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Abstract

Purpose of Review In this study, we planned and carried

out a scoping review of the literature to learn how machine

learning (ML) has been investigated in cardiovascular

imaging (CVI).

Recent Findings During our search, we found numerous

studies that developed or utilized existing ML models for

segmentation, classification, object detection, generation,

and regression applications involving cardiovascular

imaging data. We first quantitatively investigated the dif-

ferent aspects of study characteristics, data handling, model

development, and performance evaluation in all studies

that were included in our review. We then supplemented

these findings with a qualitative synthesis to highlight the

common themes in the studied literature and provided

recommendations to pave the way for upcoming research.

Summary ML is a subfield of artificial intelligence (AI)

that enables computers to learn human-like decision-mak-

ing from data. Due to its novel applications, ML is gaining

more and more attention from researchers in the healthcare

industry. Cardiovascular imaging is an active area of

research in medical imaging with lots of room for incor-

porating new technologies, like ML.
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Abbreviations

CVI Cardiovascular imaging

AI Artificial intelligence

ML Machine learning

DL Deep learning

CXR Chest X-ray

SPECT Single-photon Emission Computed

Tomography

CT Computed Tomography

ECG Electrocardiograms

MRI Magnetic Resonance Imaging

2D Two-dimensional

3D Three-dimensional

COVID-19 Coronavirus Disease of 2019

CLAIM Checklist for Artificial Intelligence in

Medical Imaging

PRISMA Preferred Reporting Items for Systematic

Reviews and Meta-Analyses

Introduction

The use of artificial intelligence (AI) in healthcare has

exploded in recent years. Since 1995, the output of AI

publications on healthcare has increased by an average of

17.02% per year, and the growth rate of research papers in

this field has significantly accelerated to 45.15% from 2014

to 2019 [1].
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AI is a general term for any technique that enables

computers to mimic human-like behavior [2]. Machine

learning (ML) is a subset of AI that can learn human-like

decision-making from data. Deep learning (DL) is a subset

of ML that incorporates artificial neural network algo-

rithms. Conventional ML, on the other hand, refers to the

subfield of ML that does not involve neural networks

(Fig. 1). Tree-based models, support vector machines, and

K-nearest neighbors are famous examples of conventional

ML algorithms.

Most ML algorithms can be thought of as parametric

models that produce one or more quantities as their outputs

while using data as their input variables [3]. During an

iterative process known as model training, ML algorithms

gradually encounter a carefully compiled set of data and

discover the most optimal parameter values that can

explain that dataset. ML algorithms can be distinguished

from each other based on their mathematical expressions

(a.k.a. architectures), input variables, and parameters. One

can theoretically train many valid ML algorithms for the

same task and on the same data, and this is what makes ML

both an esthetic and scientific area. Aligned with the con-

ventional routines, we hereafter use the word ‘‘model’’ to

denote ML and DL algorithms in this report.

The major distinction between DL and conventional ML

is their respective computational complexity [4]. In con-

trast to conventional ML models, which have a limited

potential for data-driven learning, DL models are more

complicated and can have millions of parameters. This

increased capacity lets DL models learn more as they are

exposed to additional data. However, the intricacies of DL

models necessitate training them with larger datasets and

more sophisticated hardware technology, such as graphics

processing units.

The learning process of ML models is described as

supervised when their training data are labeled. This

strategy could be exemplified by a DL model that has been

trained on chest X-ray (CXR) data from both normal and

pneumonia patients and has similarly learned to label any

CXR it encounters for the first time as normal or

pneumonia indicating. While supervised learning is the

most common strategy for training ML models, other

strategies like unsupervised, semi-supervised, and self-su-

pervised learning also exist and have diverse applications.

Using only unlabeled training data, for instance, an unsu-

pervised ML model can learn to cluster CXRs into arbitrary

but still meaningful classes [5].

Another perspective for classifying ML models is based

on their applications. Computer vision is a subset of ML

that deals with imaging data. As illustrated in Fig. 2,

computer vision models may be used for various tasks, the

most common of which are as follows [6]:

• Classification an input image is labeled with one or

more categorical labels, e.g., to distinguish input CXRs

based on whether they are presented with cardiomegaly

or normal hearts.

• Regression an input image is labeled with one or more

quantitative labels, e.g., to predict the age of a patient

by looking at input CXRs.

• Semantic segmentation the entire surface areas or

volumes of some objects of interest are delineated in

an input image, e.g., to segment the entire heart area in

input CXRs.

• Object detection the locations of some objects of

interest are approximated in an input image using key

points or bounding boxes, e.g., to localize the heart in

input CXRs.

• Generation synthetic but realistic-looking imaging data

is generated, e.g., to inpaint covered parts of input

CXRs as if those parts came from real radiographs.

Cardiovascular imaging (CVI) is a rapidly expanding

subspecialty of medical imaging that has made substantial

contributions to translational research, risk assessment,

diagnosis, prognosis, and therapeutic planning studies in

structural and functional cardiovascular diseases [7]. In

recent years, advanced medical imaging technologies have

paved the way for improved phenotyping of cardiovascular

pathologies. Given this context and the daily expansion of

Fig. 1 An arbitrary framework

to describe artificial

intelligence, machine learning,

deep learning, and conventional

machine learning
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AI applications in healthcare, one can anticipate an

increase in the incorporation of AI into CVI [8]. To com-

prehend the scope of AI applications in CVI, we conducted

a scoping review of the available peer-reviewed literature.

Our report attempts to provide an overview of ML research

in CVI and to set the stage for future research in this field.

Methods

In accordance with the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)

extension for scoping reviews [9], we designed a scoping

review to answer two overarching research questions: (1)

How are ML models used to analyze CVI? And (2) what is

the quality of the research used to develop and report these

models?

To answer the aforementioned questions, we combed

through peer-reviewed original studies indexed in MED-

LINE from January 1, 2012 to May 31, 2022, which

examined the application of ML in CVI. Studies on non-

human subjects, non-radiological data (e.g., histology

data), fetal cardiovascular topics, non-peer-reviewed arti-

cles, non-English articles, review articles, and book chap-

ters were excluded. The search was conducted using the

PubMed search engine and a search term comprised MeSH

terms and keywords related to cardiovascular organs,

radiology imaging, and ML (Supplements 1).

Following an initial check for duplicate removal, six

reviewers (PR, BK, SF, MM, SV, and EM) independently

reviewed the titles and abstracts of the captured search

results based on the inclusion and exclusion criteria stated

previously. To make this process more reliable, 50 random

studies were initially selected, and their data elements were

charted by the authors and discussed in a focus group

discussion to level their understanding of the required

fields.

The full text of all eligible articles was then retrieved

and revisited by reviewers for final evaluation and data

extraction. Due to the lack of appropriate bias assessment

tools for ML studies and the desire to maximize the

inclusion of relevant articles, no assessment of the risk of

bias was performed at this stage. A database of included

studies was created, and several aspects of the study

Fig. 2 An illustration of different machine learning tasks on an

arbitrary chest X-ray (CXR) example. A An example classifier model

can learn to distinguish CXRs presenting with pneumonia from

normal-appearing CXRs; B a regressor model can learn to predict a

patient’s age by looking at their CXR; C an example segmentation

model can learn to segment the heart on an input CXR; D an example

object detector model can learn to localize the heart on an input CXR

using a bounding box; E an example generator (inpainting) model can

learn to inpaint a covered area of a CXR as if it came from a real

radiograph
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characteristics, data handling, model development, and

performance evaluation of each article were extracted

based on reviewer consensus. The detailed data elements

which were charted in each of these categories are intro-

duced in Table 1.

Due to the heterogeneous scopes, applications, and

methodologies of the included articles, no meta-analysis

was conducted. Instead, the review results were reported

using descriptive statistics. We also offered a narrative

synthesis of the statistical findings to help non-technical

readers better interpret our analyses.

Results

A systematic search of the scientific literature yielded 845

distinct papers (no duplicates), of which 215 were excluded

after assessing their titles and abstracts. The full text of 41

studies was unavailable with our institutional access,

yielding 589 eligible studies for final data extraction

(Table 2). A database of all eligible articles and their

extracted items is provided in Supplement 2.

Study Characteristics

Figure 3 depicts the distribution of publication years for

the collected articles. The number of published articles

exhibits a consistent annual increase, with almost 69% of

all articles published since 2020. The USA and China

contributed the most publications among all countries. The

geographic distribution of all published manuscripts is

depicted in Fig. 4. The frequency of study designs, clinical

applications, studied organs, and studied diseases is

depicted in Table 3.

While the majority of included studies (510 [86.5%])

were observational, trials were the least common study

design (4 [0.7%]). Only 24 (4.1%) of the articles focused

on treatment-related applications, while 223 (37.9%)

developed ML models for diagnostic purposes. The uses of

ML models with no direct clinical application (e.g., for

segmenting organs to construct an atlas or for generating

synthetic imaging data) were categorized as informatic in

270 (45.8%) of the papers. The heart and atherosclerosis

were the most researched organs and pathologies,

respectively.

Data Handling

Table 4 illustrates the distribution of included publications

based on the researched imaging modality. In the majority

of articles (244 [41.5%]), Magnetic Resonance Imaging

(MRI) was the most studied modality, while Single-photon

Emission Computed Tomography (SPECT) received the

least amount of attention (8 [1.4%]). Only 79 (13.4%) of

the included studies presented a multimodal ML method.

Table 4 illustrates the distribution of dataset sizes for all

articles. Most assessed publications developed their models

using 100–1000 examinations.

Table 1 Detailed data elements extracted from the eligible studies during the data charting phase

Category Data elements

Study characteristics Publication year

Country of the corresponding author

Study design

Clinical application

Studied organs

Studied pathologies

Data handling Studied imaging modalities

The use of multi-modality models

Dataset size

Model development Machine learning tasks

The use of deep learning, conventional machine learning, or both

The source of transfer learning (if any)

The use of a standardized checklist for model development

Performance evaluation The use of cross-validation

The use of external validation

The provision of interpretation maps for deep learning models

The provision of uncertainty measures for deep learning models
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Model Development

A total of 60 (10.2%) articles did not develop an ML

model. Of the remaining articles, the majority (393

[67.1%]) developed a DL model, whereas 102 (17.4%)

only developed conventional ML techniques and 31 (5.3%)

employed a combination of both approaches. Segmentation

tasks were the most common across all studies (224

[42.6%]), followed by classification (115 [21.9%]), a

combination of tasks (80 [15.2%]), generation (58

[11.0%]), regression (35 [6.6%]), and object detection (14

[2.7%]). Only 3 (0.5%) of the included studies reported

adherence to a standard checklist or protocol when building

and (or) evaluating their ML models. Sixty-three (11.9%)

articles reported using transfer learning to train their ML

models, 36 (57.1%) of which used models pretrained on

clinical data.

Performance Evaluation

A total of 196 (32.7%) of the articles tested their ML

models in a cross-validation scenario, and external vali-

dation of ML models was reported by 63 (10.6%) of all

publications. Only 17 (17.7%) of the studies that utilized

classification and regression DL models (96 articles)

offered interpretation maps of their performance, and only

29 (4.9%) reported uncertainty measures for their

algorithms.

Synthesis

Study Characteristics

CVI is a medical imaging domain with enormous potential

for ML application. The yearly growth in the number of

publications reviewed demonstrates an increasing interest

in conducting such interdisciplinary research. Although the

bulk of articles was published by scientific institutes in

developed nations, the constraints of conducting ML

research in underprivileged locations are quickly dimin-

ishing. On the one hand, ML requires less advanced on-site

technology than it once did, and many ML operations can

Table 2 Number of excluded articles in the current report based on

their reason for exclusion

Reasons for exclusion Number (%) of excluded studies

Not radiology study 113 (44.1%)

No full-text available 41 (16.0%)

Not cardiovascular study 34 (13.3%)

No human subject 34 (13.3%)

Not machine learning study 25 (9.8%)

Not original study 9 (3.5%)

Out of 845 identified studies, 256 were excluded, yielding a final pool

of 589 eligible articles for data extraction

Fig. 3 The distribution of publication year across all eligible studies included in our review. The number of published articles exhibits a

consistent annual increase, with almost 69% of all articles published since 2020
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be conveniently executed via cloud services [10]. On the

other hand, more public medical datasets are made avail-

able every day, which can enable ML research in locations

that lack access to extensive institutional data [11].

Most ML studies with direct clinical applications had an

observational setup with a diagnostic focus. This was not

unexpected given that observational studies are the most

viable study design, and classification is the most prevalent

application of ML. However, we should stress the avenues

of research that can leverage other study types or focus on

outcomes other than diagnosis. For example, Commandeur

et al. designed a prospective ML study to predict the long-

term risk of myocardial infarction and cardiac death based

on clinical risk, coronary calcium, and epicardial adipose

tissue [12]. Their study is a good example of applying ML

for primary prevention and also in a prospective setting. As

another example, Lee et al. applied conventional ML to

non-invasive measurements from Computed Tomography

(CT) images and electrocardiograms (ECGs) to predict

patients’ responses to cardiac resynchronization therapy.

Their work exemplifies how ML models could help with

different therapeutic planning scenarios [13].

Lastly, we observed a significant amount of research in

areas like segmenting heart chambers, quantifying epicar-

dial fat, and coronary artery calcium scoring by applying

ML to various imaging modalities. Despite the undeniable

significance of such topics, we strongly encourage ML

researchers to investigate other study fields as well. In light

of this proposal, we can provide an example of an

innovative study by Pyrros et al., which applied ML to

CXRs to analyze racial/ethnic and socioeconomic differ-

ences in the prevalence of atherosclerotic vascular disease

[14]. Even among diagnostic studies, innovation and high-

impact research are not rare. Recent research by Liebig

et al. demonstrates that collaboration between ML models

and radiologists improves the performance of mammog-

raphy-based breast cancer screening compared to relying

solely on radiologists’ decisions [15]. They endorsed a

novel retrospective interventional design for their investi-

gation, which could be replicated in CVI studies.

Data Handling

Most of the examined papers focused on MRIs and

echocardiograms. AI can provide many solutions for image

acquisition, reconstruction, and analysis of cardiac MRI

studies [16]. Echocardiography, on the other hand, has

various limitations (such as a longer process duration, high

operator subjectivity, and vast observation ranges) that

could be ameliorated by artificial intelligence [17]. Apart

from these two modalities, chest CT scans are commonly

ordered for a variety of thoracic diseases, including lung

diseases. Automated ML models that can evaluate the heart

and circulation on chest CT scans are therefore excellent

candidates for opportunistic cardiovascular disease

screening. Examples of such applications could be a study

by Commandeur et al., which leveraged DL to quantify

epicardial fat on non-contrast chest CT scans of

Fig. 4 The geographic distribution of the corresponding countries for all studies included in the final review pool. The intensity of color for each

country correlates with the number of publications from that country
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asymptomatic individuals [18], and another study by

Aquino et al., which measured the size of the left atrium on

chest CT scans for prediction of cardiovascular outcomes

[19].

We found a few publications that built and assessed

multimodal ML models. Multi-modal (or fusion) models

are a group of models that comprise data from multiple

imaging modalities or any non-imaging data (e.g., clinical

variables or textual data) in addition to imaging data [20].

ML models and, in particular, DL models can simultane-

ously analyze numerous kinds of data, much like human

medical experts who frequently rely on multiple pieces of

data from a single patient to reach a diagnostic or thera-

peutic conclusion. Input data to ML models may be distinct

imaging modalities; for instance, Puyol-Anton et al. cre-

ated a DL model to predict patients’ responses to cardiac

resynchronization therapy using 2D echocardiography and

cardiac MRI [21]. A blend of imaging and non-imaging

data can also be used to train multimodal ML models. For

instance, Huang et al. developed a DL model capable of

detecting pulmonary embolisms in CT Pulmonary

Angiography examinations while also leveraging infor-

mation from the patient’s electronic health records [22].

They demonstrated that the performance of their multi-

modal model was superior to that of an identical model

trained just on CT imaging.

The number of examinations utilized by the eligible

articles for training or evaluating their ML models varied

considerably. Aside from the differences in the actual size

of the data researchers had access to, this variability could

be attributed to two other factors: (1) the reviewed articles

did not share their dataset size in a consistent manner.

Table 3 The frequency of study designs, clinical applications, studied organs, and studied diseases across all eligible articles

Category Data elements Number (%) of included studies

Study design Observational 510 (86.5%)

Retrospective 50 (8.5%)

cohort 18 (3.0%)

Prospective cohort 7 (1.2%)

Case–control Trial 4 (0.7%)

Clinical application Informatics 270 (45.8%)

Diagnosis 223 (37.9%)

Prognosis 26 (4.4%)

Primary prevention 25 (4.2%)

Treatment 24 (4.1%)

Education 1 (0.2%)

Combined 16 (2.7%)

Others 4 (0.7%)

Studied organ Heart 413 (70.1%)

Coronary vasculature 120 (20.4%)

Aorta 24 (4.1%)

Pulmonary vasculature 9 (1.5%)

Pericardial fat 6 (1.0%)

Conduction system 1 (0.2%)

Combined 16 (2.7%)

Studied pathology No Pathology 192 (33.2%)

Atherosclerosis 109 (18.9%)

Valvular disorders 34 (5.9%)

Heart failure 28 (4.8%)

Ischemic heart disease 22 (3.8%)

Arrhythmia 17 (2.9%)

Cardiomyopathy 16 (2.9%)

Cancer or mass 12 (2.0%)

Multiple pathologies 103 (17.8%)

Other pathologies 45 (7.8%)
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While some articles simply reported the number of exam-

inations used, many others only reported the number of

patients included in their study (without clarifying how

many exams had been obtained from each patient). Fur-

thermore, a few instances described the size of their data-

sets using inaccurate terms, such as subjects or scans. Such

terms may refer to both the number of patients and the

number of images, which might confuse the reader. (2)

Terms like scan, image, and imaging are not used consis-

tently in the medical imaging literature. In addition to

referring to a single two-dimensional (2D) image, these

words can also imply a three-dimensional (3D) volume. As

a best practice, we encourage ML researchers to always

supply separate patient and examination numbers for their

research. The terminology used to describe 2D and 3D

imaging data in research should also be clarified. These tips

can considerably improve the reproducibility of ML

research and lessen its susceptibility to bias [23•].

Finally, we would like to emphasize the significance of

considering publicly accessible medical datasets when

undertaking ML research in medical imaging. Multiple free

public datasets are available to ML researchers for various

medical imaging modalities [11]. Therefore, researchers

who lack sufficient internal data to train their models may

find comparable data from other institutions. Using data

from such an external source will not only increase the

training size of ML models but also make them more

generalizable. The EchoNet-Dynamic dataset of more than

10,000 echocardiograms [24], the Lung Image Database

Consortium image collection (LIDC-IDRI) dataset of more

than 1000 chest CT scans [25], the ImageTBAD dataset of

more than 100 CT angiographies with type-B aortic dis-

section [26], and the Cardiac Atlas Project (CAP) dataset of

more than 80 cardiac MRIs [27] are among the public

datasets that were introduced in different articles we

reviewed. However, this is not an exhaustive list of avail-

able datasets, and we encourage researchers to seek

appropriate public datasets before conducting any study.

ML competition websites such as Kaggle are also an

excellent place to hunt for public data, although using such

datasets in ML research should be undertaken with extreme

caution [23•].

Model Development

As previously noted, DL models are much more compli-

cated than conventional ML models and have a higher

learning capacity. This explains why DL models have been

more popular than conventional ML methods in the

reviewed articles. However, DL is not always the go to

option in ML research and selecting the appropriate ML

model is more task specific. Although DL models are

widely regarded as state-of-the-art computer solutions for

automated decision-making in many different fields, there

are some circumstances where conventional ML models or

a combination of DL and conventional ML methods offer

Table 4 The distribution of imaging modalities and dataset size (number of reported examinations) across all eligible studies

Category Data elements Number of included studies

Imaging modality MRI 244 (41.4%)

Echocardiography/Ultrasound 102 (17.3%)

CT-angiography 77 (13.1%)

Chest CT 41 (6.7%)

Cardiac CT 36 (6.2%)

Coronary angiography 15 (2.6%)

Chest x-ray 11 (1.9%)

OCT 9 (1.6%)

SPECT 8 (1.4%)

Combined 41 (7.0%)

Others 5 (0.8%)

Dataset size \ 100 138 (23.4%)

100–1000 219 (37.2%)

1000–10,000 122 (20.7%)

10,000–100,000 45 (7.6%)

100,000–1,000,000 9 (1.6%)

[ 1,000,000 2 (0.3%)

Not Reported 54 (9.2%)
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higher performance or are more affordable than DL

methods [4, 28]. In a study by Gao et al., for instance, tree-

based traditional ML techniques such as gradient boosting

machines outperformed neural networks for vessel seg-

mentation on X-ray coronary angiography [29]. It is also

commonly believed that, when applied to tabular data, the

same tree-based models are frequently superior to or on par

with DL approaches [30].

Segmentation and classification were the most resear-

ched ML applications across all studies. Nonetheless, ML

has additional intriguing uses in CVI. Among the least

investigated ML tasks were object detection methods.

Similar to segmentation models, these models pinpoint

items of interest in input images while requiring less

annotation effort (one draws rectangles around target

objects rather than paints over all their pixels). For

instance, Nizar et al. introduced an object detection tech-

nique for real-time aortic valve detection on echocardiog-

raphy [31]. Another interesting area of research in medical

imaging is image generation. Although current research

efforts have utilized generative DL for objectives, such as

removing artifacts from imaging data [32], raising the

resolution of imaging [33], producing synthetic imaging

datasets [34, 35], and improving segmentation outcomes

[36], and the capabilities of generative models are far

broader. It has been demonstrated that generative models

can convert two biplanar CXRs to a natural-looking chest

CT scan and even incorporate synthetic tumoral lesions

into normal imaging data [37, 38].

Transfer learning is the technical term for when a DL

model is first trained (pretrained) on a different dataset and

its parameters are then fine-tuned on the dataset of interest

[39]. This technique enables DL models to be trained more

quickly (assuming the time to train the pretrained model is

not included), with less training data, and with greater

generalizability to unseen data [40]. The quality and sim-

ilarity of the initial dataset that the model was pretrained on

are a significant factor in determining the efficiency of

transfer learning. Transfer learning is more beneficial for

DL models when the original dataset is large and has

imaging features similar to those of the dataset of interest.

Surprisingly, several of the examined articles did not

disclose whether or not they used transfer learning. A few

of those who reported employing transfer learning had

pretrained their models using non-medical imaging data-

sets, such as ImageNet. Medical images, however, are

fundamentally different from natural photographs, and

pretraining DL models on natural photographs may not be

the best transfer learning choice for medical images. Pre-

training DL models using public medical image datasets is

a more effective technique. Ankenbrand et al. illustrate this

strategy by transferring weights from a DL model

pretrained on a public medical image dataset to train their

DL model for segmenting the heart on cardiac MRI data

[41].

Almost none of the examined research acknowledged

developing their ML models using a systematic checklist

like the Checklist for Artificial Intelligence in Medical

Imaging (CLAIM) [42•]. While many aspects of ML

studies, including but not limited to model development,

are susceptible to systematic biases [23•, 43•, 44•], docu-

menting study adherence to a set of predefined standards

helps reassure both researchers and their audience about

the validity and reliability of a model’s performance. In

addition, publicly sharing the code, datasets, and weights of

the trained ML models can further improve the repeata-

bility of the researchers’ work, but we recognize that such

public disclosures may not always be possible due to

institutional policies that hold sway.

Performance Evaluation

It is typical in ML to sequester a random subset of data as

the test set and train the ML models on the remaining data

with or without validation sets). This allows the trained

model to be evaluated against an untouched test set. When

datasets are small or very imbalanced, this typical method

of data partitioning is not the most effective. Instead, cross-

validation approaches can provide a more accurate evalu-

ation of a model’s performance under such conditions

[23•]. Even though many medical datasets are either small

or highly imbalanced, few of the examined articles utilized

cross-validation strategies. This is a crucial shortcoming

that diminishes confidence in their reported performance.

We should note, though, that we also identified a few

studies that employed more sophisticated and reliable kinds

of cross-validation, such as nested cross-validation

[45, 46].

Similar to cross-validation, few studies documented

external validation of their ML models. External validation

is a valuable performance measure as it helps to demon-

strate a model’s generalizability to unseen data [47]. For

example, assume that a DL model performs well on

internal test data, but its performance declines significantly

when applied to data from other institutions. A likely

explanation for this observation could be the discrepancy in

medical imaging devices and vendors across different

institutions. A well-trained ML model should have minimal

(or acceptable) sensitivity to the vendor-specific charac-

teristics of the input imaging data and be able to extract

relevant signals from that data regardless of its acquisition

properties.

Even if the internal and external performance of a DL

model is exceptional, there is no assurance that these

models have learned to pick relevant and meaningful
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imaging signals. For instance, the apparent superior per-

formance of a DL model in identifying pneumonia may be

attributable to its attention to radiology markers present in

CXR imaging [48]. Even though DL models are commonly

referred to as black boxes, there are ways to visualize the

regions of the imaging data to which they contribute the

most when making predictions. This is called DL inter-

pretation (or explanation) mapping [49]. Despite its utter-

most importance, the majority of research employing DL

classifier or regressor models did not report interpretation

mapping for their models. Although interpretation maps

have limitations [50], they can often shed more light on

what a DL model has learned and whether or not it appears

valid to human experts.

Finally, DL models could have uncertain performance

due to their inherent properties or when they encounter data

points that were not adequately represented in their training

data [51•]. For example, a classifier designed to distinguish

between non-COVID-19 and COVID-19 viral pneumonia

on the CXR may be unreliable when used on a CXR pre-

senting with bacterial pneumonia. Even though neither

label could be accurate, this classifier will still predict a

label for this CXR and without adequate uncertainty

quantification, a naive user may accept that prediction.

Although several techniques exist for uncertainty quan-

tification of DL models, they have not been thoroughly

studied for medical purposes and therefore, it is not sur-

prising that only a small number of studies in our pool have

employed such techniques (52). The need to quantify the

uncertainty of DL models, however, will likely become

more and more important to healthcare researchers.

Discussion

CVI is a rapidly growing area of medical imaging with

ample opportunities for ML study. In this report, we pre-

sented the findings of a recent scoping review describing

the applications of ML in CVI.

Our findings must be evaluated in light of two signifi-

cant limitations. First, due to feasibility concerns, we

limited our search to the MEDLINE database and English

peer-reviewed manuscripts. Searching other databases,

adding non-English and gray literature, and applying

broader search terms would increase the number of articles

eligible for inclusion. Despite this limitation, we believe

that our combined pool of articles were sufficient to

describe the broad trends in ML research for CVI. Second,

we did not conduct a bias assessment of the individual

articles included in our review. We considered this limi-

tation acceptable because our objective was not to perform

any meta-analyses on the results of the review but rather to

assemble a more thorough list of factors that might make

included studies more susceptible to bias.

In conclusion, we used quantitative statistics and qual-

itative synthesis to summarize four major aspects of ML

research in CVI (study characteristics, data handling,

model development, and performance evaluation) and

attempted to sketch the big picture of current research gaps

and future directions for similar studies.
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