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ABSTRACT: A Bayesian phase difference estimation (BPDE) algorithm allows us to
compute the energy gap of two electronic states of a given Hamiltonian directly by utilizing
the quantum superposition of their wave functions. Here we report an extension of the
BPDE algorithm to the direct calculation of the energy difference of two molecular
geometries. We apply the BPDE algorithm for the calculation of numerical energy
gradients based on the two-point finite-difference method, enabling us to execute geometry
optimization of one-dimensional molecules at the full-CI level on a quantum computer.
Results of numerical quantum circuit simulations of the geometry optimization of the H2
molecule with the STO-3G and 6-31G basis sets, the LiH and BeH2 molecules at the full-
CI/STO-3G level, and the N2 molecule at the CASCI(6e,6o)/6-311G* level are given.

Q uantum computing is one of the most fascinating
research fields in current science and technology.1 In

particular, quantum chemical calculations of atoms and
molecules are anticipated to be one of the most promising
applications of quantum computers in the near future.2−5

Sophisticated quantum chemical calculations allow us not only
to deeply understand chemistry and chemical phenomena from
the first-principles point of view but also to design novel
molecules and materials with exotic functionalities theoret-
ically, bringing a paradigm shift in research and development in
chemistry and related fields. The appearance of quantum
hardware with high quantum volume6 and experimental
demonstrations of quantum error corrections7−9 allow us to
expect fault-tolerant quantum computing (FTQC) in the
future. In this context, the development of quantum algorithms
for the FTQC era is an urgent issue.
The full configuration interaction (full-CI) method can give

the variationally best possible wave function within the basis
set being used, and it is a practical goal of quantum chemical
calculations. However, the computational cost of full-CI on
classical computers scales exponentially with the number of
basis functions relevant to the system size, and the method is
impractical except for very small molecules. The situation has
changed as a result of the appearance of a quantum phase
estimation (QPE) algorithm10 that is capable of computing the
eigenfunctions and corresponding eigenvalues of a unitary
operator by utilizing measurement to project an approximate
wave function onto the eigenfunction of the Hamiltonian. In
2005, Aspuru-Guzik and co-workers reported a method to
perform full-CI calculations on a quantum computer using the

QPE algorithm.11 Proof-of-principle experiments involving full-
CI/STO-3G calculations on the H2 molecule using photonic12

and NMR13 quantum processors were reported in 2010. The
QPE-based full-CI calculation requires too many quantum
gates to handle on currently available noisy intermediate-scale
quantum (NISQ) processors, but it is regarded as one of the
most powerful approaches for quantum chemical calculations
in the FTQC era. It should be noted that QPE is probabilistic
and that the electronic state obtained depends on the square of
the overlap between the approximate wave function used as the
input and the true eigenfunction. The QPE itself does not
guarantee an exponential speedup of quantum chemical
calculations unless theoretical methods for sophisticated
wave function preparation are established.
For the practical use of quantum chemical calculations, the

development of geometry optimization methods14 is crucial
because precise geometrical parameters are not always available
from experiments. Geometry optimization is also important for
the study of vibrational and thermodynamic properties and
reaction discovery. Geometry optimization requires computa-
tion of the energy derivatives with respect to nuclear
coordinates. Several approaches for energy derivative calcu-
lations based on the variational quantum eigensolver (VQE)
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have been reported,15−24 but in the VQE-based methods the
measurement cost for energy expectation value evaluation can
be a bottleneck when it is applied to systems with a large
number of qubits.25 In QPE-based approaches, by contrast, the
measurement cost is independent of the system size. In
addition, due to its inherent projective nature, QPE is
applicable with approximate wave functions, and variational
full optimization of wave function is not necessary. However,
analytical energy gradients are generally not available in QPE-
based methods, and one has to rely on numerical derivatives.
The putative approach based on the finite-difference method
requires at least d + 1 evaluations of the energy, where d is the
number of degrees of freedom. A pioneering work was
reported in 2009 by Kassal and Aspuru-Guzik,26 who proposed
a quantum algorithm that can compute the numerical energy
gradient in a single query regardless of the dimension d of the
system being investigated. However, in their quantum
algorithm they assumed a black box (oracle) that computes
the energy eigenvalue of an arbitrary input. The quantum
algorithm developed in this study can be regarded as a special
case of the black box for one-dimensional systems. In this
paper we propose a theoretical approach to compute numerical
energy gradients based on the two-point finite-difference
method by utilizing the concept of a Bayesian phase difference
estimation (BPDE) algorithm.27,28 The BPDE algorithm
enables us to compute the energy gap of two electronic states
of a given Hamiltonian without inspecting the total energies of
the individual electronic states. In particular, here we extend
the BPDE algorithm to the direct calculation of the energy gap
of two different molecular geometries. It should be noted that
theoretical methods for energy derivative calculations based on
the Hellmann−Feynman theorem and eigenstate truncation
approximation15 and finite-difference-based algorithms and the
method based on the calculation of expectation values of force
operators16 within the FTQC framework were discussed by
O’Brien and co-workers.
Our quantum algorithm is an extension of the conventional

Bayesian phase estimation (BPE) algorithm29,30 for total
energy calculations as well as the BPDE algorithm for energy
gap computations.27 The quantum circuits for the BPE-based
full-CI calculations and the BPDE are illustrated in Figure 1a
and Figure 1b, respectively. Detailed definitions of the
quantum gates and quantum circuits are provided in the
Supporting Information.
The BPE algorithm utilizes a controlled time evolution

operation to extract the phase shift caused by the time
evolution, which contains information on the eigenenergy. The

eigenenergy readout is carried out by utilizing the phase
rotation gate P(εt) given in red in Figure 1a, where ε is a
parameter used as the energy estimator. The quantum state
before the measurement is given in eq 1:

1
2

(1 e ) 0 (1 e ) 1E t E ti( ) i( )
0

0 0[ + + ] |
(1)

The probability to obtain the |0⟩ state in the measurement of
the top qubit in Figure 1a is calculated as in eq 2:

E tProb(0)
1
2

1 cos ( )0= [ + { }]
(2)

From eq 2, Prob(0) becomes maximum when E0 = ε. In the
BPE algorithm, the parameter ε is optimized to maximize
Prob(0) using Bayesian inference. To do this, first we define a
prior distribution Pr(ε) by a Gaussian function of which the
mean μ corresponds to the initial estimate of the eigenenergy
with a standard deviation σ. It should be noted that σ
determines the width of the search area in Bayesian inference,
and therefore, an initial value of the standard deviation must be
large enough so that the actual value of E is located in the
range between (μ − σ) and (μ + σ). After that, we repeatedly
execute the quantum circuit in Figure 1a with fixed t and
different ε in the range between (μ − σ) and (μ + σ) and
generate an ε versus Prob(0) plot. Then the plot is fitted by a
Gaussian function, which is used as a likelihood function
Pr(0|ε; t). An updated posterior distribution Pr(ε|0; t) can be
obtained by Bayesian inference using eq 3,

t
t

t
Pr( 0; )

Pr(0 ; )Pr( )
Pr(0 ; )Pr( ) d( )

| = |
| (3)

and this posterior distribution is used as the prior distribution
in the next step. This procedure is iterated until the standard
deviation of the posterior distribution becomes smaller than
the convergence threshold. More detailed procedures are given
in the Supporting Information.
In the quantum circuit for the BPDE algorithm in Figure 1b,

the quantum state in the superposition of |Ψ0⟩ and |Ψ1⟩ is
generated using Hadamard (Had) and following controlled-
Excit gates. Subsequently, quantum simulation of the time
evolution is carried out unconditionally. Applying the
controlled-Excit† gate and following phase rotation P(Δεt)
and Had gates, the quantum state in eq 4 is obtained:
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where E0 and E1 are energy eigenvalues of |Ψ0⟩ and |Ψ1⟩,
respectively. The probability to measure the |0⟩ state, Prob(0),
is calculated as in eq 5:

E E tProb(0)
1
2

1 cos ( )1 0= [ + { }]
(5)

Thus, we can compute the energy gap ΔE = E1 − E0 directly by
finding the phase rotation angle Δεt that maximizes Prob(0)
using the same procedure as in BPE, as described in detail in
Supporting Information (SI) section 2.
In both the BPE and the BPDE algorithms, quantum

simulation of the (controlled) time evolution of the wave
function is involved. The following procedure is usually

Figure 1. Quantum circuits for (a) the BPE-based full-CI calculations
and (b) the BPDE-based full-CI energy gap computations. The
parameter ε in the phase rotational gate shown in red is the estimator
of the energy or energy difference, and it is optimized using Bayesian
inference to maximize the probability to obtain the |0⟩ state in the
measurement.
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adopted to simulate the time evolution on a quantum
computer: (i) The second-quantized electronic Hamiltonian
shown in eq 6 is transformed to the qubit Hamiltonian in eq 7,
which involves a linear combination of direct products of Pauli
operators (Pauli strings), given in eq 8:

H h a a h a a a a
1
2pq

pq p q
pqrs

pqrs p q s r= +† † †

(6)

H wP
j

j j=
(7)

P I X Y Z, , , ,N N1 2 0= ··· { } (8)

where N is the number of qubits used for wave function
storage and I, X, Y, and Z are the identity, Pauli X, Pauli Y, and
Pauli Z operators, respectively. In this study, we used the
Jordan−Wigner transformation11,34 for wave function map-
ping, and N is equal to the number of spin orbitals in the active
space. (ii) The Trotter−Suzuki decomposition31,32 is then
applied to the time evolution operator as shown in eq 9:
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(iii) Finally, the quantum circuit corresponding to the operator
exp(−iwjPjt/M) is constructed.33 The quantum circuit for the
time evolution operator corresponding to (controlled) exp-
(−iwX0X1Y2Y3t) is illustrated in Figure 2.

To calculate the energy difference of two geometries, we
have to simulate the time evolution described in eq 10:

1
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( 0 1 )
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(10)

where HA and HB are the Hamiltonians for the two geometries
A and B, respectively, and |Ψ(A)⟩ and |Ψ(B)⟩ are the wave
functions of the target electronic states at geometries A and B,
respectively. |Ψ(A)⟩ and |Ψ(B)⟩ are generally different, but we
can use the same |Ψ⟩ as the approximate |Ψ(A)⟩ and |Ψ(B)⟩ in
the numerical energy gradient computation with the finite-
difference method. Naive implementation of the operations in
eq 10 involves applying two controlled time evolution
operators, as illustrated in Figure 3a. Here the controlled
time evolution gate with a closed (open) circle applies the time

evolution operator to |Ψ⟩ if and only if the control qubit is in
the |1⟩ (|0⟩) state. However, this implementation roughly
doubles the depth of the quantum circuit, implying no
advantage over the traditional two separate total energy
calculations. We avoid this issue by invoking the following
techniques.
We assume that the two Hamiltonians HA and HB share the

same set of Pauli strings, as in eqs 11 and 12:

H u P
j

j jA =
(11)

H v P
j

j jB =
(12)

The difference of the two Hamiltonians is fully characterized
by the difference of the coefficients uj and vj. As described
above, these coefficients determine the rotational angle of the
controlled Rz gate in the quantum circuit for the time evolution
operations. Thus, the quantum circuit depicted in Figure 3a
can be realized by applying controlled Rz operations with
different rotational angles depending on the quantum state of
the ancillary qubit. Figure 3b,c illustrates two possible
implementations of the quantum circuit for the operation in
eq 13:

1
2

( 0 1 )

1
2

( 0 e 1 e )uPt vPti i

| + |

| + |
(13)

where P = X0X1Y2Y3. Both of these implementations give the
same quantum state. In these implementations, one controlled
Rz gate in the quantum circuit for the time evolution operator
(see Figure 2) is replaced by two controlled Rz gates (written
in blue in Figure 3b) or two Rz gates and two CNOT gates
(Figure 3c). Importantly, these implementations do not raise
the scaling of the quantum gate count, and they slightly

Figure 2. Quantum circuit corresponding to the (controlled)
exp(−iwX0X1Y2Y3t) operation. w in the Rz gate is the coefficient of
the Pauli string X0X1Y2Y3. The controlled Rz gate in red should be
replaced by the Rz gate in the quantum circuit for the unconditional
exp(−iwX0X1Y2Y3t) operation.

Figure 3. Quantum circuits used for the direct calculation of
energy differences between two geometries. (a) Naive implementa-
tion. (b) Quantum circuit for the controlled time evolution operation
(|0⟩⊗|Ψ⟩ + |1⟩⊗|Ψ⟩)√2 → (|0⟩⊗e−iuPt|Ψ⟩ + |1⟩⊗e−ivPt|Ψ⟩)√2 with
P = X0X1Y2Y3 using two controlled Rz gates (see eq 13), where u and v
in the Rz gates are the coefficients of the Pauli string P. (c) Another
implementation of the quantum circuit for the controlled time
evolution operation corresponding to eq 13 using two Rz gates and
two CNOT gates.
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increase the proportionality factor of the gate count. As a
result, the BPDE-based direct calculation of the energy
difference of two geometries can be implemented with a
computational cost slightly larger than that for the single-point-
energy calculation. It should be noted that the quantum circuit
described in Figure 3c has also been used in the
implementation of model-state quantum imaginary time
evolution (MSQITE).35

To demonstrate the quantum algorithm, we developed a
Python program for numerical quantum circuit simulations
using the PySCF,36 OpenFermion,37 and Cirq38 libraries.
Detailed implementations of the quantum algorithm are given
in the Supporting Information.
First we applied the BPDE-based numerical energy gradient

calculation based on the two-point finite-difference method to
H2 molecule at the full-CI/STO-3G level. The gradient is
evaluated by using the central difference as in eq 14,

E
R

E R r E R r
r

d
d

( /2) ( /2)= +
(14)

in which the finite-difference value Δr is equal to 0.0025 Å.
The results of the numerical simulations are plotted in Figure
4, where the blue solid line specifies the energy gradient

computed using the GAMESS-US program39 and the red
circles represent the results of the quantum circuit simulations
using the BPDE algorithm. The differences between the
numerical energy gradient values computed using the BPDE
algorithm and those calculated using GAMESS-US are shown
in the inset of Figure 4. The BPDE algorithm can compute the
numerical energy gradient to within an error of 0.02 hartree/Å.
The BPDE-based calculations gave slightly large errors around
R(H−H) = 1.0 Å. The standard deviations of the calculated
dE/dR values for five runs were as small as 0.0006 hartree/Å
for all points being investigated, and applying the finer Trotter
decomposition did not improve the results (see SI section 4 for
details). The deviation can be explained by the quality of the
approximate wave functions used as the input. We used the
two-configuration wave functions constructed using diradical

character40 for the geometries R(H−H) ≥ 1.2 Å. The spin-
restricted Hartree−Fock (RHF) wave functions were adopted
for R(H−H) ≤ 1.1 Å because broken-symmetry UHF
converges to the RHF solution for geometries with R(H−H)
= 1.1 Å and shorter. It should be noted that the accuracy of the
calculated gradient value is mainly controlled by the quality of
the approximate wave function and that larger deviations were
observed when we used the RHF wave functions for all
geometries (see Figure S6). Adopting more sophisticated wave
function preparation methods such as adiabatic state
preparation (ASP)11,13,41 can further improve the accuracy.
ASP-based wave function preparation may be necessary when
the proposed method is applied to transition structure searches
because transition states often have complicated electronic
structures and the RHF approximation becomes worse.
Because our BPDE-based method can compute numerical

energy gradients accurately without inspecting total energies,
we examined geometry optimizations of the H2 molecule using
a gradient-only optimization algorithm that was developed by
Wilke and co-workers to perform minimization of objective
functions containing nonphysical jump discontinuities.42

Unlike the problems discussed by Wilke and co-workers, the
full-CI potential energy curve for the H2 molecule does not
contain discontinuities. However, the gradient-only optimiza-
tion has an advantage of faster convergence compared with
conventional gradient-based optimization because the gra-
dient-only optimization adopts a three-point bisection interval,
which is reduced by 50% after each iteration, as opposed to
∼38% for the golden-section search43 used in the gradient-
based ones. It should also be noted that potential curve
discontinuities can be present in VQE-based quantum
chemical calculations with adaptive ansatzes44 when adaptive
ansatz construction is adopted in each geometry.
Results of the numerical simulation of the geometry

optimizations of the H2 molecule starting from different
R(H−H) values are summarized in Figure 5, and SI section 5
provides additional details. Geometry optimizations were
executed five times for each starting geometry. The BPDE-
based geometry optimization converged after 5−10 iterations
depending on the starting geometry, and the optimized value isFigure 4. Numerical energy gradients of the full-CI/STO-3G

potential curve for the H2 molecule. The blue line specifies the
numerical gradient computed using the GAMESS-US program,39 and
red circles represent the BPDE simulation results. The inset shows the
differences between the gradient values computed from the BPDE
numerical quantum circuit simulations and those calculated using
GAMESS-US.

Figure 5. Results of the full-CI/STO-3G geometry optimizations
using the BPDE-based numerical energy gradients. The black dotted
line specifies the equilibrium bond distance calculated at the full-CI/
STO-3G level using the GAMESS-US program.
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R(H−H) = 0.736381 ± 0.000876 Å. The R(H−H) value
optimized at the full-CI/STO-3G level using the GAMESS-US
program is 0.734868 Å, and therefore, our BPDE gave the
bond length with ca. 0.0015 Å error. It should be noted that in
this study the threshold value of atom displacement was set to
be 0.002 Å for the convergence check in the geometry
optimization. It should also be noted that the BPDE-based
numerical energy gradients with RHF wave functions tend to
give a slight underestimate around the equilibrium geometry
(see the Figure 4 inset), which is responsible for the deviation.
To disclose the effect of the basis set, we tested the geometry

optimization of the H2 molecule using the 6-31G basis set. The
BPDE-based geometry optimization results in R(H−H) =
0.746242 ± 0.001274 Å, which is close to the full-CI/6-31G
equilibrium bond length computed using the GAMESS-US
software (0.746201 Å). We also applied the BPDE-based
geometry optimization to the LiH and BeH2 molecules at the
full-CI/STO-3G level and the N2 molecule at the CASCI-
(6e,6o)/6-311G* level. The optimized bond lengths are
summarized in Table 1. The standard deviation of the

equilibrium bond length of LiH is considerably large compared
with the other molecules because of its rather shallow potential
energy curve. Nevertheless, the geometry optimizations using
the BPDE-based numerical energy gradients converged within
ca. 0.015 Å deviations for all of the molecules studied.
Finally, we discuss possible implementation of the black box

used in the quantum algorithm for the calculation of numerical
energy gradients of d-dimensional systems by Kassal and
Aspuru-Guzik.26 Their quantum algorithm starts with an equal
superposition of nd qubits as in eq 15:

k k k
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2nd
k k

d nd
k0

2 1
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n
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··· ··· =
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where the states |kj⟩ are integers on n qubits represented in
binary notation. The black box is used to compute the energy
E(μ) at perturbation μ = h(k − N/2)/N in eq 16:
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where h is the finite-difference value and N denotes the vector
(N, N, ..., N). From the analogy of the BPDE-based numerical
energy gradient calculations, the black box can be implemented

by substituting the controlled Rz gates in the quantum circuit
for the time evolution by 2ndRz gates conditional on nd control
qubits. Such operations can be realized by 2nd CNOT gates
and 2nd one-qubit rotation gates using the quantum circuit for
general multiqubit gates discussed by Möttönen and co-
workers45 based on the cosine−sine matrix decomposition
technique.
In summary, we have developed a quantum algorithm for the

direct calculation of the energy difference between two
geometries and applied it to numerical energy gradient
calculations based on the two-point finite-difference method
and geometry optimizations of one-dimensional molecules.
The scaling of the quantum gate count for the BPDE-based
numerical energy gradient calculations is the same as that for
single-point-energy calculations using the BPE algorithm. The
geometry optimizations of the H2, LiH, BeH2, and N2
molecules converged within 10 iterations, and their optimized
bond lengths match those obtained from traditional quantum
chemical calculations within ca. 0.015 Å deviations. The
proposed quantum algorithm is a special case of one-
dimensional systems of the black box used in the quantum
algorithm for numerical energy gradients proposed by Kassal
and Aspuru-Guzik,26 and the possible construction of the black
box for d-dimensional systems is discussed. Numerical energy
gradients are used not only for equilibrium geometry
optimizations but also for transition structure searches and
molecular property calculations. Applications of the BPDE-
based derivative calculations to these problems and the
extension of the algorithm to higher-order derivatives such as
Hessians are underway.
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