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ABSTRACT: We present a method for enhanced sampling of molecular dynamics simulations
using stochastic resetting. Various phenomena, ranging from crystal nucleation to protein folding,
occur on time scales that are unreachable in standard simulations. They are often characterized by
broad transition time distributions, in which extremely slow events have a non-negligible
probability. Stochastic resetting, i.e., restarting simulations at random times, was recently shown to
significantly expedite processes that follow such distributions. Here, we employ resetting for
enhanced sampling of molecular simulations for the first time. We show that it accelerates long
time scale processes by up to an order of magnitude in examples ranging from simple models to a
molecular system. Most importantly, we recover the mean transition time without resetting, which
is typically too long to be sampled directly, from accelerated simulations at a single restart rate.
Stochastic resetting can be used as a standalone method or combined with other sampling
algorithms to further accelerate simulations.

Molecular dynamics (MD) simulations are very powerful,
providing microscopic insights into the mechanisms

underlying physical and chemical condensed phase processes.
However, as a result of their atomic spatial and temporal
resolution, standard MD simulations are limited to events that
occur on time scales shorter than ∼1 μs.1,2 In many cases, the
complex dynamics of the system lead to longer time scales,
through a very broad distribution of transition times between
metastable states, also known as first-passage times3 (FPTs).
To demonstrate this, Figure 1 presents the probability density,
denoted by f(τ), of the FPTs, τ1, τ2, ..., τN, obtained from N
simulations of transitions between the two conformers of an
alanine dipeptide molecule, a common model system.3,4 It
shows that many transitions occur on a time scale much
shorter than 1 μs, with more than 25% of them under 100 ns.
However, the tail of the distribution decays so slowly that the
mean FPT is almost an order of magnitude larger, 759 ns, and
some trajectories fail to complete even after 4 μs. There is thus
an ongoing effort to develop procedures for expediting such
processes.5,6

Stochastic resetting (SR) is the procedure of occasionally
stopping and restarting random processes using independent
and identically distributed initial conditions. The resetting
times are typically taken at constant intervals (“sharp
resetting”) or from an exponential distribution with a fixed
rate (“Poisson resetting”). The interest in SR has grown
significantly since the pioneering work of Evans and
Majumdar.7 They showed that, while a particle undergoing
Brownian motion between two fixed points in space has an
infinite mean FPT, its mean FPT with SR becomes finite.
Therefore, the particle reaches the target point infinitely faster
on average. This result has effectively established an emerging

field of research in statistical physics, to which a recent special
issue was dedicated.8,9

The power of resetting in accelerating random processes has
been widely demonstrated in randomized computer algo-
rithms,10−12 first-passage and search processes,13−21 the
convergence of sampling methods, such as Markov chain
Monte Carlo and PageRank,22−25 queuing systems,26,27

experimentally in systems of colloidal particles28,29 and in the
Michaelis−Menten model of enzymatic catalysis, where
resetting occurs naturally by virtue of enzyme−substrate
unbinding.30,31 The latter finding was then leveraged to
develop a general treatment of first-passage processes under
restart.32 There, it was shown that the FPT distribution in the
absence of SR can be used to determine the FPT distribution
with resetting. Moreover, the mean and standard deviation of
the FPT distribution without resetting are enough to
determine a sufficient condition for SR to expedite a random
process.33 Specifically, if the ratio of the standard deviation to
the mean FPT [the coefficient of variation (COV)] is greater
than 1, a small reset rate r is guaranteed to lower the mean
FPT. The slowly decaying distributions that occur in molecular
simulations of long time scale processes can also have a COV
that is greater than 1. For example, the distribution in Figure 1
has a COV of ∼1.3. This indicates that resetting can expedite
MD simulations.
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In this work, we use SR for the first time for enhanced
sampling of molecular simulations. MD simulations are an
exciting playground for the application of resetting while
raising new fundamental questions that are of interest to both
communities. In SR, the unbiased kinetics (without resetting)
are known and the goal is to understand how much speedup
can be gained by restarting the random process. On the other
hand, in the MD community, the long time scale processes
cannot be accessed directly and enhanced sampling methods
are required to expedite them. Introducing SR for this purpose
raises the question of inference: can we obtain the free energy
surfaces and the kinetics of reset-free processes from
simulations with SR? This question has not been explored in
the SR community but is the natural goal of enhanced
sampling methods.
Various methods have been developed in the field of

molecular simulations to overcome the long time scale
problem, such as umbrella sampling,34,35 metadynamics,1,36−38

on-the-fly probability enhanced sampling (OPES),39−41 and
adiabatic free energy dynamics.42−44 Many of them rely on
identifying suitable collective variables, effective reaction
coordinates that ideally describe the slowest modes of the
process.45 Below, we show that SR can be used for enhanced
sampling without finding suitable collective variables, which is
highly non-trivial for condensed phase processes.46,47 Most
importantly, we demonstrate that the mean transition times
without resetting, that are often too long to be sampled
directly, can be recovered from accelerated simulations
performed at a single restart rate. In this Letter, we give a
proof of concept for these desirable features using examples
ranging from simple models to a molecular system. We obtain
a speedup by an order of magnitude in some cases. Our
method opens new avenues in both the MD and SR
communities, hopefully promoting a fruitful collaboration
between the two.
We begin by demonstrating that SR can indeed enhance the

sampling of MD simulations. Mathematically, we know that, if
the COV is greater than 1, it is guaranteed that resetting can
expedite the process. However, for what potential energy
surfaces do we expect this to occur? We answer this question
using three illustrative model systems representing possible
scenarios in MD simulations. Resetting was successful in
accelerating transitions in all of them, and for two of them, we
obtained an order of magnitude speedup in the mean FPT. To
benchmark our approach, we chose the parameters of the
model potentials such that the mean FPT without resetting is

accessible (∼1 ns) to allow extensive sampling of the unbiased
process. Below, we briefly describe the models, while the full
parameters are given in the Supporting Information.
The results for each model are given in a separate row in

Figure 2. In all cases, the left panel shows the potential and the
middle panel presents the FPT probability density f(τ) without
resetting. The right panel shows the speedup obtained by both
Poisson and sharp resetting, at different restart rates r. All
simulations are of a single particle initialized at fixed positions,
denoted by stars in the left panels of Figure 2, with an initial
velocity sampled from the Maxwell−Boltzmann distribution at
300 K. We stress that SR is not limited to this choice of initial
conditions (see the Supporting Information for other options).
The dashed line in Figure 2 defines the spatial threshold for the
first passage. The simulations were performed in the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS),48 with SR easily implemented in the input files.
Full details and input examples are given in the Supporting
Information and the corresponding GitHub repository.49

The first model is presented in the top row of Figure 2. It is
a one-dimensional double-well potential that is composed of a
trapping harmonic term and a Gaussian centered at x = 0 Å.
The model has two symmetric minima that are separated by a
moderate barrier (1 kBT). The harmonic spring constant was
taken to be soft, such that the particle can explore areas very far
away from the center (∼100 Å). This model, with a different
choice of parameters, was previously used to describe the
umbrella inversion in ammonia.50 The simulations were
initiated at the right minimum (x = 3 Å), and the FPT was
defined as reaching the second basin (x ≤ −3 Å). The
distribution without resetting is broad, spanning about 4 orders
of magnitude (note the logarithmic time scale), and has a COV
of ∼2.9. In the absence of resetting, some transitions occur as
fast as a few picoseconds, while others take as long as tens of
nanoseconds. The median FPT is 125 ps, and the mean FPT is
1325 ps. By introducing SR, we were able to reduce the mean
FPT by more than an order of magnitude, with a speedup of
10.5 and 12.1 for Poisson and sharp resetting, respectively. The
results agree with previous work showing that sharp resetting is
guaranteed to lead to higher optimal speedups than any other
resetting protocol.32

The second model is presented in the middle row of Figure
2. It is a two-dimensional potential, introduced by Gimondi et
al.51 (with slightly different parameters), to represent two
isoenergetic states with very different contributions to the
entropy. It has two basins located at (x = ±1.3, y = 0) Å, which

Figure 1. (a) Two conformers of an alanine dipeptide molecule. The white, cyan, blue, and red balls represent hydrogen, carbon, nitrogen, and
oxygen atoms, respectively. (b) FPT distributions for transitions between them, starting from C7eq, without resetting (blue circles) and with Poisson
resetting at a rate of r = 0.1 ns−1 (green squares). The y axis is given on a logarithmic scale. The full details of the simulation protocol and how the
FPT was determined are given in the Supporting Information.
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are separated by a barrier of ∼3 kBT centered at the origin.
Note that the left basin is so narrow that it can only be clearly
seen in the inset of the figure. The basins have the same width
in the x direction, but in the y direction, the right basin is much
broader (∼50 Å) than the left basin (∼0.5 Å). As a
consequence, the particle can freely explore areas in the right
basin where it cannot cross to the other well. The simulations
were initiated from the right basin, and the FPT was defined as
crossing to the left well (x ≤ −1 Å). The results are similar to
those of the one-dimensional model. The unbiased FPT
distribution is broad, with values ranging from 1 ps to 20 ns.
The median and mean of the distribution are 450 and 1125 ps,
respectively. The COV is smaller than the COV found for the
double-well example (1.44), but the speedup is similar, 8.0 for
Poisson resetting and 9.0 for sharp resetting.
The final model system is presented in the bottom row of

Figure 2. It is a modified version of the Wolfe−Quapp
potential, often used for benchmarking enhanced sampling
methods.45,52,53 This potential has two metastable basins, one
at y < 0 and the other at y > 0. The former is divided into two
substates that have similar width and depth. The lower
substates are 30 Å apart and are separated by a moderate
barrier (∼1.5 kBT). Larger barriers separate the lower basin
from the upper well, ∼6.25 kBT and ∼10 kBT for the left and
right lower substates, respectively. This makes the transition to
the upper well much more probable from the lower left
substate than the right substate. Therefore, this model is an
example of a system in which the particle can either cross to
the upper well, completing the process, or spend long periods
of time in a less reactive nearly isoenergetic state. The
simulations were initialized in the lower left substate (x =
−14.9, y = −1.4) Å, and the FPT was defined as crossing to the
upper basin, y ≥ 1 Å. The obtained FPT distribution without

resetting is again very broad, spanning from a few picoseconds
for the fastest transitions to tens of nanoseconds for the
slowest transitions. We find that, while this model has a very
similar COV, mean and median FPT as the second example
above (1.43 and 1125 and 500 ps, respectively), the obtained
speedup is smaller, ∼2 for both sharp and Poisson resetting.
This is because the modified Wolfe−Quapp potential has a
mean FPT that is only 2 orders of magnitude larger than the
most probable value, as compared to 3 orders of magnitude in
the previous example. This result shows that, while a COV
greater than 1 guarantees that SR would accelerate the process,
the entire shape of the unbiased FPT distribution determines
the resulting speedup. In this context, we note a recent
development by Starkov and Belan.54

It is interesting to test whether SR affects the transition
paths between metastable states. We have checked this in
Figure 3, plotting trajectories for the modified Wolfe−Quapp
potential with transition times representing the mean and
median of the FPT distributions with and without resetting. It
can be seen that both trajectories with resetting stay localized
in the lower left basin before crossing to the upper well, while
the trajectories without resetting explore a much broader area
of the lower basin, spending more time in non-reactive
configurations. The lower panels also show in red the part of
the simulations between the last restart and the crossing to the
upper well. We find that the final leg of the trajectory shows a
similar distribution of transition paths as in the simulations
without resetting. This is because SR does not change the
dynamics between restart events, unlike other biasing
algorithms that continuously add energy to the system,36,38

which may result in transitions through highly unlikely paths.
Finally, to demonstrate that SR can be a useful tool in more

realistic molecular simulations, we also applied it to accelerate

Figure 2. Potential energy surface (column A), FPT distribution without resetting (column B), and speedups obtained using Poisson (blue circles)
and sharp (green squares) resetting (column C) for the one-dimensional double-well model (top row), the model of Gimondi et al.51 (middle
row), and the modified Wolfe−Quapp potential (bottom row). The full potential details are given in the Supporting Information.
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a classic example of enhanced sampling, the alanine dipeptide
molecule. It has two states, usually referred to as the C7eq and
C7ax conformers,

36 which differ by their values of two dihedral
angles, ϕ and ψ (see Figure 1a). The simulations were initiated
from the more stable C7eq conformer after energy minimiza-
tion, for which ϕ < 0 rad, and the FPT was defined by 0 ≤ ϕ ≤
2 rad. To the best of our knowledge, this is the first application
of SR to a molecular system.
Going beyond the mean FPT, we compare the full

distributions with and without resetting in Figure 1b. Our
results shed light on how SR leads to acceleration. The
distribution without resetting is not exponential and has a
COV > 1. Resetting effectively eliminates transition times that
are much longer than 1/r, leading to a narrower distribution
that is very close to exponential, with a COV ≈ 1. A speedup of
2.3 is obtained, reducing the mean FPT from 759 ns without
resetting to 333 ns with SR. We find that the speedup is not
very sensitive to the resetting rates used from 0.1 to 0.01 ns−1
for this system. In such a well-studied model, with known
efficient collective variables, methods such as metadynamics or
OPES admittedly result in much higher speedups. However,
identifying suitable collective variables in condensed phases is
still generally very challenging. The great appeal of SR is that
no collective variables are needed and only very minimal prior
knowledge on the time scales without resetting is required. It is
also trivially parallel because different trajectories perform
resetting independently of one another. Moreover, SR can be
used in a complementary fashion to metadynamics or OPES.
These simulations are usually performed with suboptimal
collective variables in practice.45 If their COV is greater than 1,
introducing SR will lead to further speedup.
To conclude the first part of this Letter, our first key finding

is that SR is able to expedite transitions in MD simulations
ranging from simple models to a molecular system, with up to
an order of magnitude reduction of the mean FPT. We
examined the sensitivity of the results to the definition of the
FPT and the initial conditions (e.g., to sampling the initial
position from a distribution). Our findings did not change

significantly, and in some cases, the speedups obtained were
even greater (see the Supporting Information for a detailed
discussion).
Accelerating transitions between metastable states is very

useful, because it can be used to generate data for training
neural network potential energy surfaces,55 to identify
collective variables,46 and to predict previously undiscovered
intermediates.56 Next, we tackle another major goal of
enhanced sampling: the inference of the unbiased kinetics
from biased simulations. Despite many recent advance-
ments,3,4,53,57,58 evaluating the rates of long time scale
processes from enhanced simulations is still very challenging,
and they can deviate by orders of magnitude from experi-
ments.59 To increase the accuracy, methods such as infrequent
metadynamics or OPES flooding use much weaker bias-
ing,3,4,53,57 and the resulting speedups are significantly lower
than standard metadynamics. Here, we employ SR for this
purpose, showing that it is not limited to expediting transitions
but can also be used for inferring kinetics. This is the second
key finding of this Letter. Next, we explain how to obtain the
mean FPT without resetting using data from accelerated
trajectories at a single restart rate.
For long time scale processes (>1 μs), we cannot determine

the FPT distribution without resetting. Instead, we can
accelerate the simulations and obtain the mean FPT at several
reset rates r > 0. It is then possible to extrapolate the results to
the r = 0 limit to obtain an estimate of the unbiased mean FPT.
However, this is a very expensive procedure, because typically
thousands of transitions are required to converge the FPT
distributions and the reset rate that leads to optimal speedup is
unknown a priori. Fortunately, we find that, for Poisson
resetting, the FPT distribution at any reset rate r*, denoted by
f r*(τ), is enough to predict the mean FPT, ⟨τ⟩r, at all r > r*
through

f r r

r r f r r

1 ( )

( ) ( )r
r

r

=
*

* *
*

* (1)

where the Laplace transform of f r*(τ) is defined as

f s f( ) e ( )d er
s

r
s

r
0

= =* * * (2)

Equation 1 is exact, given that we have the Laplace transform,
and its derivation is given in the Supporting Information. In
practice, we evaluate the Laplace transform by performing N
simulations at a single reset rate r*. We determine fr̃*(r − r*)
for a set of discrete values r > r* by taking the arithmetic mean
of e−(r−rd*)τj, where τj is the FPT of the jth trajectory. Then, we
use eq 1 to predict the mean FPT for the selected values of r >
r*. We verify this procedure in Figure 4 for an inverse Gaussian
FPT distribution, whose Laplace transform is known analyti-
cally. This distribution describes the FPT of drift diffusion to
an absorbing boundary.60 The full details of the simulations to
determine the Laplace transform at reset rate r* numerically
are given in the Supporting Information. We find that
evaluating the Laplace transform numerically using 10 000
samples is sufficient to accurately reproduce results obtained
with the exact transform (see Figure 4a).
Finally, using the values of ⟨τ⟩r predicted from simulations at

a single reset rate r* we can extrapolate to r = 0 and obtain the
unbiased mean FPT at a much lower cost than directly
performing simulations at many reset rates. Figure 4b
demonstrates the extrapolation procedure. It is based on

Figure 3. Selected trajectories with FPTs corresponding to the mean
and median without resetting (top row) and with sharp resetting
every 40 ps (bottom row). The full trajectories are presented in white.
For the trajectories with SR, the last leg following the final reset event
and until the crossing of the barrier is highlighted in red.
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predicting ⟨τ⟩r on a grid of points in the vicinity of r* and
fitting them with a fourth-order Taylor series. The mean FPT
without resetting is then obtained from the value of the fitted
function at r = 0. We compared several extrapolation
approaches, which resulted in similar accuracy. See the
Supporting Information for a full comparison. Figure 4c
shows the predicted unbiased mean FPT, ⟨τ⟩0, as a function of
1/r*. Naturally, the estimation of the unbiased mean FPT from
the extrapolation becomes exact as r* goes to zero. However,
the speedup also decreases in this limit. This results in a trade-
off between precision and speedup. A similar trade-off was also
observed by Ray et al. for the OPES flooding enhanced
sampling method.53 For this benchmark, we obtained an error
of ∼10% in the prediction of the unbiased mean FPT for a
speedup of ∼1.7, an error of ∼50% for a speedup of ∼2.8, an
error of ∼100% for a speedup of ∼3.9, and an error of ∼500%
for a speedup of ∼8.0. Also, in the case of inference, the
strength of SR is that it does not require identifying efficient
collective variables. While the speedup and accuracy of the
kinetic information obtained from other enhanced sampling
methods are sensitive to the collective variables used,53

resetting has a single parameter, the restart rate, that can be
tuned to control the balance between accuracy and speedup.
We have also predicted the unbiased FPT by the same

method for the model potentials above. Results are given in
panels d−f of Figure 4, as was presented for the inverse
Gaussian distribution in panel c. For the one-dimensional
model (d), we obtained an error of ∼3% for a speedup of ∼1.7,
an error of ∼45% for a speedup of ∼2.8, an error of ∼100% for
a speedup of ∼4.1, and an error of ∼595% for a speedup of
∼10.1. Similarly, in the second model system (e), we obtained
an error of ∼8% for a speedup of ∼1.8, an error of ∼55% for a
speedup of ∼3.1, an error of ∼90% for a speedup of ∼3.6, and
an error of ∼515% for a speedup of ∼7.0. For the modified

Wolfe−Quapp potential (f), we obtained an error of ∼2% for a
speedup of ∼1.4 and an error of ∼30% for a speedup of ∼1.9.
Finally, eq 1 can also be used to find the reset rate, which

gives the maximal speedup at almost no cost. This is shown in
Figure 4a, in which we tested the sensitivity of the prediction
of eq 1 to the number of trajectories used to evaluate the
Laplace transform numerically. It can be seen that as little as a
hundred samples lead to predictions that capture the
qualitative behavior of the mean FPT as a function of the
reset rate. While it is insufficient statistics for the inference of
unbiased kinetics, it gives a good estimate for the optimal reset
rate and speedup.
To conclude, we employed SR to enhance the sampling of

long time scale processes in MD simulations for the first time.
In applications ranging from toy models to a molecular system,
we obtained speedups of up to an order of magnitude in the
mean FPT. The most appealing feature of SR as an enhanced
sampling method is its incredible simplicity: just restart the
simulations at random times to accelerate them. No collective
variables are required, and only a coarse estimate of a reset rate
that would result in speedup is needed. The optimal speedup
can then be predicted through eq 1. We demonstrated the
usefulness of SR as a standalone approach to enhance the
sampling of MD simulations, but resetting can also be
combined with existing algorithms, such as metadynamics, to
further accelerate simulations performed with suboptimal
collective variables (given a COV > 1). It will be exciting to
attempt such a combination on larger and more complex
condensed phase systems in the near future.
We also showed that simulations at a single reset rate r* are

enough to infer the mean FPT without resetting with adequate
accuracy. This is achieved by combining forward prediction to
r > r*, via eq 1, with backward extrapolation to r = 0. In doing
so, we have brought inference in SR to the foreground, setting
the stage for future theoretical developments. Our method

Figure 4. (Top row) Results for an inverse Gaussian distribution with an unbiased mean FPT of 1000 ps (see the Supporting Information for
details). (a) Exact ⟨τ⟩r obtained using the analytic Laplace transform in eq 1 and approximate values using a different number of trajectories at reset
rate r* = 0.001 ps−1 to evaluate it numerically. (b) Exact ⟨τ⟩r and its fourth-order Taylor series around r* = 0.001 ps−1 using the indicated grid
points. (c) Speedup (blue circles) and ⟨τ⟩0 predictions (green squares), obtained by extrapolation of the Taylor series to r = 0, as a function of 1/
r*. In panel c, lines represent predictions using the analytical Laplace transform, while the dots show the results using 50 000 trajectories in the
evaluation of the numerical Laplace transform. (Bottom row) Speedup (blue circles) and ⟨τ⟩0 predictions (green squares) against 1/r* for the (d)
one-dimensional double-well potential, (e) potential introduced by Gimondi et al., and (f) modified Wolfe−Quapp potential. The black arrows
indicate ⟨τ⟩0 obtained in unbiased simulations.
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opens new avenues in both the MD and SR communities,
hopefully promoting a fruitful collaboration between the two.
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(19) Pal, A.; Kusḿierz, L.; Reuveni, S. Search with Home Returns
Provides Advantage under High Uncertainty. Phys. Rev. Res. 2020, 2,
043174.
(20) Bodrova, A. S.; Sokolov, I. M. Resetting Processes with
Noninstantaneous Return. Phys. Rev. E 2020, 101, 052130.
(21) Luo, Y.; Zeng, C.; Huang, T.; Ai, B.-Q. Anomalous Transport
Tuned through Stochastic Resetting in the Rugged Energy Landscape
of a Chaotic System with Roughness. Phys. Rev. E 2022, 106, 034208.
(22) Langville, A. N.; Meyer, C. D. Deeper Inside PageRank. Internet
Math. 2004, 1, 335−380.
(23) Avrachenkov, K.; Ribeiro, B.; Towsley, D.Improving Random
Walk Estimation Accuracy with Uniform Restarts. In Algorithms and
Models for the Web-Graph; Kumar, R., Sivakumar, D., Eds.; Springer:
Berlin, Germany, 2010; Lecture Notes in Computer Science, Vol.
6516, pp 98−109, DOI: 10.1007/978-3-642-18009-5_10.
(24) Guan, Y.; Krone, S. M. Small-World MCMC and Convergence
to Multi-Modal Distributions: From Slow Mixing to Fast Mixing. Ann.
Appl. Probab. 2007, 17, 284−304.
(25) Borkar, V. S.; Chaudhuri, S.Accelerating MCMC by Rare
Intermittent Resets. In Performance Evaluation Methodologies and
Tools; Zhao, Q., Xia, L., Eds.; Springer International Publishing:
Cham, Switzerland, 2021; Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, Vol. 404, pp 107−125, DOI: 10.1007/978-3-030-92511-
6_7.
(26) Bressloff, P. C. Queueing Theory of Search Processes with
Stochastic Resetting. Phys. Rev. E 2020, 102, 032109.
(27) Bonomo, O. L.; Pal, A.; Reuveni, S. Mitigating Long Queues
and Waiting Times with Service Resetting. PNAS Nexus 2022, 1,
pgac070.
(28) Tal-Friedman, O.; Pal, A.; Sekhon, A.; Reuveni, S.; Roichman,
Y. Experimental Realization of Diffusion with Stochastic Resetting. J.
Phys. Chem. Lett. 2020, 11, 7350−7355.
(29) Besga, B.; Bovon, A.; Petrosyan, A.; Majumdar, S. N.; Ciliberto,
S. Optimal Mean First-Passage Time for a Brownian Searcher
Subjected to Resetting: Experimental and Theoretical Results. Phys.
Rev. Res. 2020, 2, 032029.
(30) Reuveni, S.; Urbakh, M.; Klafter, J. Role of Substrate Unbinding
in Michaelis−Menten Enzymatic Reactions. Proc. Natl. Acad. Sci. U. S.
A. 2014, 111, 4391−4396.
(31) Rotbart, T.; Reuveni, S.; Urbakh, M. Michaelis-Menten
Reaction Scheme as a Unified Approach Towards the Optimal

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c03055
J. Phys. Chem. Lett. 2022, 13, 11230−11236

11235

https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03055?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c03055/suppl_file/jz2c03055_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Barak+Hirshberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0014-515X
mailto:hirshb@tauex.tau.ac.il
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ofir+Blumer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shlomi+Reuveni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03055?ref=pdf
https://doi.org/10.1002/wcms.31
https://doi.org/10.1021/ar500267n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar500267n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500040r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500040r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.111.230602
https://doi.org/10.1063/1.5109531
https://doi.org/10.1063/1.5109531
https://doi.org/10.48550/arXiv.2202.04164
https://doi.org/10.48550/arXiv.2202.04164
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1103/PhysRevLett.88.178701
https://doi.org/10.1103/PhysRevLett.88.178701
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.48550/arXiv.1811.08239
https://doi.org/10.48550/arXiv.1811.08239
https://doi.org/10.1103/PhysRevE.99.052119
https://doi.org/10.1103/PhysRevE.99.052119
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevResearch.2.043174
https://doi.org/10.1103/PhysRevResearch.2.043174
https://doi.org/10.1103/PhysRevE.101.052130
https://doi.org/10.1103/PhysRevE.101.052130
https://doi.org/10.1103/PhysRevE.106.034208
https://doi.org/10.1103/PhysRevE.106.034208
https://doi.org/10.1103/PhysRevE.106.034208
https://doi.org/10.1080/15427951.2004.10129091
https://doi.org/10.1007/978-3-642-18009-5_10
https://doi.org/10.1007/978-3-642-18009-5_10
https://doi.org/10.1007/978-3-642-18009-5_10?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1214/105051606000000772
https://doi.org/10.1214/105051606000000772
https://doi.org/10.1007/978-3-030-92511-6_7
https://doi.org/10.1007/978-3-030-92511-6_7
https://doi.org/10.1007/978-3-030-92511-6_7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-030-92511-6_7?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevE.102.032109
https://doi.org/10.1103/PhysRevE.102.032109
https://doi.org/10.1093/pnasnexus/pgac070
https://doi.org/10.1093/pnasnexus/pgac070
https://doi.org/10.1021/acs.jpclett.0c02122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevE.92.060101
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c03055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Restart Problem. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2015,
92, 060101.
(32) Pal, A.; Reuveni, S. First Passage under Restart. Phys. Rev. Lett.
2017, 118, 030603.
(33) Pal, A.; Kostinski, S.; Reuveni, S. The Inspection Paradox in
Stochastic Resetting. J. Phys. A: Math. Theor. 2022, 55, 021001.
(34) Torrie, G. M.; Valleau, J. P. Nonphysical Sampling
Distributions in Monte Carlo Free-Energy Estimation: Umbrella
Sampling. J. Comput. Phys. 1977, 23, 187−199.
(35) Kästner, J. Umbrella Sampling. Wiley Interdiscip. Rev.: Comput.
Mol. Sci. 2011, 1, 932−942.
(36) Valsson, O.; Tiwary, P.; Parrinello, M. Enhancing Important
Fluctuations: Rare Events and Metadynamics from a Conceptual
Viewpoint. Annu. Rev. Phys. Chem. 2016, 67, 159−184.
(37) Sutto, L.; Marsili, S.; Gervasio, F. L. New Advances in
Metadynamics.Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 771−
779.
(38) Bussi, G.; Laio, A. Using Metadynamics to Explore Complex
Free-Energy Landscapes. Nat. Rev. Phys. 2020, 2, 200−212.
(39) Invernizzi, M.; Parrinello, M. Rethinking Metadynamics: From
Bias Potentials to Probability Distributions. J. Phys. Chem. Lett. 2020,
11, 2731−2736.
(40) Invernizzi, M.; Piaggi, P. M.; Parrinello, M. Unified Approach
to Enhanced Sampling. Phys. Rev. X 2020, 10, 041034.
(41) Invernizzi, M. OPES: On-the-fly Probability Enhanced
Sampling method. Nuovo Cimento C 2021, 44, 1−4.
(42) Abrams, J. B.; Tuckerman, M. E. Efficient and Direct
Generation of Multidimensional Free Energy Surfaces via Adiabatic
Dynamics without Coordinate Transformations. J. Phys. Chem. B
2008, 112, 15742−15757.
(43) Rosso, L.; Tuckerman, M. E. An Adiabatic Molecular Dynamics
Method for the Calculation of Free Energy Profiles. Mol. Simul. 2002,
28, 91−112.
(44) Rosso, L.; Mináry, P.; Zhu, Z.; Tuckerman, M. E. On the Use of
the Adiabatic Molecular Dynamics Technique in the Calculation of
Free Energy Profiles. J. Chem. Phys. 2002, 116, 4389−4402.
(45) Invernizzi, M.; Parrinello, M. Making the Best of a Bad
Situation: A Multiscale Approach to Free Energy Calculation. J. Chem.
Theory. Comput. 2019, 15, 2187−2194.
(46) Sidky, H.; Chen, W.; Ferguson, A. L. Machine Learning for
Collective Variable Discovery and Enhanced Sampling in Biomo-
lecular Simulation. Mol. Phys. 2020, 118, e1737742.
(47) Chen, M. Collective Variable-Based Enhanced Sampling and
Machine Learning. Eur. Phys. J. B 2021, 94, 211.
(48) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D.
S.; Brown, W. M.; Crozier, P. S.; in ’t Veld, P. J.; Kohlmeyer, A.;
Moore, S. G.; Nguyen, T. D.; Shan, R.; Stevens, M. J.; Tranchida, J.;
Trott, C.; Plimpton, S. J. LAMMPS�A Flexible Simulation Tool for
Particle-Based Materials Modeling at the Atomic Meso, and
Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171.
(49) Blumer, O.; Reuveni, S.; Hirshberg, B.Input Files for ‘Stochastic
Resetting for Enhanced Sampling’. https://github.com/OfirBlumer/
StochasticResettingForEnhancedSampling (accessed Nov 10, 2022).
(50) Swalen, J. D.; Ibers, J. A. Potential Function for the Inversion of
Ammonia. J. Chem. Phys. 1962, 36, 1914.
(51) Gimondi, I.; Tribello, G. A.; Salvalaglio, M. Building Maps in
Collective Variable Space. J. Chem. Phys. 2018, 149, 104104.
(52) Quapp, W. A Growing String Method for the Reaction Pathway
Defined by a Newton Trajectory. J. Chem. Phys. 2005, 122, 174106.
(53) Ray, D.; Ansari, N.; Rizzi, V.; Invernizzi, M.; Parrinello, M. Rare
Event Kinetics from Adaptive Bias Enhanced Sampling. J. Chem.
Theory. Comput. 2022, 18, 6500−6509.
(54) Starkov, D.; Belan, S. Universal Performance Bounds of Restart.
arXiv.org, e-Print Arch., Condens. Matter 2022, arXiv:2209.06611
(accessed Nov 10, 2022).
(55) Bonati, L.; Parrinello, M. Silicon Liquid Structure and Crystal
Nucleation from Ab Initio Deep Metadynamics. Phys. Rev. Lett. 2018,
121, 265701.

(56) Piaggi, P. M.; Parrinello, M. Predicting Polymorphism in
Molecular Crystals Using Orientational Entropy. Proc. Natl. Acad. Sci.
U. S. A. 2018, 115, 10251−10256.
(57) Palacio-Rodriguez, K.; Vroylandt, H.; Stelzl, L. S.; Pietrucci, F.;
Hummer, G.; Cossio, P. Transition Rates and Efficiency of Collective
Variables from Time-Dependent Biased Simulations. J. Phys. Chem.
Lett. 2022, 13, 7490−7496.
(58) Mandelli, D.; Hirshberg, B.; Parrinello, M. Metadynamics of
Paths. Phys. Rev. Lett. 2020, 125, 026001.
(59) Blow, K. E.; Quigley, D.; Sosso, G. C. The Seven Deadly Sins:
When Computing Crystal Nucleation Rates, the Devil is in the
Details. J. Chem. Phys. 2021, 155, 040901.
(60) Folks, J. L.; Chhikara, R. S. The Inverse Gaussian Distribution
and its Statistical Application�A Review. J. R. Stat. Soc., B: Stat.
Methodol. 1978, 40, 263−275.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c03055
J. Phys. Chem. Lett. 2022, 13, 11230−11236

11236

https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1088/1751-8121/ac3cdf
https://doi.org/10.1088/1751-8121/ac3cdf
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1002/wcms.66
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1146/annurev-physchem-040215-112229
https://doi.org/10.1002/wcms.1103
https://doi.org/10.1002/wcms.1103
https://doi.org/10.1038/s42254-020-0153-0
https://doi.org/10.1038/s42254-020-0153-0
https://doi.org/10.1021/acs.jpclett.0c00497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevX.10.041034
https://doi.org/10.1103/PhysRevX.10.041034
https://doi.org/10.1393/ncc/i2021-21112-8
https://doi.org/10.1393/ncc/i2021-21112-8
https://doi.org/10.1021/jp805039u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp805039u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp805039u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/08927020211977
https://doi.org/10.1080/08927020211977
https://doi.org/10.1063/1.1448491
https://doi.org/10.1063/1.1448491
https://doi.org/10.1063/1.1448491
https://doi.org/10.1021/acs.jctc.9b00032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00032?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/00268976.2020.1737742
https://doi.org/10.1080/00268976.2020.1737742
https://doi.org/10.1080/00268976.2020.1737742
https://doi.org/10.1140/epjb/s10051-021-00220-w
https://doi.org/10.1140/epjb/s10051-021-00220-w
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://github.com/OfirBlumer/StochasticResettingForEnhancedSampling
https://github.com/OfirBlumer/StochasticResettingForEnhancedSampling
https://doi.org/10.1063/1.1701290
https://doi.org/10.1063/1.1701290
https://doi.org/10.1063/1.5027528
https://doi.org/10.1063/1.5027528
https://doi.org/10.1063/1.1885467
https://doi.org/10.1063/1.1885467
https://doi.org/10.1021/acs.jctc.2c00806?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00806?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2209.06611
https://doi.org/10.1103/PhysRevLett.121.265701
https://doi.org/10.1103/PhysRevLett.121.265701
https://doi.org/10.1073/pnas.1811056115
https://doi.org/10.1073/pnas.1811056115
https://doi.org/10.1021/acs.jpclett.2c01807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c01807?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.125.026001
https://doi.org/10.1103/PhysRevLett.125.026001
https://doi.org/10.1063/5.0055248
https://doi.org/10.1063/5.0055248
https://doi.org/10.1063/5.0055248
https://doi.org/10.1111/j.2517-6161.1978.tb01039.x
https://doi.org/10.1111/j.2517-6161.1978.tb01039.x
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c03055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

