS

Resource availability

Lead contact—Further information and requests for resources should be directed to and 

fulfilled by the lead contact, Dr. Cristopher M Niell (cniell@uoregon.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All model data have been deposited at Data Dryad and are publicly available as 

of the date of publication. The DOI is listed in the key resources table.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the Lead Contact upon request.

Experimental model and subject details

Animals—All procedures were conducted in accordance with the guidelines of the 

National Institutes of Health and were approved by the University of Oregon Institutional 

Animal Care and Use Committee. Three- to eight-month old adult mice (C57BL/6J, Jackson 

Laboratories and bred in-house) were kept on a 12 h light/dark cycle. In total, 4 female 

and 3 male mice were used for this study (head-fixed/freely moving: 2 females, 2 males; 

light/dark: 3 females, 2 males).

Method details

Surgery and habituation—Mice were initially implanted with a steel headplate 

over primary visual cortex to allow for head-fixation and attachment of head-mounted 

experimental hardware. After three days of recovery, widefield imaging (Wekselblatt et 

al 2016) was performed to help target the electrophysiology implant to the approximate 

center of left monocular V1. A miniature connector (Mill-Max 853–93-100–10-001000) was 
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secured to the headplate to allow attachment of a camera arm (eye/world cameras and IMU; 

Michaiel et al., 2020). In order to simulate the weight of the real electrophysiology drive 

and camera system for habituation (6 g total), a ‘dummy’ system was glued to the headplate. 

Animals were handled by the experimenter for several days before surgical procedures, and 

subsequently habituated (~45 min) to the spherical treadmill and freely moving arena with 

hardware tethering attached for several days before experiments.

The electrophysiology implant was performed once animals moved comfortably in the 

arena. A craniotomy was performed over V1, and a linear silicon probe (64 or 128 channels, 

Diagnostic Biochips P64–3 or P128–6) mounted in a custom 3D-printed drive (Yuta Senzai, 

UCSF) was lowered into the brain using a stereotax to an approximate tip depth of 750 

μm from the pial surface. The surface of the craniotomy was coated in artificial dura (Dow 

DOWSIL 3–4680) and the drive was secured to the headplate using light-curable dental 

acrylic (Unifast LC). A second craniotomy was performed above left frontal cortex, and a 

reference wire was inserted into the brain. The opening was coated with a small amount of 

sterile ophthalmic ointment before the wire was glued in place with cyanoacrylate. Animals 

recovered overnight and experiments began the following day.

Hardware and recording—The camera arm was oriented approximately 90 deg to the 

right of the nose and included an eye-facing camera (iSecurity101 1000TVL NTSC, 30 

fps interlaced), an infrared-LED to illuminate the eye (Chanzon, 3 mm diameter, 940 nm 

wavelength), a wide-angle camera oriented toward the mouse’s point of view (BETAFPV 

C01, 30 fps interlaced) and an inertial measurement unit acquiring three-axis gyroscope 

and accelerometer signals (Rosco Technologies; acquired 30 kHz, downsampled to 300 

Hz and interpolated to camera data). Fine gauge wire (Cooner, 36 AWG, #CZ1174CLR) 

connected the IMU to its control box, and each of the cameras to a USB video capture 

device (Pinnacle Dazzle or StarTech USB3HDCAP). A top-down camera (FLIR Blackfly 

USB3, 60 fps) recorded the mouse in the arena. The electrophysiology headstage (built into 

the silicon probe package) was connected to an OpenEphys acquisition system via an ultra 

thin cable (Intan #C3216). The electrophysiology cable was looped over a computer mouse 

bungee (Razer) to reduce the combined impact of the cable and implant. We first used the 

OpenEphys GUI (https://open-ephys.org/gui) to assess the quality of the electrophysiology 

data, then recordings were performed in Bonsai (Lopes et al. 2015) using custom workflows. 

System timestamps were collected for all hardware devices and later used to align data 

streams through interpolation.

During experiments, animals were first head-fixed on a spherical treadmill to permit 

measurement of visual receptive fields using traditional methods, then were transferred 

to an arena where they could freely explore. Recording duration was approximately 45 

minutes head-fixed, and 1hr freely moving. For head-fixed experiments, a 27.5 in monitor 

(BenQ GW2780) was placed approximately 27.5 cm from the mouse’s right eye. A contrast-

modulated white noise stimulus (Niell and Stryker 2008) was presented for 15 min, followed 

by additional visual stimuli, and the mouse was then moved to the arena. The arena was 

approximately 48 cm long by 37 cm wide by 30 cm high. A 24 in monitor (BenQ GW2480) 

covered one wall of the arena, while the other three walls were clear acrylic covering custom 

wallpaper including black and white high- and low-spatial frequency gratings and white 
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noise. A moving black and white spots stimulus (Piscopo et al. 2013) played continuously 

on the monitor while the mouse was in the arena. The floor was a gray silicone mat 

(Gartful) and was densely covered with black and white Legos. Small pieces of tortilla 

chips (Juanita’s) were lightly scattered around the arena to encourage foraging during the 

recording, however animals were not water or food restricted.

Data preprocessing—Electrophysiology data were acquired at 30 kHz and bandpass 

filtered between 0.01 Hz and 7.5 kHz. Common-mode noise was removed by subtracting 

the median across all channels at each timepoint. Spike sorting was performed using 

Kilosort 2.5 (Steinmetz et al. 2021), and isolated single units were then selected using 

Phy2 (https://github.com/cortex-lab/phy) based on a number of parameters including 

contamination (<10%), firing rate (mean >0.5 Hz across entire recording), waveform shape, 

and autocorrelogram. Electrophysiology data for an entire session were concatenated (head 

fixed stimulus presentation, freely moving period, or freely moving light and dark) and 

any sessions with apparent drift across the recording periods (based on Kilosort drift plots) 

were discarded. To check for drift between head-fixed and freely moving recordings, we 

compared the mean waveforms and noise level for each unit across the two conditions, based 

on a 2 ms window around the identified spike times in bandpass-filtered data (800–8000Hz). 

An example mean waveform, with its standard deviation across individual spike times, is 

shown in Figure S1A. To determine whether the waveform changed, indicative of drift, 

we calculated coefficient of determination (R2) between the two mean waveforms for each 

unit, which confirms a high degree of stability as the waveforms are nearly identical across 

conditions (Figure S1B). To determine whether the noise level changed, we computed the 

standard deviation across spike occurrences within each condition, for each unit (Figure 

S1C). There was no change in this metric between head-fixed and freely moving, indicating 

that there was not a change in noise level that might disrupt spike sorting in one condition 

specifically.

World and eye camera data were first deinterlaced to achieve 60 fps video. The world 

camera frames were then undistorted using a checkerboard calibration procedure (Python 

OpenCV), and downsampled to 30 by 40 pixels to reduce dimensionality and approximate 

mouse visual acuity. In order to extract pupil position from the eye video, eight points 

around the pupil were tracked with DeepLabCut (Mathis et al. 2018). We then fit these eight 

points to an ellipse and computed pupil position in terms of angular rotation (Michaiel, Abe, 

and Niell 2020). Sensor fusion analysis was performed on the IMU data (Jonny Saunders, 

University of Oregon) to calculate pitch and roll of the head. Pitch and roll were then passed 

through a median filter with window size 550 ms. All data streams were aligned to 50 ms 

bins through interpolation using system timestamps acquired in Bonsai.

GLM training—For all model fits, the data were partitioned into 10% groups, and were 

randomly sampled into cross-validation train and test sets (70%/30% split, respectively). 

Video frames were cropped by 5 pixels on each side to remove edge artifacts. Initially, a 

shifter network was trained on each recording session (see below) to estimate the appropriate 

horizontal shift, vertical shift, and rotation of the world camera video to correct for eye 

movements. The corrected eye camera data were then saved out and used for training. 
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Eye and head position were z-scored and zero-centered before training and analysis. Four 

different networks were trained: 1) Eye position and head orientation signals only, 2) Visual 

input only, 3) Additive interaction between position and visual input, and 4) Multiplicative 

interaction between position and visual input. Units with a mean firing rate below 1 Hz in 

either head-fixed or freely moving were removed from the data set (17% of total units).

Network parameters—To train the model end-to-end and to speed up the computation 

we utilized the graphical processing unit (GPU) and pyTorch because the GLM is equivalent 

to a single-layer linear network. We then used a rectified linear activation function to 

approximate non-zero firing rates. Utilizing the GPU decreased training time for the model 

by multiple orders of magnitude (from over 500 hours down to 40 minutes for the entire 

dataset). L1 and L2 regularization was applied to the spatiotemporal filters of the visual 

model. The Adam optimization algorithm (Kingma and Ba 2014) was used to update the 

parameters of the model to minimize prediction error. The loss and gradient of each neuron 

were computed independently in parallel so the full model represents the entire dataset. To 

account for the convergence of different parameters at different speeds as well as to isolate 

parameters for regularization, parameter groups were established within the optimizer with 

independent hyperparameters.

Shifter network—In order to correct the world camera video for eye movements, we 

trained a shifter network to convert eye position and torsion into an affine transformation of 

the image at each time point. For each recording session, eye angle and head pitch (theta, 

phi, and rho) were used as input into a feedforward network with a hidden layer of size 50, 

and output representing horizontal shift, vertical shift, and image rotation. The output of the 

network was then used to perform a differentiable affine transformation (Riba et al. 2019) 

to correct for eye movements. Head pitch was used as a proxy of eye torsion (Wallace et 

al. 2013), and eye position was zero-centered based on the mean position during the freely 

moving condition. The transformed image was then used as input into the GLM network 

to predict the neural activity. The shifter network and GLM were then trained together to 

minimize the error in predicted neural activity. During the shifter training (2000 epochs) no 

L1 regularization was applied to ensure a converged fit. Horizontal and vertical shift was 

capped at 20 pixels and rotation was capped at 45 deg. The eye corrected videos were saved 

out to be used for the model comparison training. The shifter network was trained on freely 

moving data, since eye movements are greatly reduced during head-fixation, but was applied 

to both head-fixed and freely moving data to align receptive fields across the two conditions.

Tuning and gain curves—Tuning curves for eye and head position were generated by 

binning the firing rates into quartiles so the density of each point is equal and then taking 

the average. For each gain curve we collected the time points of the firing rates that were 

within each quartile range for eye and head position, averaged the firing rates and then 

compared them with the predicted firing rates from the visual-only model. Each curve 

therefore represents how much each unit’s actual firing rate changed on average when the 

mouse’s eye or head was in the corresponding position.
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Position-only model fits—Eye and head position signals were used as input into a 

single-layer network where the input dimension was four and the output dimension was the 

number of neurons. No regularization was applied during training due to the small number 

of parameters needed for the fitting. The learning rate for the weights and biases was 1e-3.

Visual-only model fits—Eye corrected world camera videos were used as input into the 

GLM network. The weights from the shifter training for each neuron were used as the 

initialization condition for the weights, while the mean firing rates of the neurons were used 

as the initialization for the biases. Parameters for the model were fit over 10,000 epochs with 

a learning rate of 1e-3. To prevent overfitting, a regularization sweep of 20 values log-base 

10 distributed between 0.001 to 100 was performed. The model weights with the lowest test 

error were selected for each neuron.

Joint visual-position model fits—After the visual-only fits, the spatiotemporal weights 

and biases were frozen. A position module was then added to the model for which the input 

was the eye and head position signals (see Figure 4G). The output of the visual module 

was then combined with output of the position module in either an additive or multiplicative 

manner, then sent through a ReLu nonlinearity to approximate firing rates. The parameters 

for the position module were then updated with the Adam optimizer with learning rate 1e-3.

Speed and pupil diameter fits—To test the contribution of the speed and pupil 

diameter, the data were first z-scored and GLM fits were conducted with only speed 

and pupil, with eye/head position only and with speed, pupil and eye/head position. All 

models were fit with cross-validation with the same train/test split parameters as above. 

The explained variance (r2) of the predicted and actual firing rate was calculated between 

these models to show how these parameters contribute uniquely and sublinearly to the GLM 

fits. Additionally, we trained the joint fits with eye/head position and speed and pupil and 

calculated the total contribution of eye/head position versus speed and pupil (Figure 4L–N).

Post-training analysis—To better assess the quality of fits, the actual and output firing 

rates were smoothed with a boxcar filter with a 2 s window. The correlation coefficient (cc) 

was then calculated between smoothed actual and predicted firing rates of the test dataset. 

The modulation index of neural activity by position was calculated as the (max−min)/

(max+min) of each signal. In order to distinguish between additive and multiplicative 

models (Figure 4J,K), a unit needs to have a good positional and visual fit. As a result, 

units which had an cc value below 0.22, or did not improve with incorporating position 

information were thresholded out for the final comparison.

Simulated RF reconstruction—We tested the ability of our GLM approach to recover 

accurate receptive fields using simulated data. Simulated RFs were created based on Gabor 

functions and applied to the eye movement-corrected world camera video as a linear filter 

to generate simulated neural activity, scaled to empirically match the firing rates of real 

neurons with an average firing rate of 14 Hz. The output was then passed through a Poisson 

process to generate binned spike counts. Using these simulated data, we then followed 

the same analysis as for real data to fit a visual GLM model and estimate RFs, using 

spatiotemporal weights set to zero for the initial conditions.
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Test-retest analysis receptive fields—To assess how reliable the receptive fields were, 

we trained the GLM separately on the first and second half of each recording session. We 

then took the receptive fields that were mapped for each half and calculated the pixel-wise 

correlation coefficient (Figure S3). A threshold of 0.5 cc was then used as a metric for stable 

RFs within the same condition. The units that had a stable RF in both head-fixed and freely 

moving conditions were then used for the analysis in Figure 3.

Shifter controls and change in visual scene—Similar to the test-retest for receptive 

fields, we trained the shifter network on the first and second half of the data. Shifter matrices 

were created using a grid of eye and head angles after training to see how the network 

responds to different angles. The coefficient of determination (R2) was then calculated 

between the shifter matrices of the first and second half (Figure S2A–C). To further quantify 

the effect of the shifter network we used frame to frame image registration to measure the 

visual stability of the world camera video. Displacement between consecutive images was 

based on image registration performed with findTransformECC function in OpenCV. We 

computed the cumulative sum of shifts to get total displacement, then calculated standard 

deviation in the fixation intervals following analysis in (Michaiel, Abe, and Niell 2020).

Dark experiments and analysis—To eliminate all possible light within the arena, 

the entire behavioral enclosure was sealed in light-blocking material (Thorlabs BK5), all 

potential light sources within the enclosure were removed, and the room lights were turned 

off. Animals were first recorded in the dark (~20 min), then the arena lights and wall 

stimulus monitor were turned on (~20 min). As a result of the dark conditions, the pupil 

dilated beyond the margins of the eyelids, which made eye tracking infeasible. To counteract 

this, prior to the experiment, one drop of 2% Pilocarpine HCl Ophthalmic Solution was 

applied to the animal’s right eye to restrict the pupil to a size similar to that seen in the 

light. Once the pupil was restricted enough for tracking in the dark (~3 min) the animal was 

moved into the dark arena for recording, until the effects of the Pilocarpine wore off (~20 

min), at which time the light recording began. Tuning curves for eye and head position were 

generated using the same method as in the light by binning the firing rates into quartiles so 

the density of each point is equal and then taking the average.

Quantification and statistical analysis

For shuffle distributions, we randomly shuffled spike times within the cross-validated train 

and test sets and then performed the same GLM training procedure. We defined significant 

values as two standard deviations away from the mean of the shuffle distribution. For 

paired t-tests, we first averaged across units within a session, then performed the test across 

sessions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Parker et al. Page 16

Neuron. Author manuscript; available in PMC 2023 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGEMENTS

We thank Drs. Michael Beyeler, Michael Goard, Alex Huk, David Leopold, Jude Mitchell, Matt Smear and 
members of the Niell lab for comments on the manuscript. We thank Geordi Helmick and the University of Oregon 
Technical Sciences Administration for assistance with graphic and hardware design/production, Dr. Yuta Senzai 
for assistance with chronic electrode implants and drive design, and Jonny Saunders for assistance with sensor 
fusion analysis. This work was supported by NIH grants R34NS111669-01, R01NS121919-01, and UF1NS116377 
(C.M.N.).

References

Andersen RA, and Mountcastle VB. 1983. “The Influence of the Angle of Gaze upon the Excitability 
of the Light-Sensitive Neurons of the Posterior Parietal Cortex.” The Journal of Neuroscience: The 
Official Journal of the Society for Neuroscience 3 (3): 532–48. [PubMed: 6827308] 

Ayaz Aslı, Saleem Aman B., Schölvinck Marieke L., and Carandini Matteo. 2013. “Locomotion 
Controls Spatial Integration in Mouse Visual Cortex.” Current Biology: CB 23 (10): 890–94. 
[PubMed: 23664971] 

Bashivan Pouya, Kar Kohitij, and DiCarlo James J.. 2019. “Neural Population Control via Deep Image 
Synthesis.” Science 364 (6439). 10.1126/science.aav9436.

Bonin Vincent, Histed Mark H., Yurgenson Sergey, and Reid R. Clay. 2011. “Local Diversity and 
Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex.” The Journal of Neuroscience: 
The Official Journal of the Society for Neuroscience 31 (50): 18506–21. [PubMed: 22171051] 

Boone Howard C., Samonds Jason M., Crouse Emily C., Barr Carrie, Priebe Nicholas J., and McGee 
Aaron W.. 2021. “Natural Binocular Depth Discrimination Behavior in Mice Explained by Visual 
Cortical Activity.” Current Biology: CB 31 (10): 2191–98.e3. [PubMed: 33705714] 

Bouvier Guy, Senzai Yuta, and Scanziani Massimo. 2020. “Head Movements Control the Activity 
of Primary Visual Cortex in a Luminance-Dependent Manner.” Neuron 108 (3): 500–511.e5. 
[PubMed: 32783882] 

Brotchie Peter R., Andersen Richard A., Snyder Lawrence H., and Goodman Sabrina J.. 1995. “Head 
Position Signals Used by Parietal Neurons to Encode Locations of Visual Stimuli.” Nature 375 
(6528): 232–35. [PubMed: 7746323] 

Busse Laura, Cardin Jessica A., M. Eugenia Chiappe, Halassa Michael M., McGinley Matthew J., 
Yamashita Takayuki, and Saleem Aman B.. 2017. “Sensation during Active Behaviors.” The Journal 
of Neuroscience: The Official Journal of the Society for Neuroscience 37 (45): 10826–34. [PubMed: 
29118211] 

Butts Daniel A. 2019. “Data-Driven Approaches to Understanding Visual Neuron Activity.” Annual 
Review of Vision Science 5 (1): 451–77.

Carandini Matteo, Demb Jonathan B., Mante Valerio, Tolhurst David J., Dan Yang, Olshausen Bruno 
A., Gallant Jack L., and Rust Nicole C.. 2005. “Do We Know What the Early Visual System 
Does?” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25 (46): 
10577–97. [PubMed: 16291931] 

Chichilnisky EJ 2001. “A Simple White Noise Analysis of Neuronal Light Responses.” Network 12 
(2): 199–213. [PubMed: 11405422] 

Crowell James A., Banks Martin S., Shenoy Krishna V., and Andersen Richard A.. 1998. “Visual Self-
Motion Perception during Head Turns.” Nature Neuroscience 1 (8): 732–37. [PubMed: 10196591] 

Datta Sandeep Robert, Anderson David J., Branson Kristin, Perona Pietro, and Leifer Andrew. 2019. 
“Computational Neuroethology: A Call to Action.” Neuron 104 (1): 11–24. [PubMed: 31600508] 

Dennis Emily Jane, El Hady Ahmed, Angie Michaiel, Clemens Ann, Tervo Dougal R. Gowan, Voigts 
Jakob, and Datta Sandeep Robert. 2021. “Systems Neuroscience of Natural Behaviors in Rodents.” 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 41 (5): 911–19. 
[PubMed: 33443081] 

Durand Jean-Baptiste, Trotter Yves, and Celebrini Simona. 2010. “Privileged Processing of the 
Straight-Ahead Direction in Primate Area V1.” Neuron 66 (1): 126–37. [PubMed: 20399734] 

Parker et al. Page 17

Neuron. Author manuscript; available in PMC 2023 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Froudarakis Emmanouil, Fahey Paul G., Reimer Jacob, Smirnakis Stelios M., Tehovnik Edward J., 
and Tolias Andreas S.. 2019. “The Visual Cortex in Context.” Annual Review of Vision Science 5 
(September): 317–39.

Gibson James J. 1979. The Ecological Approach To Visual Perception. Lawrence Erlbaum Associates.

Guitchounts Grigori, Lotter William, Dapello Joel, and Cox David. 2020. “Stable 3D Head Direction 
Signals in the Primary Visual Cortex.” bioRxiv. 10.1101/2020.09.04.283762.

Guitchounts Grigori, Javier Masís, Wolff Steffen B. E., and Cox David. 2020. “Encoding of 3D 
Head Orienting Movements in the Primary Visual Cortex.” Neuron 108 (3): 512–25.e4. [PubMed: 
32783881] 

Hoy Jennifer L., Bishop Hannah I., and Niell Cristopher M.. 2019. “Defined Cell Types in Superior 
Colliculus Make Distinct Contributions to Prey Capture Behavior in the Mouse.” Current Biology: 
CB 29 (23): 4130–38.e5. [PubMed: 31761701] 

Hubel DH 1959. “Single Unit Activity in Striate Cortex of Unrestrained Cats.” The Journal of 
Physiology 147 (September): 226–38. [PubMed: 14403678] 

Hubel DH, and Wiesel TN. 1959. “Receptive Fields of Single Neurones in the Cat’s Striate Cortex.” 
The Journal of Physiology 148 (October): 574–91. [PubMed: 14403679] 

———. 1962. “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual 
Cortex.” The Journal of Physiology 160 (January): 106–54. [PubMed: 14449617] 

Juavinett Ashley L., Bekheet George, and Churchland Anne K.. 2019. “Chronically Implanted 
Neuropixels Probes Enable High-Yield Recordings in Freely Moving Mice.” eLife 8 (August). 
10.7554/eLife.47188.

Juavinett Ashley L., Erlich Jeffrey C., and Churchland Anne K.. 2018. “Decision-Making 
Behaviors: Weighing Ethology, Complexity, and Sensorimotor Compatibility.” Current Opinion 
in Neurobiology 49 (April): 42–50. [PubMed: 29179005] 

Kingma Diederik P., and Ba Jimmy. 2014. “Adam: A Method for Stochastic Optimization.” arXiv 
[cs.LG]. arXiv. http://arxiv.org/abs/1412.6980.

Lal R, and Friedlander MJ. 1990. “Effect of Passive Eye Movement on Retinogeniculate Transmission 
in the Cat.” Journal of Neurophysiology 63 (3): 523–38. [PubMed: 2329359] 

Leopold David A., and Park Soo Hyun. 2020. “Studying the Visual Brain in Its Natural Rhythm.” 
NeuroImage 216 (August): 116790. [PubMed: 32278093] 

Lopes Gonçalo, Bonacchi Niccolò, João Frazão, Neto Joana P., Atallah Bassam V., Soares Sofia, 
Moreira Luís, et al. 2015. “Bonsai: An Event-Based Framework for Processing and Controlling 
Data Streams.” Frontiers in Neuroinformatics 9 (April): 7. [PubMed: 25904861] 

Luo Liqun, Callaway Edward M., and Svoboda Karel. 2018. “Genetic Dissection of Neural Circuits: A 
Decade of Progress.” Neuron 98 (4): 865. [PubMed: 29772206] 

Mathis Alexander, Mamidanna Pranav, Cury Kevin M., Abe Taiga, Murthy Venkatesh N., Mathis 
Mackenzie Weygandt, and Bethge Matthias. 2018. “DeepLabCut: Markerless Pose Estimation of 
User-Defined Body Parts with Deep Learning.” Nature Neuroscience 21 (9): 1281–89. [PubMed: 
30127430] 

McGinley Matthew J., Vinck Martin, Reimer Jacob, Renata Batista-Brito, Zagha Edward, Cadwell 
Cathryn R., Tolias Andreas S., Cardin Jessica A., and McCormick David A.. 2015. “Waking State: 
Rapid Variations Modulate Neural and Behavioral Responses.” Neuron 87 (6): 1143–61. [PubMed: 
26402600] 

Merriam Elisha P., Gardner Justin L., Movshon J. Anthony, and Heeger David J.. 2013. “Modulation of 
Visual Responses by Gaze Direction in Human Visual Cortex.” The Journal of Neuroscience: The 
Official Journal of the Society for Neuroscience 33 (24): 9879–89. [PubMed: 23761883] 

Meyer Arne F., O’Keefe John, and Poort Jasper. 2020. “Two Distinct Types of Eye-Head Coupling in 
Freely Moving Mice.” Current Biology: CB 30 (11): 2116–30.e6. [PubMed: 32413309] 

Meyer Arne F., Poort Jasper, O’Keefe John, Sahani Maneesh, and Linden Jennifer F.. 2018. “A 
Head-Mounted Camera System Integrates Detailed Behavioral Monitoring with Multichannel 
Electrophysiology in Freely Moving Mice.” Neuron 100 (1): 46–60.e7. [PubMed: 30308171] 

Michaiel Angie M., Abe Elliott Tt, and Niell Cristopher M.. 2020. “Dynamics of Gaze Control during 
Prey Capture in Freely Moving Mice.” eLife 9 (July). 10.7554/eLife.57458.

Parker et al. Page 18

Neuron. Author manuscript; available in PMC 2023 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1412.6980


Miller Cory T., Gire David, Hoke Kim, Huk Alexander C., Kelley Darcy, Leopold David A., Smear 
Matthew C., Theunissen Frederic, Yartsev Michael, and Niell Cristopher M.. 2022. “Natural 
Behavior Is the Language of the Brain.” Current Biology: CB 32 (10): R482–93. [PubMed: 
35609550] 

Mimica Bartul, Dunn Benjamin A., Tombaz Tuce, Bojja V. P. T. N. C. Srikanth, and Whitlock Jonathan 
R.. 2018. “Efficient Cortical Coding of 3D Posture in Freely Behaving Rats.” Science 362 (6414): 
584–89. [PubMed: 30385578] 

Morris Adam P., and Krekelberg Bart. 2019. “A Stable Visual World in Primate Primary Visual 
Cortex.” Current Biology: CB 29 (9): 1471–80.e6. [PubMed: 31031112] 

Musall Simon, Kaufman Matthew T., Juavinett Ashley L., Gluf Steven, and Churchland Anne K.. 
2019. “Single-Trial Neural Dynamics Are Dominated by Richly Varied Movements.” Nature 
Neuroscience 22 (10): 1677–86. [PubMed: 31551604] 

Niell Cristopher M., and Scanziani Massimo. 2021. “How Cortical Circuits Implement Cortical 
Computations: Mouse Visual Cortex as a Model.” Annual Review of Neuroscience 44 (July): 
517–46.

Niell Cristopher M., and Stryker Michael P.. 2008. “Highly Selective Receptive Fields in Mouse Visual 
Cortex.” Journal of Neuroscience 28 (30): 7520–36. [PubMed: 18650330] 

———. 2010. “Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex.” Neuron 
65 (4): 472–79. [PubMed: 20188652] 

Nogueira Ramon, Rodgers Chris C., Bruno Randy M., and Fusi Stefano. 2021. “The Geometry of 
Cortical Representations of Touch in Rodents.” bioRxiv. 10.1101/2021.02.11.430704.

O’Connor Daniel H., Huber Daniel, and Svoboda Karel. 2009. “Reverse Engineering the Mouse 
Brain.” Nature 461 (7266): 923–29. [PubMed: 19829372] 

Parker Philip R. L., Brown Morgan A., Smear Matthew C., and Niell Cristopher M.. 2020. 
“Movement-Related Signals in Sensory Areas : Roles in Natural Behavior.” Trends in 
Neurosciences, 1–15. [PubMed: 31744630] 

Pillow Jonathan W., Shlens Jonathon, Paninski Liam, Sher Alexander, Litke Alan M., Chichilnisky EJ, 
and Simoncelli Eero P.. 2008. “Spatio-Temporal Correlations and Visual Signalling in a Complete 
Neuronal Population.” Nature 454 (7207): 995–99. [PubMed: 18650810] 

Piscopo Denise M., El-Danaf Rana N., Huberman Andrew D., and Niell Cristopher M.. 2013. “Diverse 
Visual Features Encoded in Mouse Lateral Geniculate Nucleus.” The Journal of Neuroscience: 
The Official Journal of the Society for Neuroscience 33 (11): 4642–56. [PubMed: 23486939] 

Reimer Jacob, Froudarakis Emmanouil, Cadwell Cathryn R., Yatsenko Dimitri, Denfield George H., 
and Tolias Andreas S.. 2014. “Pupil Fluctuations Track Fast Switching of Cortical States during 
Quiet Wakefulness.” Neuron 84 (2): 355–62. [PubMed: 25374359] 

Riba Edgar, Mishkin Dmytro, Ponsa Daniel, Rublee Ethan, and Bradski Gary. 2019. “Kornia: An Open 
Source Differentiable Computer Vision Library for PyTorch.” http://arxiv.org/abs/1910.02190.

Rigotti Mattia, Barak Omri, Warden Melissa R., Wang Xiao Jing, Daw Nathaniel D., Miller Earl 
K., and Fusi Stefano. 2013. “The Importance of Mixed Selectivity in Complex Cognitive Tasks 
SUPPLEMENTARY INFORMATION.” Nature 497 (7451): 585–90. [PubMed: 23685452] 

Rosenbluth David, and Allman John M.. 2002. “The Effect of Gaze Angle and Fixation Distance on 
the Responses of Neurons in V1, V2, and V4.” Neuron 33 (1): 143–49. [PubMed: 11779487] 

Salinas E, and Abbott LF. 1996. “A Model of Multiplicative Neural Responses in Parietal Cortex.” 
Proceedings of the National Academy of Sciences of the United States of America 93 (21): 
11956–61. [PubMed: 8876244] 

———. 1997. “Invariant Visual Responses from Attentional Gain Fields.” Journal of Neurophysiology 
77 (6): 3267–72. [PubMed: 9212273] 

Salinas Emilio, and Sejnowski Terrence J.. 2001. “Book Review: Gain Modulation in the Central 
Nervous System: Where Behavior, Neurophysiology, and Computation Meet.” The Neuroscientist. 
10.1177/107385840100700512.

Sattler Nicholas J., and Wehr Michael. 2021. “A Head-Mounted Multi-Camera System for 
Electrophysiology and Behavior in Freely-Moving Mice.” Frontiers in Neuroscience 0. 10.3389/
fnins.2020.592417.

Parker et al. Page 19

Neuron. Author manuscript; available in PMC 2023 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1910.02190


Silver R. Angus. 2010. “Neuronal Arithmetic.” Nature Reviews. Neuroscience 11 (7): 474–89. 
[PubMed: 20531421] 

Steinmetz Nicholas A., Aydin Cagatay, Lebedeva Anna, Okun Michael, Pachitariu Marius, Bauza 
Marius, Beau Maxime, et al. 2021. “Neuropixels 2.0: A Miniaturized High-Density Probe for 
Stable, Long-Term Brain Recordings.” Science 372 (6539). 10.1126/science.abf4588.

Stringer Carsen, Pachitariu Marius, Steinmetz Nicholas, Reddy Charu Bai, Carandini Matteo, and 
Harris Kenneth D.. 2019. “Spontaneous Behaviors Drive Multidimensional, Brainwide Activity.” 
Science 364 (6437): 255. [PubMed: 31000656] 

Trotter Yves, and Celebrini Simona. 1999. “Gaze Direction Controls Response Gain in Primary 
Visual-Cortex Neurons.” Nature 398 (6724): 239–42. [PubMed: 10094046] 

Ukita Jumpei, Yoshida Takashi, and Ohki Kenichi. 2019. “Characterisation of Nonlinear Receptive 
Fields of Visual Neurons by Convolutional Neural Network.” Scientific Reports 9 (1): 1–17. 
[PubMed: 30626917] 

Van den Bergh Gert, Zhang Bin, Arckens Lutgarde, and Chino Yuzo M.. 2010. “Receptive-Field 
Properties of V1 and V2 Neurons in Mice and Macaque Monkeys.” The Journal of Comparative 
Neurology 518 (11): 2051–70. [PubMed: 20394058] 

Vélez-Fort Mateo, Bracey Edward F., Keshavarzi Sepiedeh, Rousseau Charly V., Cossell Lee, Lenzi 
Stephen C., Strom Molly, and Margrie Troy W.. 2018. “A Circuit for Integration of Head- and 
Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex.” Neuron 98 (1): 179–91.e6. 
[PubMed: 29551490] 

Vinck Martin, Batista-Brito Renata, Knoblich Ulf, and Cardin Jessica A.. 2015. “Arousal and 
Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding.” 
Neuron 86 (3): 740–54. [PubMed: 25892300] 

Vries Saskia E. J. de, Lecoq Jerome A., Buice Michael A., Groblewski Peter A., Ocker Gabriel 
K., Oliver Michael, Feng David, et al. 2020. “A Large-Scale Standardized Physiological Survey 
Reveals Functional Organization of the Mouse Visual Cortex.” Nature Neuroscience 23 (1): 138–
51. [PubMed: 31844315] 

Walker Edgar Y., Sinz Fabian H., Cobos Erick, Muhammad Taliah, Froudarakis Emmanouil, 
Fahey Paul G., Ecker Alexander S., Reimer Jacob, Pitkow Xaq, and Tolias Andreas S.. 2019. 
“Inception Loops Discover What Excites Neurons Most Using Deep Predictive Models.” Nature 
Neuroscience 22 (12): 2060–65. [PubMed: 31686023] 

Wallace Damian J., Greenberg David S., Sawinski Juergen, Rulla Stefanie, Notaro Giuseppe, and 
Kerr Jason N. D.. 2013. “Rats Maintain an Overhead Binocular Field at the Expense of Constant 
Fusion.” Nature 498 (7452): 65–69. [PubMed: 23708965] 

Weyand TG, and Malpeli JG. 1993. “Responses of Neurons in Primary Visual Cortex Are Modulated 
by Eye Position.” Journal of Neurophysiology 69 (6): 2258–60. [PubMed: 8350143] 

Yates Jacob L., Coop Shanna H., Sarch Gabriel H., Wu Ruei-Jr, Butts Daniel A., Rucci Michele, 
and Mitchell Jude F.. 2021. “Beyond Fixation: Detailed Characterization of Neural Selectivity in 
Free-Viewing Primates.” bioRxiv. 10.1101/2021.11.06.467566.

Parker et al. Page 20

Neuron. Author manuscript; available in PMC 2023 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• V1 neurons respond to vision and self-motion but it’s unclear how these are 

combined.

• We recorded neural activity together with visual input from the mouse’s 

perspective.

• These data allow measurement of visual receptive fields in freely moving 

animals.

• Many V1 neurons are multiplicatively modulated by eye position and head 

orientation
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Figure 1: Visual physiology in freely moving mice.
A) Schematic of recording preparation including 128-channel linear silicon probe for 

electrophysiological recording in V1 (yellow), miniature cameras for recording the mouse’s 

eye position (magenta) and visual scene (blue), and inertial measurement unit for measuring 

head orientation (green). B) Experimental design: controlled visual stimuli were first 

presented to the animal while head-fixed, then the same neurons were recorded under 

conditions of free movement. C) Sample data from a fifteen second period during free 

movement showing (from top) visual scene, horizontal and vertical eye position, head pitch 

and roll, and a raster plot of over 100 units. Note that the animal began moving at ~4 secs, 

accompanied by a shift in the dynamics of neural activity.
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Figure 2: A generalized linear model accurately estimates spatiotemporal receptive fields during 
free movement.
A) Schematic of processing pipeline. Visual and positional information is used as input 

into the shifter network, which outputs parameters for an affine transformation of the world-

camera image. The transformed image frame is then used as the input to the GLM network 

to predict neural activity. B) Four example freely moving spatiotemporal visual receptive 

fields. Scale bar for RFs represents 10 degrees. C) Example actual and predicted smoothed 

(2 s window) firing rates for unit 3 in B. D) Histogram of correlation coefficients (cc) for the 

population of units recorded. Average cc shown as gray dashed line. E) Example of a freely 

moving RF with the shifter network off (left) and on (right) at time lag 0 ms. Colormap 

same as B. F) Scatter plot showing cc of predicted versus actual firing rate for all units with 

the shifter network off vs on. Red point is the unit shown in E. G) Example receptive field 

calculated via STA (left) versus GLM (right). H) Scatter plot showing cc of predicted vs 

actual firing rate for all units, as calculated from STA or GLM. Red point is the unit shown 

in G.
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Figure 3: Comparison of receptive fields measured under freely moving versus head-fixed 
conditions.
A) Fraction of units that were active (>1 Hz firing rate) and that had significant fits for 

predicting firing rate, in head-fixed and freely moving conditions. B) Example spatial 

receptive fields measured during free movement (top) and using a white noise mapping 

stimulus while head-fixed (bottom) at time lag 0 ms. Scale bar in top left is 10 deg. C) 
Histogram of correlation coefficients between freely moving and head-fixed RFs. Black 

color indicates units that fall outside two standard deviations of the shuffle distribution. 

Arrows indicate locations in the distribution for example units in A.
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Figure 4: V1 neurons integrate visual and position signals.
A) Overlay of vertical eye angle (phi; gray) and the smoothed firing rate of an example 

unit (black). B) Example tuning curve for head pitch. Colored points denote the quartiles 

of phi corresponding to panel F. C) Scatter of the modulation indices for eye position 

and head orientation (N=268 units, 4 animals). Numbers at top of the plot represent the 

fraction of units with significant tuning. D) Same unit as A. Example trace of smoothed 

firing rates from neural recordings and predictions from position-only and visual-only fits. 

E) Scatter plot of cc for position-only and visual-only fits for all units. F) Gain curve for 

the same unit in A and C. Modulation of the actual firing rates based on phi indicated 

by color. G) Schematic of joint visual and position input training. H) Same unit as A, C, 

and E. Smoothed traces of the firing rates from the data, additive and multiplicative fits. 

I) Correlation coefficient for visual-only versus joint fits. Each point is one unit, color 
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coded for the joint fit that performed best. J) Comparison of additive and multiplicative fits 

for each unit. Units characterized as multiplicative are to the right of the vertical dashed 

line, while additive ones are to the left. Horizontal dashed line represents threshold set for 

the visual fit, since in the absence of a predictive visual fit, a multiplicative modulation 

will be similar to an additive modulation. K) Histogram of the difference in cc between 

additive and multiplicative models. The visual threshold from I was applied to the data. 

L) Explained variance (r2) for position only (pos), speed and pupil only (sp), visual only 

(vis), multiplicative with eye/head position (mul_pos), multiplicative with speed and pupil 

(mul_sp), and multiplicative with eye/head position, speed and pupil (mul_all). M) The 

fraction of contribution of the weights for multiplicative fits with eye/head position, speed 

(spd) and pupil (pup). N) Same as M but summing together the contribution for eye/head 

position.
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KEY RESOURCE TABLE

Reagent or Resource Source Identifier

Deposited data:

Processed model data This paper https://doi.org/10.5061/dryad.sf7m0cg92

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratories and 
bred in-house

Strain code: 027

Software and Algorithms

Python 3.8 https://www.python.org/ RRID: SCR_008394

Open Ephys plugin-GUI http://www.open-
ephys.org/

https://github.com/open-ephys/plugin-GUI

Bonsai https://open-ephys.org/
bonsai

https://github.com/bonsai-rx/bonsai

DeepLabCut (Mathis et al. 2018) https://github.com/DeepLabCut/DeepLabCut

Kornia (Riba et al. 2019) https://github.com/kornia/kornia

Data extraction and analysis code This paper https://doi.org/10.5281/zenodo.7008353

PyTorch https://pytorch.org/ https://pytorch.org/

Other

Open Ephys acquisition board Open Ephys https://open-ephys.org/acq-board

Open Ephys I/O board Open Ephys https://open-ephys.org/acquisition-system/io-board-pcb

P64-3 or P128-6 silicon probe Diagnostic Biochips https://diagnosticbiochips.com/silicon-acute-chronic/

RHD SPI interface cable, 6ft ultra-thin Intan https://intantech.com/RHD_SPI_cables.html?
tabSelect=RHDSPIcables

3-D printed electrophysiology drive Yuta Senzai (UCSF) / in-
house design

custom

3-D printed camera arm In-house design custom

1000TVL NTSC miniature camera iSecurity101 No longer available

BETAFPV C01 miniature camera BETAFPV https://betafpv.com/products/c01-pro-micro-camera

940nm 3mm IR LED Chanzon https://www.amazon.com/Infrared-Lighting-Electronics-
Components-Emitting/dp/B01BVEKXNC/

Animal head tracking device Rosco Technologies https://www.rosco.tech/products/animal-tracking

Mill-Max connector 
853-93-100-10-001000

Digi-Key https://www.digikey.com/en/products/detail/mill-max-
manufacturing-corp/853-93-100-10-001000/279662

FEP hookup wire 36 AWG CZ1174 Cooner https://www.coonerwire.com/micro-bare-copper-wire/

USB3HDCAP USB3 video capture 
device

Startech https://www.startech.com/en-us/audio-video-products/usb3hdcap

Dazzle DVD recorder HD Pinnacle https://www.pinnaclesys.com/en/products/dazzle/dvd-recorder-hd/

Black Fly S USB3 (BFS-U3-16S2M-CS) Teledyne FLIR https://www.flir.com/products/blackfly-s-usb3/?model=BFS-
U3-16S2M-CS&vertical=machine+vision&segment=iis

GW2780 OLED monitor BenQ https://www.benq.com/en-us/monitor/stylish/gw2780.html

GW2480 OLED monitor BenQ https://www.benq.com/en-us/monitor/stylish/gw2480.html

Mouse bungee (Version 1) Razer https://www.razer.com/gaming-mice-accessories/Razer-Mouse-
Bungee-V2/RC21-01210100-R3M1

Unifast LC GC America https://www.gcamerica.com/products/operatory/UNIFAST_LC/
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Reagent or Resource Source Identifier

DOWSIL 3-4680 silicone gel kit Dow https://www.dow.com/en-us/pdp.dowsil-3-4680-silicone-gel-
kit.04027625z.html#overview
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