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Abstract

Exploring the functional effect of a non-synonymous coding variant at the protein level requires multiple
pieces of information to be interpreted appropriately. This is particularly important when embarking on
the study of a potentially pathogenic variant linked to a rare or monogenic disease. Whereas accurate pro-
tein stability predictions alone are generally informative, other effects, such as disruption of post-
translational modifications or weakened ligand binding, may also contribute to the disease phenotype.
Furthermore, consideration of nearby variants that are found in the healthy population may strengthen
or refute a given mechanistic hypothesis. Whilst there are several bioinformatics tools available that score
a genetic variant in terms of deleteriousness, there is no single tool that assembles multiple effects of a
variant on the encoded protein, beyond structural stability, and presents them on the structure for inspec-
tion. Venus is a web application which, given a protein substitution, rapidly estimates the predicted effect
on protein stability of the variant, flags if the variant affects a post-translational modification site, a pre-
dicted linear motif or known annotation, and determines the effect on protein stability of variants which
affect nearby residues and have been identified in healthy populations. Venus is built upon MichelaNGLO

and the results can be exported to it, allowing them to be annotated and shared with other researchers.
Venus is freely accessible at https://venus.cmd.ox.ac.uk and its source code is openly available at https://
github.com/CMD-Oxford/Michelanglo-and-Venus.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Background

Whole genome sequencing (WGS) is
increasingly being used in a clinical setting to
provide genetic diagnoses for patients with rare
disease.1–4 However, assessing the mechanism of
pathogenicity of variants identified fromWGS is still
or(s). Published by Elsevier Ltd.This is an op
not straightforward. Although empirical evidence of
a variant’s effect on protein function is ultimately
required to confirm pathogenicity, detailed annota-
tion of variants at the genetic and protein level can
greatly assist in the prioritization of variants for such
functional studies. Since the majority of the patho-
genic variants identified to date are coding variants,
the impact of a specific variant on structure or pre-
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dicted function of the encoded protein can help
decipher the link between genotype and phenotype.
A range of in silico approaches can be used to

assess the likely deleteriousness of a variant at
the genetic level and are routinely incorporated
into bioinformatics pipelines for WGS data
analysis. These include CADD, PolyPhen-2, SIFT,
MutationTaster and subRVIS (reviewed in 5). Vari-
ous parameters are considered by these scoring
tools, including sequence homology, evolutionary
conservation, and elements of protein structure.
Databases of genetic variants can also be highly
informative: ClinVar6 annotates known missense
variants for pathogenic or benign status whilst
gnomAD7 aggregates data from a range of large-
scale exome and genome sequencing initiatives,
such as the 1,000 Genomes Project,8 highlighting
variants that may be common in the healthy popula-
tion to be considered causative for a rare disease.
Furthermore, an absence of gnomAD variants in a
region of interest may indicate that the gene may
be intolerant to mutations.
The aforementioned tools assign a predicted

severity score but do not suggest what the effect
is at the protein level. Furthermore, some cases
have been reported where the CADD scores do
not correlate with disease severity.9 This discrep-
ancy can often be rationalised by inspection of the
protein structure. For example, an inverse correla-
tion was found between CADD score of variants in
the human RNA polymerase II subunit RPB1 (en-
coded by the POLR2A gene) and the severity of
the associated neurodevelopmental phenotype.
Variants expected to retain the ability to form stable
subunit complexes were found to be more deleteri-
ous than truncations,9 most likely due to their
sequestration of other components, such as
RPABC3 (POLR2H), which is required by all three
polymerases.
It is therefore important to assess the effect of an

amino acid substitution at the structural level to
understand its effect on protein function and the
associated phenotype. A potential first step in
assisting in the formulation of a hypothesis of the
mechanism of any associated functional effect is
to visualise the structural location of the target
variant. Whilst 20% of the residues in the human
proteome are covered by an experimentally
determined structure, a further 30% are
accessible via homologues.10 Recent machine
learning advances (AlphaFold211 and
RoseTTAFold12) enable many more structured pro-
teins to be reasonably modelled, providing addi-
tional opportunities to consider the structural
impact of variants. Many tools are able to show
the location of a submitted variant on a given struc-
ture whilst some online tools, such as MISCAST13

and Cosmic3D,14 identify on a given structure the
location of residues altered by known variants in
the human population. Cosmic3D provides an inter-
active interface that allows the user to click on a
2

given variant in the feature tracks resulting in the
display of a simplistic model of the variant. How-
ever, it is limited by its restriction to experimentally
determined structures deposited in the PDB and
known cancer variants (Cancer Gene Census),
meaning not all variants of interest to the user can
be displayed.
Protein structure destabilisation

The destabilisation of protein tertiary and
quaternary structures is the main contributor to
variants’ functional effects in around 50–70% of
known pathogenic cases.15–17 Due to the complex-
ities of its calculation,18 this has been a major focus
of research in the literature.
Although the resulting change in protein function

cannot be precisely predicted, it is possible to
estimate the difference in relative Gibbs folding
potential (DDG) between the mutant and wild-type
proteins using force-field–based molecular
mechanics or statistically derived models. Several
web and software applications exist that employ
molecular mechanics to varying degrees. These
are computationally expensive and provide only
estimates of the effect due to complex technical
limitations and assumptions, such as their use of a
static structural snapshot and implicit solvent or
force-fields that are imperfectly calibrated or too
simplistic. Full force-field single-state calculations
can be performed with the Rosetta suite19 or using
FoldX.20 STRUM uses the I-Tasser algorithm for
structure refinement to predict the best conforma-
tion of the variant and calculate its DDG.21

A wide range of machine-learning–derived
statistical models have been developed to address
the issues around DDG estimate calculation speed
and accuracy. These include CUPSAT, SDM,
DUET, mCSM, SNPMuSiC, MAESTROweb,
pPerturb, MutaFrame and INPS-MD22–29; reviewed
in 30. Some, such as DynaMut, generate a consen-
sus from different approaches.31 Recently, a
second-order equation using just two structure-
independent and one structure-dependent (relative
solvent accessibility) variables was demonstrated
to predict DDG with competitive accuracy, suggest-
ing that a small number of parameters provide sig-
nificant information.32 However, these approaches
do not output a 3D model of the mutations that
can be visually inspected.
Missense3D avoids the need for DDG

calculations by flagging whether the variant
matches any one or more of multiple criteria
known to be destabilising,33 such as a proline resi-
due located in an alpha helix, loss of key cysteines
involved in disulphide bonding or a change in
charge for a buried residue. Arguably this approach
may be more intuitive than a simple numerical DDG
value. However, this tool only provides information
relevant to structural stability and does not provide
information on nearby variants from the human pop-
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ulation or position-based annotations, which can
play an important role in assessing functionality of
variants. This is a limitation of existing DDG calcula-
tion tools.
A recent article comparing these various methods

with the aim of classifying pathogenic variants17

found a high false discovery rate and a low true pos-
itive rate. The best ranking method, FoldX, outper-
formed other methods but presented a false
discovery rate of 35% and a true positive rate of
60% with a threshold of 1.58 kcal/mol. This may
be explained by the observations that different
structural domains have different cellular functions
and tolerances to destabilisation and, critically, that
pathogenic variants may exert their effects through
a molecular mechanism other than stability.

Beyond destabilisation

As discussed, it is known that the equivalence
between destabilisation and altered protein
functionality is only partial15–17 and the presence
of proximal destabilising variants from the healthy
human population (collated in the gnomAD data-
base) may exclude the likelihood that such variants
cause rare disease via a destabilisation mecha-
nism. Other pieces of information including nearby
bound-ligands or cofactors, post-translational mod-
ifications, presence of disulfide bonds, location
within a transmemembrane span and sequence
motifs (e.g. protein localisation signals) instead pro-
vide improved insights. Whilst a variant may result
in decreased functionality (e.g. catalysis, signalling
or sequestration) equivalent to a decreased protein
concentration, it may also result in an increase in
effective protein concentration by means of
decreased degradation, altered localisation, dimin-
ished interactions or loss of regulation.
Different variants of the same protein can result in

different pathogenic phenotypes. For example,
dominantly inherited variants of LZTR1 result in a
severe form of the developmental disorder,
Noonan syndrome. These variants are
predominantly located in the binding interface
between LZTR1 and HRAS. In contrast, recessive
destabilising variants result in a milder
phenotype.22,23

Structurally destabilising variants may have a
dominant effect if the protein is affected by
haploinsufficiency or by imbalanced inhibition as
seen with G-protein b2,35 but often the variant has
a recessive phenotype. However, de novo variants
may result in gain-of-function, such as loss of regu-
lation from a post-translational modification site
(PTM). Over 1,950 known cases of pathogenic vari-
ants that affect a PTM are known36 illustrating the
importance of considering non-structural effects in
annotation of variants.
UniProt37 is an invaluable resource which aggre-

gates various sources of curated information such
as domain details, experimentally validated post-
translational modification sites, signals, catalytic
3

residues, transmembrane spans, and so forth, and
can be used to investigate this additional layer of
possible effects on protein function. However, many
variants from WGS studies will be within proteins of
unknown function which have been poorly charac-
terised; in this situation uncurated and predicted
information becomes highly valuable. For example,
the PhosphoSitePlus database38 includes both
PTMs identified from high throughput screens as
well as well characterised sites. Similarly, the
Eukaryotic Linear Motif (ELM) database may reveal
if a residue span is within known motifs such as
those determining protein localisation, or within a
recognised cellular protein interaction site.39

A further limitation of available online tools to
investigate the effect of a variant is the
requirement for the researcher to possess
significant structural biology expertise, including
knowledge of how to obtain the most appropriate
experimental model from the PDB40 or from online
methods or repositories of predicted structures
(e.g. Phyre2,41 I-Tasser,41 EBI–AlphaFold211) for
the protein in question. The analysis may be further
challenged by the possibility of inconsistencies
between the numbering of residues within the struc-
tural model and that in the context of the expression
construct or whole-protein sequence. Although sev-
eral tools exist, there are, presently, none that have
the desired range of annotations for variants of
interest which can be presented in an interactive
manner to non-structural biologists.
Venus – An interactive tool

To address many of these challenges, we have
developed Venus (https://venus.cmd.ox.ac.uk), a
web application that, for a given species, protein
name and protein substitution of interest, retrieves
a suitable protein structural model and estimates
the DDG for that variant as well as any nearby
known variants, and provides annotations for
these neighbours which may impact the function
of the protein. All of these annotations can be
clicked upon within the interface resulting in their
focus in the protein view (Figure 1).
Results

The Venus application

Venus is a web-based tool providing rapid access
to information concerning a protein substitution in
terms of the impact on predicted stability and
protein features. Venus proceeds via several
guided steps and displays the results to the user
as these steps are completed, allowing initial
inspection to immediately occur pending further
analyses (Figure 1). Firstly, upon a valid input,
non-structural data is shown from UniProt and
ELM. Subsequently, the most suitable structural
model is automatically chosen and shown. The
residues within a 12 �A radius of the residue of

https://venus.cmd.ox.ac.uk


Figure 1. Layout and functionality of Venus. (A) The first step requires the user to provide the species, gene name
or UniProt accession and the mutation of interest. Optionally, other settings may be altered, such as providing a
custom model structure. (B) The cards on the left-hand side of Venus (simplified for illustrative purposes) contain links
that control the 3D visualization within the NGL viewport present in the right-hand side card. (C) An estimate of the
DDG for additional variants from gnomAD can be calculated on request. (D) The page can be exported to a
Michelaɴʟo page, which can be further edited and shared.
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interest are enumerated and annotated with
information from different sources (vide infra).
Meanwhile, the DDG is estimated for the variant.
Finally, the DDG is also estimated for any nearby
gnomAD and ClinVar variants. Additionally, on
request, a more precise DDG estimation for a
specified variant can be calculated or a
post-translationally modified model can be
generated.
Because Venus utilises MichelaNGLO,42 interac-

tive views and descriptions of the results of Venus
can be created, shared and used collaboratively
without requiring the user to have expertise in struc-
tural biology or protein informatics. MichelaNGLO has
been shown to be of great utility by virtue of being
able to clearly convey information in a more intuitive
and interactive manner than an information-heavy
and flat representation of a 3D structure. Several
diverse uses of MichelaNGLO have been
described, ranging from demonstrating the location
of rare mutations to providing the active site
configuration for biocatalysis and drug design
applications.35,43–45

Protein structure model choice

An important requirement is the identification of
the most suitable structural model. These may be
structures from the PDB40 (with any numbering off-
set corrected), SWISS-MODEL homology models,46

AlphaFold2 models11 or a user-provided models.
A structure from the PDB is the preferred choice,
if available. Warning flags may be displayed within
Venus informing the user of the quality of the
chosen model, such as poor-quality metrics for
SWISS-MODEL (Qmean < –2. or identity < 20%) and
AlphaFold2 models (pLDDT < 70%). Where multi-
ple protein chains are to be considered, SWISS-

MODEL is used rather than AlphaFold2 because
AlphaFold2 does not by default generate quater-
nary structures. This approach enables Venus to
present the location of binding partners to the user.
This was found to be a beneficial approach with
MEF2C (Figure 2(A), 97% identity to the crystallised
MEF2A, PDB:3KOV), where the pathogenic muta-
tions previously reported47 fall broadly into two cat-
egories; those that are structurally deleterious (for
example S36R) and those affecting DNA binding,
several of which are not destabilising overall (for
example R3G, Figure 2(A)): results which would
not be apparent without the DNA being present in
the visualisation.
For more complex use-cases, a model structure

can be uploaded by the user (Figure 2(B)). LZTR1
provides an example of this, where an AlphaFold2
model is available, but a SWISS-MODEL structure at
19% sequence identity is excluded under default
settings. To further investigate the binding
hypothesis, an LZTR1:hRAS dimer model was
predicted via ColabFold,48 a variant of
AlphaFold2,11 and uploaded into Venus. Venus
demonstrates that, except for R97L, the dominant
5

variants of LZTR1 are clustered on one face of the
b-propeller, which has been hypothesised to be
the face where HRAS binds.34,49 Venus’s estima-
tion of the DDG for the gnomAD variants near
R97L indicate that they are likely to be highly desta-
bilising (Figure 2(B) inset), consistent with the
hypothesis that destabilisation is not the reason that
the pathogenic de novo variants are deleteri-
ous.34,49 Additionally, Venus reveals that several
of these pathogenic variants in the interface, such
as S244C, affect residues which are close to, or
are themselves, residues found to be phosphory-
lated in high-throughput screens reported in the
PhosphoSitePlus dataset.38 Furthermore, an inter-
active visualisation of themodel of the residues pre-
dicted by PhosphoSitePlus to be phosphorylated is
made available (Figure 2(C)). As a result of the
Venus analyses, one may formulate a hypothesis
that disrupted phosphorylation of LZTR1 may play
a role in the pathogenicity, an interesting unex-
plored avenue of research.

Free-energy estimations

For the structural analyses of the impact of protein
substitutions on stability, two sets of benchmarks
were undertaken. The first benchmark was to
determine the accuracy of Venus’ DDG
estimations against two datasets, the second the
failure rate.
Venus gives two DDG estimations. The first is a

near-instantaneous estimation using the second
degree equation from 32. The second uses a
molecular mechanics approach. The latter DDG
estimations are performed using PyRosetta via a
protocol streamlined for speed. A force-field–
based method was chosen because this also pro-
vides a model of the variant with not only the side-
chain of the substituted residue altered, but also
with nearby sidechains repacked and backbones
moved. Venus energy-minimises residues within a
pre-set radius of the target residue (for one or more
cycles of FastRelax mover), introduces the muta-
tion, and minimises again. This neighbourhood
approach is more appropriate than naı̈vely picking
the rotamer with the least pronounced degree of
clash with neighbouring atoms.
To determine the optimal balance of speed and

accuracy using different settings, predicted DDG
values were compared with empirically determined
DDG values. Public databases exist that have
significant quantities of thermodynamic data, most
notably ProTherm, ProThermDB and
ThermoMutDB.50–52 However, the data is biased
in composition (solvent exposure, secondary struc-
ture, amino acid composition etc.), therefore sub-
sets are generally taken which yield different
scores on benchmarks depending on the subset
adopted. Three benchmark subsets were used that
are filtered to be less biased and possess a struc-
ture from the PDB. These were ProTherm* (768
variants across 84 structures, DDG: mean 1.0 kcal/



Figure 2. Examples of variant impact analysis with Venus, illustrating user-focused features and residues
investigated circled. (Panel A) The effect of certain variants may be best interpreted in the context of a protein’s
known binding partners: portraying MEF2C as a homodimer with the DNA copied from the MEF2A template reveals
that the R3C substitution affects DNA binding and nucleotide specificity. In the structural information element of the
left-hand side card of Venus the chains are listed and the copied chains flagged for further consideration (inset).
(Panel B) The models available may not always be ideal and in certain cases providing Venus with a custom model is
important to investigate a variant, as illustrated by the LZTR1:HRAS complex. Furthermore, the presence and effect
on stability of nearby gnomAD variants may help formulate a hypothesis. In the case of LZTR1 R97L, these reveal
that it is not an interface residue and that most gnomAD variants are highly destabilising, including R97W, in contrast
to R97L, which is near neutral. (Panel C–D) Several variants are adjacent to phosphorylated residues, therefore it is
important to have the option to make a model of these, as seen for the LZTR1 interface and Tubulin a-1A E423G,
which is close to S419, a target of phosphorylation. (Panel E) In Venus, emphasis is placed on user inspection and
interaction, as opposed to giving a single metric. The potential effect of certain variants may be multifaceted, for
example in G-protein b2, subunit K89 forms a salt bridge with E20 of the a subunit (migrated chains in insert), but the
substitution to threonine has a compensating stabilising effect, resulting in an overall neutral DDG, furthermore, the
residue is a ubiquitination target. (Panel F) The inspection of the overlay of models for wild type (teal/turquoise) and
variant G77R (coral/gold) of the G-protein b2 subunit allows the formulation of the hypothesis that the G77R
substitution in G-protein b2 subunit may affect the conformation adopted by the phosphorylation of S74, even if this is
not available.
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mol),54 O2567 datasets (2567 variants across 106
structures, DDG as DGmutant � DGwildtype: mean
1.0 kcal/mol)55 and S1342 (1342 variants across
131 structures)53 (Results in SI Table 1).
6

Venus does not correct substantial backbone
alterations that might be induced by protein
substitutions relative to the wild type and as a
result may overestimate the deleterious effect of
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certain variants. In these circumstances the values
are shown to the user as “>10 kcal/mol”, an arbitrary
cut-off close to the upper outlier cut-offs (Tukey
upper fence) of the distribution of experimental
values, which varies between 8 and 13 kcal/mol
depending on the dataset and settings adopted.
Based on the benchmarking tests, the chosen

default settings were two minimisation cycles
under the standard Rosetta scorefunction
(ref2015),19 targeting all neighbouring residues
whose Cb atoms are within a 12�A radius of the tar-
get residue. This calculation takes under 30 sec-
onds for all three datasets. Under these settings
between 62% (S1342, u coefficient: 0.36) and
71% (ProTherm*, u coefficient: 0.43) of samples
were predicted to result in a DDG greater or lesser
than 2 kcal/mol concordantly with the experimental
values. For the S1342 dataset under the default
conditions themedian absolute error is 1.2 kcal/mol,
whilst the Pearson correlation coefficient, after the
exclusion of outliers given the aforementioned inac-
curacy at higher values, was 0.21 and the mean
absolute error 1.7 kcal/mol. The correlation
increases to 0.43 when the settings are altered (5
cycles under the cartesian beta2016 scorefunction),
but this results in an increased calculation time (me-
dian from 24 seconds to 170 seconds) and does not
offer an increase in accuracy in classification
around the 2 kcal/mol threshold. Nevertheless, the
settings used by Venus can be altered by the user
both in terms of model choice and DDG
calculations.
Venus aims to be able to analyse any given

proteins, hence its use of SWISS-MODEL and
AlphaFold2 models. The DDG for variants in the
O2567 dataset was scored using either a
SWISS-MODEL or an AlphaFold2 model instead of the
available PDB structure. This resulted in similar
errors, but slower calculation times (median times:
19, 21 and 27 seconds for PDB, AlphaFold2 and
SWISS-MODEL SI Table 1) which may be considered
to be acceptable in terms of user experience. The
ProTherm*, O2567 and S1342 datasets contain
high-quality single chain crystal structures, whilst
the structure or model chosen within Venus may not
meet these quality criteria (e.g. very large assembly,
low resolution, distorted sidechains). To explore
whether these may fail or cause an increase in
calculation time, 300 randomly generated protein
substitutions in different human proteins were
tested (SI Table 2). The DDG calculations were
completed for all substitutions, with 85% being
completed in under one minute whilst for five
proteins, all components of large complexes, the
calculations took over 5 minutes.
Neighbourhood features

An important feature of Venus is its ability to
provide the user with information concerning the
neighbourhood surrounding the target variant.
7

Detailed annotations are provided for residues
within 10 �A of the variant of interest. This includes
(i) conservation information (in the case of
structures from the PDB and SWISS-MODEL-sourced
structures, this is expressed as normalised score
from ConsurfDB), (ii) entries in gnomAD or ClinVar
databases, (iii) post-translational modifications and
(iv) overlapping features reported in UniProt.
These residues, along with other regions
mentioned in the results, can be clearly displayed
in 3D by clicking on their green links.
An example of the utility of this approach is

furnished by a-tubulin 1A (TUBA1A) E423G
(Figure 2(D)), a novel de novo variant identified in
the OxClinWGSWGS dataset.2 This variant is neu-
tral in terms of stability but is 2.0�A away from S419,
a phosphorylation site and is in a neighbourhood
devoid of variants reported in gnomAD. Another
example is G-protein subunit beta-2 (GNB2
encoded) K89T35 (Figure 2(E)), a mutation pre-
dicted to be mostly neutral in terms of stability, but
is a ubiquitination site and interacts with the alpha
subunit. The ability to visually inspect the variants
is helpful because in some cases the interpretation
is not straightforward. For example another G-
protein subunit beta-2 variant, G77R35 (Figure 2
(F)), also neutral in terms of structural stability, is
proximal to two phosphorylated residues (S74 and
S76) but not facing them. On visual inspection,
G77 can be seen to be part of an Asx turn, which
might be affected by the G77R variant. This is fol-
lowed by an ST turn involving S74, which suggests
its phosphorylation may alter the local structure,
resulting in a change in protein function, suggesting
why the variant was found to be pathogenic.
To quantify, from a global viewpoint, the

frequency of pathogenic or benign variants in
large datasets, the ClinVar dataset and the nearby
gnomAD variants were scored with Venus (SI
Table 2). The analysed subset of ClinVar variants
with a pathogenic consequence (9,960) contained
3.5 times more variants with a DDG greater than
2 kcal/mol than the subset with a benign
consequence (14,414), but this accounted for only
19% of the subset. However, only 3 of these
destabilising pathogenic variants (1,909) were
within 10 �A of a predicted destabilising gnomAD
variant that was found in the population in a
homozygous state or with a frequency greater
than 5x10-4. This contrasts with the benign
variants predicted to be destabilising for which
over half (519 out of 797) were with 10 �A of a
predicted deleterious gnomAD variant with high
frequency. It is important to note that the ClinVar
dataset is biased towards recurrent variants, and
de novo variants may be under-represented,
therefore the distributions are indicative only.
Nevertheless, this demonstrates the utility of
nearby variants to either lend support or disprove
a destabilisation hypothesis for the cause of
pathogenicity of a variant.
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Enrichment of other features provide possible
explanation for the cause of pathogenicity.
Relative to benign variants, pathogenic variants
were 4.5-fold more abundant within 10 �A of a
ligand or cofactor (11% of pathogenic variants) or
an interface (16% of pathogenic variants). The
most abundant features observed were post-
translational modifications, which were within 10 �A
for 54% of the pathogenic variants and 37% of the
benign variants. This difference is modest and
reflects the fact that most post-translational
modification may have little to no role in protein
function, whilst a small minority may be critical for
conformational switching or enabling the binding
of other proteins. By presenting possible
contributors to destabilisation, Venus provides
opportunities to explore these and support further
hypothesis generation.
Discussion

Our investigations of potential pathogenic
variants from large genome sequencing projects
aimed at providing genetic diagnoses for patients
with rare diseases, such as WGS500,1

OxClinWGS,2 DDD study3 and Genomics Eng-
land’s 100,000 Genomes Project (100 kGP),4 have
frequently required detailed annotation of these
variants to inform assessment of their functional
effects, beyond a predicted genetic pathogenicity
score. Venus was developed in close collaboration
with geneticists and several decisions in its devel-
opments were steered by this interaction.
Venus provides an interactive visualisation of a

structural model of the variant for inspection, in
context with other interacting proteins where
known, along with location of residues that have
non-structural functional roles (Figure 1). It
provides the user with multiple pieces of
information about the neighbourhood which the
user can explore interactively and interpret. The
user is guided into further investigating the
information assembled by Venus by visiting the
source of that piece of information. Venus
therefore supports hypothesis generation rather
than confirming a hypothesis of pathogenicity,
which must be separately confirmed by functional
studies.
A forcefield method was adopted for the

estimation of the DDG of a given protein
substitution in order to be able to display a
plausible structural model. Nearby sidechains and
backbones may be shifted with this approach as
opposed to a simple selection of a rotamer of the
target residue, which may result in artifactual
clashes. On average, the DDG estimation is
complete within 30 seconds. But since Venus
presents results sequentially, rather than all at
once, the wild type structure visualisation is
quickly displayed in an interactive form for
8

inspection pending the DDG estimation being
completed.
Whilst the error of the DDG estimations for the

highly destabilising variants is relatively high, the
overall error is comparable to other methods when
removing outliers or using median based metrics.
The median absolute error is 1.1 kcal/mol for the
S1342 dataset. In context, 1 kcal/mol is
approximately the strength of a hydrogen bond
and the cut-off for a destabilising variant is
generally taken to be 2 kcal/mol. Many machine-
learning–derived models possess intrinsic cut-offs
for the maximum calculated DDG value. For
example, the SIMBA-I second degree equation32

cannot exceed +1 kcal/mol for a surface residue
and +4.5 kcal/mol for a buried residue, whereas in
a molecular mechanics system the forcefield has
no such limits and the energy minimisation sam-
pler/mover may be unable to escape a local mini-
mum. A significant advantage of these two
approaches is their delivery of a model structure
for investigation, which may have nearby residues
repositioned to accommodate the change.
The goal of Venus is to provide the user with

multiple pieces of information about the
neighbourhood which can be explored
interactively and interpreted. The estimated DDG
of the protein substitution is not the sole possible
determinant of pathogenicity. Our global survey of
pathogenic and benign ClinVar variants found only
19% of pathogenic variants to have a DDG greater
than 2 kcal/mol (35% at >1 kcal/mol and 67% at
>0 kcal/mol). When the estimated DDG values of
nearby variants from gnomAD were considered,
the difference between pathogenic and benign
ClinVar variants becomes more apparent.
Additionally, the details of the system become
important when considering variants case-by-
case, as demonstrated in the examples presented.
Our investigations of the rare variants emerging

from the OxClinWGS WGS dataset2 have shown
that, even though changes in protein structural sta-
bility were the most common cause of pathogenic
recessive variants, certain mutations which were
deemed structurally neutral were found to affect a
protein interface or other feature of interest. There-
fore, other functional effects may be contributing to
these non-destabilising cases. Venus gives an indi-
cation of what these may be. An example of this is
the aforementioned example, a-tubulin 1A
(TUBA1A) E423G (Figure 2(A)), which is close to
a potential phosphorylation site, which may be
involved in protein–protein interactions; a literature
search reveals that S419L is pathogenic,56 further
giving support to the hypothesis that destabilisation
may not be the cause of pathogenicity.
Venus supports the exploration of proteins where

information may be limited, as is often the case with
WGS datasets which lend themselves to novel
gene discoveries where the encoded proteins
have been poorly characterised. Protein partners
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may be included from the template structure in
SWISS-MODEL threaded models and post-
translational modification detected solely in high-
throughput screens can be used. The examples of
MEF2C R3G and S36F47 (Figure 2(A)) and G-
protein beta-2 K89T and G77R35 (Figure 2(B + C))
demonstrate that the model presented can be prop-
erly contextualised, even if no crystal structure is
available. Nevertheless, the model may represent
only one of several conformations, may be imper-
fect or may lack important binding partners, so con-
sequently custom models can be uploaded as
demonstrated with LZTR1 R97L34 (Figure 2(B)).
Substitutions of surface residues involved in

protein–protein interactions are a very important
class of pathogenic variant. However, Venus is
currently unable to provide information on protein-
binding sites without empirical evidence for the site
of interaction. For some protein–protein
interactions there are experimental complex
structures available, but in most cases the precise
structural detail of an interaction is not known.
Enhanced evolutionary conservation of the
residues may provide some indication of an
interaction. MutPred2, a deep learning algorithm,
is able to assign the probability of a residue being
involved in an inter-molecular interaction from the
primary sequence context.57 However, without
knowing the binding partner, the researcher is lim-
ited in the functional studies that can be undertaken.
Whilst for post-translational modifications high

throughput data is used in Venus to complement
the curated data in Uniprot, there is presently no
mature dataset for protein–protein interaction sites.
The most applicable high-throughput technique to
identify the precise location of a protein–protein
interaction are untargeted cross-linking mass-
spectrometry (XL-MS) techniques,58 which, due to
the associated technical challenges, have so far
been of limited use and a low sensitivity. As a result,
Venus does not utilise this information. Neverthe-
less, the data provided, such as the conservation
and nearby gnomAD variants, may help the user
determine what may be the role of the region.
One future feature that would be useful for Venus

is the consideration of alternative conformations.
AlphaFold2 has prompted a flurry of research in a
variety of directions, including modelling of
alternative states of proteins and protein
complexes, including conformers that may be
transient.11,48 Currently, there are a limited number
of PDB structures in alternative states and EBI-
AlphaFold2 provides only one single-chain model
per protein. However, it can easily be envisaged
that a database of human oligomeric proteins in
alternative conformations may arise in the future.
This would be a great boon to Venus as currently
the user has to identify or create a structure or
model of an alternative state and upload it to Venus,
as was shown for LZTR1.
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Conclusion

Venus integrates multiple sources of information
to aid in the interpretation of the effect of a genetic
variant on the function of its encoded protein. By
presenting information concerning protein
structure, energies of destabilisation, effects on
post-translational modifications and protein
interaction sites, and displaying these in the
interactive MichelaNGLO application, Venus
extends the analyses possible with existing tools.
We anticipate that this will be a valuable resource
for helping geneticists and other scientists
investigate the potential effects a variant of
interest is having on protein function and hence its
likely pathogenicity when studied in the context of
patients with rare diseases.
Materials and Methods

Venus is built into MichelaNGLO and the codebase
is openly available in GitHub (https://github.com/
CMD-Oxford/Michelanglo-and-Venus).
MichelaNGLO is a Python 3 webapp running the
Pyramid framework with a PostgreSQL database
for user data.
Venus aggregates information from UniProt

entries with data derived from various sources.
UniProt is parsed for sequence and feature
information,37 gnomAD for healthy human popula-
tion variants,7 PhosphoSitePlus for post-
translational modifications found in high throughput
studies,38 SIFTS data for PDB numbering correc-
tion,59 and the RCSB for PDB metadata.40 For the
predictions of loss or gain of linear motifs spanning
the mutation, the regular expression patterns from
ELM39 are searched.
During structure model selection, Venus takes

experimental crystal structures with the best
resolution deposited in the RCSB PDB,40 if they
exist. If no solved structures are available Venus
uses a model from SWISS-MODEL

46 within a user-
specified sequence identity cut-off. Otherwise an
AlphaFold2 model is retrieved.11 If this is not possi-
ble, only structure-independent information is pro-
vided to the user. Once a candidate model is
chosen, it is obtained from the relevant location
and modified with PyMOL. PyMOL is used to cor-
rect the residue numbering offset for the model
structure, to rename the chain in question to ‘A’
and to remove solvent and common
crystallisation-derived small molecules using a
modified list taken from 60. For SWISS-MODEL struc-
tures, any other chains present in the template are
copied unless steric clashes are present. For PDB
and SWISS-MODEL structures, ConsurfDB is queried
for the conservation data and then applied as
B-factors to these.61 The DDG estimations are per-
formed in PyRosetta using the FastRelax mover62

targeting only the local neighbourhood.

https://github.com/CMD-Oxford/Michelanglo-and-Venus
https://github.com/CMD-Oxford/Michelanglo-and-Venus
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In the web interface, the protein structure is
visualised using the NGL JavaScript library63 and
the features and sequence are shown using the
NeXtProt viewer JavaScript library.64 Documenta-
tion and video tutorials are available via the Venus
web interface.
In addition to browser-based access, Venus can

also be queried computationally with a client-side
Python API (pypi: michelanglo-api). To assess the
frequency that Venus successfully completes a
requested analysis, 300 random protein
substitutions were requested via the API
(summary results in SI Table 2).
To determine the optimal settings for energy

minimisation for DDG calculations, mutations from
the ProTherm*,54 O256753 and S134255 datasets
were scored using a range of different parameters
(summary results in SI Table 1, scripts, data and
plots available at https://github.com/CMD-
Oxford/validation_of_venus_ddG). Specifically, the
protein analysis module of Venus was used in isola-
tion on a computing cluster with different Rosetta
forcefields (talaris2014, ref2015, beta_nov16),
within cartesian or dihedral space, different number
of FastRelax descent cycles (1–5), different neigh-
bourhood radii (6–12 �A) and with or without minor
correction artifices. These corrections were tested
because the model structures are only energy min-
imised within a sphere of neighbours around the
mutated residue. The primary focus of these was
on the interactions between the outer neighbour-
hood shell to the residues beyond the shell, which
were not energy minimised, but may have been
energetically strained. These corrections included
scoring only the minimised neighbourhood, con-
straining the residues at the neighbourhood inter-
face, and preventing the acceptance of a poorer
overall score caused by an improvement of a locally
bad conformation. The median absolute error was
calculated by taking the median of the absolute dif-
ference between the predicted and experimental
DDG values. The Tukey fences were calculated
with a scaling factor of 1.5 (standard value). These
were used to eliminate the outliers prior to the calcu-
lations of metrics thrown off by few spuriously large
values, such as mean absolute error, root mean
square deviation and Pearson correlation coeffi-
cient. The confusion matrices were cross-
tabulated by rounding to one decimal digit the pre-
dicted DDG values (to match the precision of exper-
imental DDG values) and by classifying the values
for greater or equal to 0 kcal/mol or 2 kcal/mol.
ClinVar and gnomAD variants were scored using

the protein analysis module of Venus (summary
results in SI Table 3). All human protein were
filtered for the presence of a ClinVar variant and
further filtered against protein with submitted
variants whose mutations were inconsistent with
10
the canonical sequence (222). The ClinVar and
gnomAD variants in the resulting protein list
(354,546 in 9,123 protein) were scored and the
output parsed to extract key details that would
normally be shown by the front-end.
Venus is free to use without requiring user

registration. Due to the licences associated with
the datasets and modules used, the protein data
is not disseminated in the repositories and
commercial users must obtain licences from
PyRosetta, ELM and PhosphoSitePlus prior to
usage. Venus is intended for research and not
diagnostic purposes.
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