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A B S T R A C T   

The pathophysiology underlying the loss of dopaminergic neurons in Parkinson’s disease (PD) is unclear. A gap 
of knowledge in the molecular and cellular events leading to degeneration of the nigrostriatal DA system is a 
major barrier to the development of effective therapies for PD. 1-methyl-4-phenylpyridinium (MPP+) is used as a 
reliable in vitro model of PD in dopaminergic neurons; however, the molecular mechanisms that lead to cell 
death with this model are not fully understood. Additionally, there is a lack of translational in vitro models to 
fully understand progressive dopaminergic neurotoxicity. Here, we propose cultures of primary human dopa-
minergic neuronal precursor cells (HDNPCs) as a model to study progressive dopaminergic toxicity and neuronal 
damage in PD. We evaluated the concentration-response of MPP+ (0–10 mM) at 24 h, using cell viability and 
mitochondrial activity assays (LDH, XTT, Live/Dead staining, and MitoTracker). Based on concentration- 
response data, we chose two concentrations (1.0 and 2.5 mM) of MPP+ to evaluate markers of autophagy and 
dopaminergic status [tyrosine hydroxylase (TH)] after a 24-h exposure. Exposure to MPP+ induced cytotoxicity, 
reduced cell viability, and decreased mitochondrial activity. MPP+ at 1.0 and 2.5 mM also induced expression of 
lysosome-associated membrane protein 1 (LAMP-1) and increased the ratio of light chain 3 (LC3), LC3BII/LC3BI. 
The expression of TH also decreased. Furthermore, α-synuclein (α-SYN) and parkin were evaluated by immu-
nofluorescence (IF) at 1.0 and 2.5 mM MPP+ after 24 h. A qualitative analysis revealed decreased parkin 
expression while α-SYN aggregation was observed in the cytoplasm and the nucleus. These data suggest that in 
HDNPCs MPP+ can cause cytotoxicity and neuronal damage. This damage may be mediated by autophagy, 
dopamine synthesis, and protein aggregation. The combination of HDNPCs and MPP+ may serve as valuable in 
vitro model of progressive dopaminergic neurotoxicity for research into potential treatments for PD.   

1. Introduction 

Parkinson’s disease (PD) is the second-most common neurodegen-
erative disorder affecting 2–3% of the population older than 65 [37]. PD 
is a progressive central nervous system disease of unknown etiology 
characterized by motor impairments that arise from selective degener-
ation of dopaminergic neurons in the substantia nigra pars compacta 
(SNc) [2]. The mechanisms implicated in PD progression include mito-
chondrial dysfunction, oxidative stress, and protein aggregation [10]. 
However, what initiates these mechanisms is poorly understood. 
1-methyl-4-phenylpyridinium (MPP+) is the toxic metabolite of 1-meth-
yl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and has a high-affinity 

for dopamine transporters (DATs), which allow it to enter dopaminergic 
neurons [27]. Once in the neuron, MPP+ is thought to accumulate in the 
mitochondria, inhibiting complex 1 of the electron transporter chain 
[29], causing oxidative stress and triggering cellular pathways that 
mimic PD pathophysiology [12]. 

Autophagy is one process responsible for the removal of dysfunc-
tional proteins from the brain. Dysregulation of autophagy may result 
from the accumulation of abnormal proteins in the course of PD [26]. 
Autophagy is critical for the regulation of α-synuclein (α-SYN) protein 
levels and is protective against neuronal death [11]. Disrupted, auto-
phagy has been suggested as a mechanism for MPTP/MPP+-induced 
toxicity [18,41] [44]. The aggregation of α-SYN monomers, presumably 
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caused by disrupted autophagy, has been suggested to play a crucial role 
in PD pathology, with α-SYN toxicity depending on the oligomer-
ization/aggregation status [7]. Exposing dopaminergic cells to MPP+

may be an effective model of α-SYN aggregation-related neurotoxicity. 
However, little is known about the underlying mechanism of 
MPTP/MPP+-induced autophagy, but it may be related to 
microtubule-associated protein function. The conversion of light chain 3 
(LC3) BI to LC3BII occurs as part of the normal autophagy process. Ev-
idence for autophagy in PD-related neurodegeneration is supported by 
an in vitro MPP+ model of PD, where an increase in LC3BII was shown to 
be the result of a pro-death mechanism and may be dependent on the 
aggregation of α-SYN in the dopaminergic system [14]. 

Aggregation of α-SYN and recruitment of Parkin may be caused by 
mitochondrial dysfunction [15,39]. α-SYN is an abundant neuronal 
protein that when misfolded, accumulates and is deposited into Lewy 
bodies in PD. α-SYN aggregation may induce early synaptic loss and 
axonal damage, both being prominent signs of nigrostriatal degenera-
tion in PD [10,35,36]. Lewy bodies can contain aggregated Parkin, 
ubiquitin, and other proteins [1,8]. Parkin is an E3 ubiquitin-protein 
ligase, which facilitates proteasomal degradation of misfolded pro-
teins, like α-SYN in Lewy bodies [17]. The observation of parkin-α-SYN 
complexes in PD brains suggests these proteins interact and are 
co-localized in pathological structures [5]. Parkin has been implicated in 
the regulation of proteasomal degradation pathways as well as 
mitophagy [8,9]. The colocalization of these proteins further supports 
disrupted autophagy as a pathological mechanism in PD. 

MPP+-induced cytotoxicity has been tested in different primary 
neuronal cells such as N2a mouse neuroblastoma and embryonic mouse 
and rat mesencephalic cells. In these assays, low micro-molar concen-
trations of MPP+ substantially reduce cell viability as measured by MTT 
and LDH [25,30,43]. However, the steep concentration-response to 
MPP+ in these models limit their utility in modelling progressive dopa-
minergic damage. An in vitro model better suited to study underlying 
mechanisms of progressive dopaminergic damage that also allows drug 
target identification using a broad range of concentrations may improve 
the drug discovery process. 

Primary human dopaminergic neuronal precursor cells (HDNPCs; 
ABMGood T4034), in conjunction with MPP+ may serve as an appro-
priate in vitro model to study progressive damage to the dopaminergic 
system. In Parkinson’s disease (PD), two hallmarks are necessary to 
mimic the pathology, the degeneration of DA neurons and protein ag-
gregates consisting mainly of α-SYN. Currently, models of PD only 
partially reproduce the pathophysiology of the disease, mainly because 
the etiology of sporadic PD is still unknown. 

The use of primary human neuronal-based models to study patho-
physiology of PD disease is limited, because the technical and ethical 
challenges. However, using primary cell-based models from human 
origin brings translational basis to disease modeling and will facilitate 
optimal high-throughput pre-clinical validation of therapeutics. We 
used a commercially available primary human dopaminergic neuronal 
precursor (HDNP) cell to evaluate dopaminergic toxicity and we ecpect 
that this model reproduces the two main hallmarks of PD [32]. Gener-
ation of a human cellular model would improve understanding of the 
development and/or progression of dopaminergic neurotoxic damage, 
disrupted autophagy and α-SYN accumulation. This could allow for high 
throughput approaches for screening biomarkers and therapeutic agents 
for PD. The well-known mitochondrial pathways of dopaminergic neu-
rodegeneration have been heavily investigated in various in vitro and in 
vivo models of PD. However, the extensive role of protein aggregation 
and autophagy is poorly studied. Here, we evaluated 
concentration-response effects of MPP+ on α-SYN aggregation and 
autophagy in HDNPCs. This approach may provide a better model to 
understand the role of protein aggregation and autophagy in PD, 
improving the search for novel therapeutics. 

2. Methodology 

2.1. Primary cell culture 

HDNPCs were purchased from ABMGood (T4034, Richmond, BC, 
Canada). As per vendor, cells are human-derived precursor cells [P2 
fetal tissue (14–16weeks gestation)] obtained from the brain, and the 
isolation method used included a tyrosine free medium supplemented 
with a mixture of growth factors. These cells were cultured in plates 
coated with poly-L-lysine (PLL) at a density of 1 × 104 cells/cm2 using 
proprietary PriGrow IV culture medium (TM004) supplemented with 
5% fetal bovine serum (TM999). At confluence, 10 ng/mL basic fibro-
blast growth factor (R&D Systems 4114TC), 10 ng/mL epidermal growth 
factor (R&D Systems 236-EG-01 M) and 100 µM dibutyryl-cyclic aden-
osine monophosphate (Sigma D0627) were added to PriGrow IV. Cells 
were maintained in this media for 7 days to achieve full differentiation 
to neurons prior to assay performance. 

2.2. Parkinson’s disease in vitro model and treatments 

MPP+ (Santa Cruz, sc-206178, Dallas, TX) was dissolved in differ-
entiation media and then filtered (0.2 μ). Upon differentiation, HDNPCs 
were treated with MPP+ (0, 0.1, 0.5, 1, 5, and 10 mM), for 24 h and 
evaluated by lactate dehydrogenase (LDH), 2,3-bis[2-methoxy-4-nitro- 
5-sulfophenyl]− 2 H-tetrazolium-5-carboxanilide (XTT), MitoTracker, 
and live/dead assays with n = 6 per experiment. Each assay was repli-
cated in triplicate. 

Based on cytotoxicity data, two concentrations of MPP+ were 
selected to test for autophagy markers [lysosome-associated membrane 
protein 1 (LAMP-1) and (LC3BII) and dopaminergic status [tyrosine 
hydroxylase (TH)] by western blot (WB) after a 24-h exposure. The 
localization of parkin and α-SYN by immunofluorescence (IF) was also 
evaluated. 

2.3. Cell viability assays 

2.3.1. LDH assay 
LDH was measured using a commercially available kit (Roche, Basel, 

Switzerland) 24 h after MPP+ exposure. It is a well-established method 
to evaluate cell viability that measures the release of intracellular 
enzyme LDH [3,20]. LDH was quantified by measuring the absorbance 
at 490 nm with a reference wavelength of 650 nm (Synergy MX, BioTek, 
Winooski, VT). 

2.3.2. XTT assay 
The metabolic activity of HDNPCs, a functional representation of 

reduced cell viability, was determined using previously described 
methods [21]. Briefly, cells were treated with MPP+ for 24 h. Mito-
chondrial dehydrogenase-induced cleavage of XTT was then measured 
[31]. Fresh XTT reagent (30 µL at 0.2 mg/mL) in the presence of 25 µM 
phenazine methosulfate (PMS) was added and incubated for 2 h at 37 ◦C. 
Absorbance was measured at 450 nm with a reference wavelength of 
650 nm (Synergy MX, BioTek, Winooski, VT). 

2.3.3. Live/dead assay 
The viability of cells was analyzed using a commercially available kit 

(Thermo Fisher, Waltham, MA). Briefly, after a 24-h exposure to MPP+, 
the medium was removed from the cultures and the cells were washed 
with Dulbecco’s phosphate-buffered saline (DPBS). A solution of 2 μM 
calcein and 4 μM ethidiumhomodimer-1 in DPBS was added for 30 min 
at room temperature. Micrographs were taken at 4X and live or dead 
cells were detected using a fluorescein isothiocyanate (FITC) or tetra-
methylrhodamine (TRITC) filters, respectively. Images were analyzed 
using ImageJ (National Institutes of Health) and the data are reported as 
percentage of live cells. 
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2.4. Mitochondrial function assay 

To assess changes in mitochondrial function, MitoTracker® Orange 
CMTMRos (Invitrogen, Waltham, MA) staining was used. After a 24-h 
exposure to MPP+, media was removed, and cells were labeled with 5 
μg/mL Hoechst 33342 and 100 nM MitoTracker® Orange CMTMRos for 
30 min at 32 ◦C. Cells were then fixed in 2% paraformaldehyde. Images 

were then acquired at 20X for qualitative analysis. The dye is well- 
retained after aldehyde fixation, allowing it to be tracked under mi-
croscopy for qualitative analysis. 

2.5. Western Blot analysis 

Protein expression of TH was evaluated. After 24 h of MPP+

Fig. 1. MPPþ induced cytotoxicity in HDNPCs. Differentiated HDNPCs were exposed to MPP+ [0–10 mM] for 24 h. After treatment LDH release (A), metabolic 
activity (B), mitochondrial function (C) and the number of live/dead cells (D) were analyzed. Each value represents the mean ± SEM of three independent ex-
periments. * p < 0.05 and **** p < 0.0001 vs. control. In the micrographs of differentiated HDNPCs exposed to MPP+, mitochondria were stained in red for 
MitoTracker panel. FITC-green represents live cells and TRITC-red represents dead cells in Live/Dead panel. Blue stain represents nuclei in both panels.(For 
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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exposure, HDNPCs were lysed with RIPA buffer (Cell Signaling, Danvers, 
MA) containing protease inhibitors, phosphatase inhibitors (Sigma- 
Aldrich Inc., St. Louis, MO), and phenylmethylsulfonyl fluoride (Cell 
Signaling, Danvers, MA). Protein concentration was determined using 
the bicinchoninic acid (BCA) method (Thermo Fisher Scientific, Wal-
tham, MA). For each sample, 15 µg protein was loaded in 4–20% Tris- 
HCl gradient gels (Bio-Rad, Hercules, CA) and electrophoresis per-
formed at 200 V for 60 min at 4 ◦C. After electrophoresis, proteins were 
transferred to polyvinylidene fluoride (PVDF) membranes at 100 V for 
60 min at 4 ◦C. Membranes were blocked with PBS blocking buffer 
(LiCor, Lincoln, NE) for 1 h and then incubated 48 h at 4 ◦C with LAMP-1 
(, Phosphosolutions, Aurora, CO, 1:1000), LC3BII (Cell Signaling, 
1:500), TH (Millipore, Burlington, MA, 1:1000), and β-actin (Sigma- 
Aldrich Inc., 1:5000). Membranes were then washed and incubated with 
IRDye 800CW or 680 RD secondary antibodies (LiCor, 1:20,000) for 1 h 
at room temperature and protected from light. Band intensities were 
determined with the Odyssey CLx Infrared system (LiCor) and quantified 
with Image Studio version 5.0 (LiCor). Data were normalized to β-actin 
and the integrated density of each marker was expressed as ratio of 
LAMP-1/ βA, LC3B/ βA, TH/ βA. The most representative band for each 
marker or condition was chosen for the final figure. 

2.6. Morphological analysis 

To assess the localization of parkin and α-SYN, cells were grown on 8- 
well chambered slides. After a 24-h exposure to MPP+ (1.0 and 2.5 mM), 
cells were fixed in 4% paraformaldehyde in PBS (pH 7.4), blocked with 
5% albumin (Sigma-Aldrich Inc.) and incubated with anti-Parkin, rabbit 
(Cell Signaling, 1:200) and anti-α-SYN, mouse (1:200, Cell Signaling,) 
overnight at 4 ◦C. Secondary antibodies [anti-rabbit- FITC or anti- 
mouse- CY3, Jackson ImmunoResearch, West Grove, PA, 1:500] were 
incubated for 2 h at room temperature. Photomicrographs were taken at 
20X for qualitative analysis. 

2.7. Statistical analysis (Supplementary Table 1) 

Data were analyzed using one-way ANOVA followed by Tukey’s 
post-hoc test. Analyses were performed using GraphPad Prism 6 
(GraphPad Scientific, San Diego, CA). All data are expressed as means ±
SEMs. 

Fig. 2. MPP+ increased levels of autophagy markers and decreased levels of tyrosine hydroxylase (TH). Differentiated HDNPCs were exposed to 1 and 2.5 mM MPP+

for 24 h. LAMP-1, TH, LC3BI and LC3BII expression were evaluated using western blot. The presence of LAMP-1, TH, LC3BI and LC3BII were detected at 110, 62, 15 
and 12 kDa, respectively. Protein expression was normalized to β-actin protein. Densitometric analyses were performed using the Li-COR Image Studio software. Each 
value represents the mean ± SEM of three independent experiments. ** p < 0.01, *** p < 0.001 and **** p < 0.0001 vs control. 
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3. Results 

3.1. High concentrations of MPP+ decrease cell viability 

The release of LDH was quantified in the culture media after a 24-h 
exposure to MPP+. MPP+ at 0.1, 0.5 and 1 mM did not modify LDH 
release; however, 5 and 10 mM significantly increased LDH release by 
128% and 186%, respectively, compared to control [F (5,30) = 38.31, p 
< 0.001, Fig. 1A, Supplementary table 1 (ST1)]. 

3.2. MPP+ reduces metabolic and mitochondrial activity 

At low exposure levels of MPP+, (0.1 and 0.5 mM), cell viability was 
unchanged compared to control. However, 1, 2.5 and 5 mM of MPP+, 
significantly reduced cell viability to 15%, 55% and 77%, respectively, 
compared to control [F (5, 21) = 245.1, p < 0.0001, Fig. 1B, ST1]. 
Likewise, a MitoTracker® Orange assay that measures oxidation activity 
of mitochondrial respiration suggested that MPP+ affected mitochon-
drial function [Fig. 1C, ST1] while significantly reducing the number of 
live cells [F (4,50) = 34.87, p < 0.0001, Fig. 1D, ST1] by 34%, 33% and 
88% compared to control in response to 0.5, 1 and 5 mM of MPP+, 
respectively. 

3.3. MPP+ increased levels of autophagy markers and decreased levels of 
TH 

To evaluate the influence of MPP+ on autophagy response, the 
expression of LC3BI, LC3BII and LAMP-1 were analyzed by WB. MPP+

significantly increased LAMP-1 levels at 1 and 2.5 mM [93% and 176% 
compared to control] after a 24-h exposure [F (2,6) = 72.04, 
p < 0.0001, Fig. 2A and B, ST1]. A significant increase of 34.37-fold was 
observed in the ratio of LC3BII/LC3BI after exposure to MPP+ at 2.5 mM 
[F (2,6) = 17.16, p = 0.0033, Fig. 2C, ST1] compared to control group. 

To evaluate the influence of MPP+ upon dopamine (DA) synthesis, 
TH expression levels were evaluated by WB. MPP+ induced a significant 
decrease in TH expression after 24 h of exposure. A reduction of − 65% 
and − 92% in response to MPP+ at 1 and 2.5 mM, respectively, 
compared to control group was observed [F (2,6) = 32.42, p = 0.006, 
Fig. 2D, ST1]. This observation suggests that MPP+ may cause a 
reduction of DA synthesis. 

3.4. MPP+ induced nuclear localization and aggregation of α-SYN, as 
well as decreased Parkin expression 

We evaluated parkin and α-SYN expression and localization using 
fluorescent microscopy. MPP+ promoted co-localization of parkin- 
α-SYN. Also, MPP+ decreased the labeling of Parkin [Fig. 3] suggesting 

Fig. 3. MPP+ induced nuclear-located α-SYN aggregation and decreased Parkin labeling. Micrographs of differentiated HDNPCs exposed to MPP+ [1 and 2.5 mM] for 
24 h. Controls show normal cells with few α-SYN aggregates. The positive control, MPP+ [1 and 2.5 mM], induced aggregation α-SYN [white arrows], and decreased 
Parkin labeling. Axonal retraction and a decreased number of cells were observed. Parkin was stained with Alexa Fluor [red] and FITC was used to track α-SYN 
[green].(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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that MPP+ may be promoting α-SYN accumulation through the inhibi-
tion of parkin. We evaluated the effects of MPP+ at 1 mM and 2.5 mM, 
24 h postexposure on α-SYN and Parkin by IF. The qualitative analysis 
indicated that MPP+ produced nuclear localization and aggregation of 
α-SYN (Supplementary Fig. 3a). Additionally, a decrease in Parkin la-
beling was observed [Fig. 3]. 

4. Discussion and conclusion 

PD results from the death of dopaminergic neurons in the SNc. The 
number of studies examining the effects of neurotoxins in human 
dopaminergic neurons are limited. Here, we evaluated the effects of 
MPP+ on HDNPCs and the role of α-SYN aggregation and autophagy as 
possible pathways of neuronal damage in PD. 

We found that MPP+ reduced cell viability at low concentrations 
[starting at 0.5 mM] as evidenced by decreased metabolic and mito-
chondrial activity. We also found that decrease in cell viability only 
occurred at high concentrations [> 5 mM] of MPP+, as evidenced LDH 

release. This finding is in line with observation of cellular death in 
human embryonic stem cells (hESCs)-derived dopaminergic neurons 
[42] and human SH-SY5Y cells [34] in response to a 24-h exposure of 
5 mM MPP+. Previous studies demonstrated that MPP+ produced 
mitochondrial dysfunction at 1 mM in PC12 cells [13,22] and in 
SH-SY5Y cells [4], giving additional support for the use of HDNPCs to 
evaluate mechanistic pathways involved in MPP+ toxicity. Our results 
are consistent with data obtained from other MPTP-induced rodent 
models and MPP+-induced human cell line models, in which reduced 
cell viability was observed. 

The pathways activated by MPP+ are not limited to mitochondrial 
dysfunction. Evidence suggests that autophagy may be an additional 
mechanism of MPTP-induced toxicity [18,41]. Experimentally, the 
conversion of LC3 from LC3-I to LC3-II reflects the progression of 
autophagy. We found the LC3I/LC3II ratio significantly increased, sug-
gesting MPP+ induced autophagy. A dysregulation of autophagy may 
result from the accumulation of abnormal proteins during neurode-
generative disorders including PD [26]. An increase in LC3II was 

Fig. 4. Proposed mechanism of action for 
MPP+ cytotoxicity in HDNPCs. HDNPCs uptake 
the MPP+ through dopamine transporter (DAT). 
Once inside the cell, MPP+ may follow two 
routes: (1) interact/inhibit the activity or 
expression of TH, decreasing the levels of DA; 
or (2) concentrate in the mitochondria, poten-
tially promoting the development of oxidative 
stress by reactive oxygen species (ROS) gener-
ation, which in turn could activate the auto-
phagy response and protein aggregation leading 
to neuronal death. Illustration was done using 
the biomedical PowerPoint toolkit, biology 
bundle, Motifolio software (Motifolio Inc. Elli-
cott City, MD).   

E. Cuevas et al.                                                                                                                                                                                                                                  



Toxicology Reports 9 (2022) 806–813

812

suggested in an in vitro MPP+ model of PD, indicating an 
autophagy-mediated death mechanism in the dopaminergic system 
[14]. Furthermore, lysosomal LAMP-1 is a major protein component of 
the lysosomal membrane required for fusion of lysosomes with phag-
osomes and reflects the completion of autophagy. We found that only 
high concentrations of MPP+ increased the conversion of LC3I to LC3II 
and the expression of LAMP-1, suggesting that autophagic degradation 
may play an alternative or simultaneous pathway activated in the 
toxicity of this metabolite on DA neurons. Supporting this hypothesis, 
other reports found that MPP+ increased autophagic vacuoles and 
recruitment of LC3II at 2.5 mM (LD50) in SH-SY5Y cells [45]. Likewise, 
there is an increase in conversion of LC3I to LC3II in response to 0.2 mM 
MPP+ in MN9D cells, a mouse dopaminergic cell line [23]. These data 
suggest that MPP+ and HDNPCs can be used to model multiple aspects of 
PD in a concentration-dependent manner. This agrees with the results 
presented here as 2.5 mM MPP+, the maximum utilized in the auto-
phagy evaluation, induced the higher ratio of LC3II/LC3I. 

Autophagy may regulate the clearance of α-SYN, aggrieving DA 
neurons to develop the pathogenesis of PD [38]. An upregulation of 
α-SYN after exposure to 0.5 mM MPP+ in SH-SY5Y cells transfected with 
UCA1 that over-overexpress α-SYN has been reported followed by 
oligomer formation, decreased cell viability and increased apoptosis 
[24]. Similarly, 5 mM MPP+ in SH-SY5Y cells also resulted in upregu-
lation of α-SYN [16]. We found that MPP+ induced the accumulation 
and aggregation of α-SYN in the nucleus. Additionally, the distribution 
of α-SYN is different, with higher positive labeling in the soma rather 
than in the axons (at 2.5 mM MPP+), suggesting potential dysfunction in 
the autophagy response and axonal degeneration. Additional evaluation 
is needed to confirm this finding. We detected the presence of Parkin in 
dopaminergic neurons and its co-localization with α-SYN. MPP+ (1.0 
and 2.5 mM) increased the aggregation and accumulation of α-SYN in 
the cells while decreasing the Parkin signal after a 24-h exposure. This 
suggests that MPP+ may stimulate α-SYN accumulation and aggregation 
through the inhibition of Parkin, a possible path to the development of 
Lewy bodies. It is unclear if α-SYN aggregation correlates with PD pa-
thology, and if this aggregation precedes the loss of dopaminergic 
neurons [19]. However, a growing body of evidence suggests this is 
likely to be a key event in PD-related neurodegeneration [33]. 

DA release has been reported to increase in a concentration- 
dependent (0.001–1 mM) manner immediately (1–3 min) after MPP+

exposure in striatal synaptosomes [6]. Also, in MES23.5 cells, 100 μM 
MPP+ induced reduction of TH and was associated with the down-
regulation of Bcl-2, with cellular damage observed starting at 50 μM, in 
a concentration-dependent manner (10–400 μM) [40]. Likewise, 
abnormal dopamine metabolism, may also promote misfolded protein 
conformations and neurodegeneration [28]. Here, we evaluated a 
phenotypic marker of dopaminergic neuron loss using TH, the 
rate-limiting enzyme in catecholamine synthesis. We found that a 24-h 
exposure of 1.0 and 2.5 mM MPP+ decreased TH expression, suggest-
ing a potential dysfunction of DA synthesis. 

In these initial studies using HDNPCs, MPP+ led to an altered energy 
metabolism. We also found evidence of an additional role for autophagy, 
aggregation, and accumulation of α-SYN as a mechanism of possible 
neurodegeneration. This model, being less aggressive, may prove more 
translationally relevant to evaluate progressive mechanisms of dopa-
minergic neurodegeneration during PD [Fig. 4]. Nevertheless, addi-
tional studies are needed to clarify the molecular pathways at lower 
MPP+ concentrations. The response of these cells to MPP+ exposure may 
serve as a valuable model for evaluating potential PD biomarkers and 
therapeutic agents targeting autophagy. 
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