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Abstract In this paper, we reported an integrated method
to generate ultra-wideband (UWB) pulses of different
orders based on a reconfigurable silicon micro-ring
resonator-coupled Mach–Zehnder interferometer. Under
proper operating conditions, the device can produce Fano
resonances with a peak-to-valley extinction ratio of above
20 dB. UWB monocycle and doublet signals with
picosecond pulse widths are produced when the micro-
ring resonator is modulated by square and Gaussian
electrical pulses, respectively. With our Fano resonance
modulator on silicon photonics, it is promising to foresee
versatile on-chip microwave signal generation.

Keywords ultra-wideband (UWB) generation, Fano
resonance, intensity modulation, integrated silicon mod-
ulator

1 Introduction

Microwave photonics have developed rapidly in recent
years [1,2]. Many functions have been demonstrated,
including ultra-wideband (UWB) signal generation [3],
reconfigurable high-resolution radio frequency (RF) filter-
ing [4], RF phase shifts [5], RF frequency up-conversion
[6], and optical phased array beamforming [7]. Microwave
photonic systems based on bulky optical components have
suffered from a large volume, high-power consumption,
high cost, and vulnerability to environmental disturbances.
Therefore, it is highly desirable to integrate a microwave
photonics system into a single chip to make it more
compact, less expensive, and less power consuming.

Wideband communication dates back to the beginning
of the 20th century in which spark-gap transmitters were
used in World War I. However, in the 1920s, it was quickly
replaced by superheterodyne radio, which can send
continuous signals. Another wireless wideband technol-
ogy, radar, developed rapidly, inspiring interest in signals
with an ultra-wide bandwidth.
UWB signals have inherent characteristics, such as

immunity to multipath fading, a wide bandwidth, and low-
power spectral density [8]. One of its applications is in
short-range high-throughput wireless communication
(IEEE 802.15.3a) for wireless transmission of massive
multimedia data without delay. It can also be used in low-
speed and low-power transmission (IEEE 802.15.4a) for
Internet of Things (IoT) applications, such as precise
indoor positioning. Unlike WiFi- or Bluetooth-based
distance estimation depending on the intensity of the
signal, the UWB signal has an extremely narrow pulse
width, which is similar to a radar pulse, making it possible
to predict the position with an accuracy of 10 cm using the
signal propagation time [9]. The Federal Communication
Commission (FCC) provided UWB signal regulation in
2002 [10], and Apple Inc. has applied UWB technology in
its products, such as iPod and iWatch. Many other
companies, including NXP, Samsung, Bosch, Sony, and
others, have formed an organization called the FiRa
consortium to promote UWB application for perfect user
experiences for circumstances, such as hands-free access
control, location-based services, and device-to-device
(peer-to-peer) services [11].
Traditional UWB pulse generation via electrical circuits

needs electrical-to-optical conversion to distribute the
signal over an optical fiber. Generating UWB signals
directly in the optical domain with integrated photonics has
many merits, including its light weight, small size, large
tunability, and immunity to electromagnetic interference
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[3]. Several optical methods have been reported to produce
UWB pulses, the most common of which is to implement
phase-to-intensity modulation via dispersive devices [12]
or frequency discriminators [13], such as a bandpass filter
[14] or an fiber-Bragg-grating (FBG) [3,15]. Some others
have obtained UWB pulses of different orders from the
derivative of Gaussian pulses [16], and factors related to
power efficiency were analyzed [17]. Furthermore, many
studies have focused on coherent [13,16,18–20] and
incoherent [14] summation of UWB signals of low orders
to generate UWB pulses of higher orders. However, these
approaches all require complicated bulky systems to
generate stable signals. Linear summation of modified
doublet pulses can be utilized for high-power efficiency
UWB generation [21]. Other approaches to generate UWB
signals have also been proposed by using nonlinear optical
loop mirrors [22] or two-photon absorption in a silicon
waveguide [23]. However, these approaches all require
complicated bulky systems to generate stable signals. As
for the integrated method, Wang and Yao proposed a
simple method to generate UWB doublet signals using an
electro-optic intensity modulator (EOM) [24]. Many have
reported integrated schemes to generate UWB pulses that
utilize cross-phase modulation in semiconductor optical
amplifiers (SOAs) [25–27], which involve a complex
system and costly device fabrication. The same short-
comings also exist for electroabsorption modulator
(EAM)-based methods [28,29]. For simplicity, UWB
signals can be generated using a single micro-ring
resonator (MRR) [30,31]. However, the essential principle
is to transform phase modulation to intensity modulation
(PM-IM), and the integrated MRR only plays the role of
IM conversion rather than complete key function. There
are also some other special methods [32,33], such as
splitting the light-wave and then combining them after
certain processing to produce UWB signals; however, the
waveform generated is limited [32]. Other schemes [12,33]
need two lasers, which increase the system volume and
cost. The effect of free-carrier dispersion (FCD) and free-
carrier absorption (FCA) in silicon on generated UWB
signals have also been studied [34]. Monocycle pulses
have been produced on a silicon photonic chip [30]. These
methods are either unstable or impractical owing to the
bulky system or are monotonous because only limited
waveforms are generated.
The obvious feature of UWB signals is its asymmetric

line shape in the time domain. It is thus straightforward to
use the asymmetric Fano resonance to generate UWB
signals. Fano resonance is a ubiquitous physics phenom-
enon in nature, which was first observed by Beutler as
spectral atomic lines that exhibit sharp asymmetric profiles
in absorption. Later, Miroshnichenko et al. suggested the
first theoretical explanation for this effect and suggested a
formula that predicts the shape of spectral lines [35]. Since
then, many researchers have studied it, and Fano

resonances in various systems have been discovered and
analyzed. As for photonic nanostructures, devices, such as
dual-bus waveguide coupled MRR [36], the bent wave-
guide-based Fabry–Perot resonator [37], the waveguide
micro-ring Fano resonator [38], the silicon Bragg reflector
[39], MRR with a feedback coupled waveguide [40], add-
drop MRR [41,42], a nanobeam cavity [43,44], coupled
whispering-gallery-mode resonators [44,45], and the
plasmonic resonator [46], have been proposed to produce
Fano resonance. These have many applications in switch-
ing [43], sensing [39], photonic thermometers [38],
instantaneous microwave frequency measurement [47],
and others owing to the sharp asymmetric resonance line
shape.
In this paper, we present a simple method to generate

UWB pulses of different orders by utilizing a reconfigur-
able micro-ring resonator-coupled Mach–Zehnder inter-
ferometer (RC-MZI). The spectrum of the RC-MZI
exhibits different line shapes when the phase difference
between two arms of the MZI varies. Modulation is
performed by the MRR when the device works at the Fano
resonance with an asymmetric resonance line shape. UWB
monocycle and doublet pulses are generated by using
square and Gaussian electrical pulses, respectively. When
the amplitude of the driving signal is further enlarged,
UWB pulses of higher orders can also be generated.

2 Device structure and Fano resonance

2.1 Device structure

Figure 1(a) shows a schematic structure of the RC-MZI.
The coupling between the MRR and the MZI (parent MZI)
is enabled by a small child MZI coupler with two micro-
heaters integrated for coupling tuning (indicated by the
dashed box). A PN junction is integrated in the racetrack
MRR for high-speed modulation. The other arm of the
parent MZI is integrated with a thermo–optic phase shifter
and a PIN diode-based variable optical attenuator (VOA)
to adjust the phase and amplitude of the light traveling in
this path, respectively. The device is highly reconfigurable,
and the resonance spectrum can be flexibly tailored.
The phase shifter is enabled by a silicon resistive micro-

heater that is made of a N++-doped silicon slab, as shown
in the inset of Fig. 1(a). After the current injection, the
temperature of the adjacent silicon waveguide increases,
leading to an increase in the effective refractive index and
thus the phase of the optical beam. The phase difference
between the two arms of the parent MZI determines the
resonance line shape at a certain wavelength [41,48]. To
obtain a high modulation efficiency, the PN junction has an
L-shape cross section to maximize the overlap between the
optical mode and the depletion region of the PN junction
[49].
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Figure 1(b) shows a microscope image of the device.
The device was fabricated using CMOS-compatible
processes. Direct current (DC) and RF signals were
applied to the device to set the operation point and perform
the modulation, respectively. The PN junction, thermo–
optic phase shifter, and VOA are 500, 200, and 300 μm in
length, respectively.

2.2 Modeling

We used the transfer matrix method to model the device.
The optical field transmission through the child MZI
coupler can be described as

b1

b2

" #
¼ MDC$MMZI$MDC$

a1
a2

� �
 

¼ t iκ

iκ t

" #
eiφ1 0

0 eiφ2

" #
t iκ

iκ t

" #
$

a1
a2

� �
   

¼ t11 k12

k21 t22

" #
$

a1
a2

� �
, (1)

where ai and bi (i = 1, 2) represent the light fields at the

input and output ports, respectively, k and t are the
coupling and transmission coefficients of the input splitter
and output combiner (k2 + t2 = 1 for lossless coupling) of
the child MZI, and φi is the phase of the MZI arm.
Fields a2 and b2 are related to the racetrack ring

resonator; therefore, we have

a2 ¼ b2$aRing$e
iφRing , (2)

where aRing and φRing are the loss factor and the
accumulated phase when light passes the feedback ring
waveguide, respectively. From Eqs. (1) and (2), the optical
field transmission through the resonance arm of the parent
MZI can be written as

tb ¼
b1
a1

¼ t11 þ
k12$k21$aRing$e

iφRing

1 – t22$aRing$e
iφRing

: (3)

The optical field traveling through the reference arm of
the parent MZI is given by

tu ¼ aVOA$awg$e
iðφpsþφVOAþφwgÞ, (4)

where aVOA and awg represent the loss factor associated
with the VOA and the waveguide, respectively, and φps,
φVOA, and φwg are the phases of the phase shifter, the

Fig. 1 (a) Schematic structure of the micro-ring resonator-coupled Mach–Zehnder interferometer. Insets: structures of the phase shifter
and the PN junction. (b) Microscope image of the fabricated device
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VOA, and the waveguide, respectively. The optical field
transfer function of the entire device can then be given by

Eout

Ein
¼ 1

2
tu þ tbð Þ: (5)

2.3 Fano resonance and modulation

Depending on the phase difference between the two arms
of the parent MZI, the device can exhibit various resonance
line shapes. In particular, Fano resonances are generated
when the phase of the resonance path differs by π/2 or 3π/2
from the other reference path, that is, |φ1 – φ2| = π/2 or
3π/2, where φ1 and φ2 are the arm phases of the parent
MZI. At the Fano resonances, the output spectrum presents
asymmetric resonance line shapes [41,48].
After applying an RF driving signal on the PN junction,

UWB pulses can be generated by modulating at the Fano
resonances. As depicted in Figs. 2(a) and 2(b), the Fano
resonance spectrum shifts back and forth in response to the
electrical driving signal. Effectively, the operation point
moves along the Fano spectrum on the rising/falling edge
of the square-wave driving signal. Thus, following the

Fano resonance line shape, the output optical power varies
correspondingly to produce a pair of monocycle UWB
pulses of opposite polarities in the time domain.
When the RF driving signal is a Gaussian pulse, the

device generates a UWB doublet signal, as shown in
Fig. 2(c). The symmetric-looking UWB doublet pulses are
produced when the halves of the two monocycle UWB
pulses in opposite polarities are combined. The upside-
down inverted UWB doublet can also be generated by
modulating the Fano resonance with a difference in the π-
phase (see Fig. 2(d)).

3 Measurement and results

3.1 Transmission spectrum

We first measured the device transmission spectrum, as
shown in Fig. 3. Because of the arm length difference of
the parent MZI, the resonance line shape varies with
wavelength to cover one Fano resonance evolution cycle
from 1551 to 1563 nm. The free spectral range of the MRR
is approximately 0.4 nm, whereas that of the parent MZI is
11 nm. Then, owing to the interference between the MRR

Fig. 2 Working principle illustration for generation of (a) and (b) UWB monocycle pulses in two polarities, (c) and (d) UWB doublet
pulses in two polarities

Zhe XU et al. Optical generation of UWB pulses utilizing Fano resonance modulation 429



and the parent MZI, the device exhibits distinct resonance
line shapes when the phase difference (Δφ) between the
MRR and the MZI changes. Specifically, when Δφ ≈ π/2,
the typical asymmetric Fano resonance line shape is
observed as shown in the upper left graph of Fig. 3. The
asymmetric Fano resonance has a peak-to-valley extinction
ratio of above 20 dB. When Δφ ≈ 3π/2, it exhibits the
reversed asymmetric Fano line shape, as shown in the
upper right graph of Fig. 3. When Δφ ≈ π, the spectrum
shows an inverted Lorentzian line shape in the bottom left
graph of Fig. 3. When Δφ ≈ 0, it becomes a Lorentzian line
shape as shown in the bottom right graph of Fig. 3. More
detailed explanations about the Fano resonance can be
found in Ref. [48].

By applying a DC voltage, Vps, on the phase shifter, the
phase difference between the arms of the parent MZI
changes, generating different resonance line shapes in the
spectrum, as shown in Fig. 4. Because the MRR is
sensitive to temperature, the device was placed on a
thermoelectric cooler during measurement to maintain the
temperature at 22°C�0.05°C.
Figure 5(a) shows that the Fano resonance spectrum

shifted when a DC voltage was applied onto the PN
junction. When the PN junction was set under the forward
bias regime (Vd> 0), it provided a higher modulation
efficiency but a larger loss than that under the reverse bias.
We extracted the phase shift from Fig. 5(a), taking the 0 V
curve as the reference. Then, we calculated the variation in

Fig. 3 Measured transmission spectrum of the RC-MZI in one Fano resonance evolution cycle. The insets illustrate the magnified
resonance spectra at different wavelengths. The modeled spectra are also shown
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the effective refractive index using the formula: Δneff = (l/
2π)$Δφ. Figure 5(b) shows the effective refractive index
change as a function of voltage. It has a slope of – 2� 10–5

and – 2.2 � 10–4 V–1 in the reverse and positive bias
regimes, respectively.

3.2 UWB pulse generation

According to the working principle described above, we
set up an experimental system to generate UWB pulses, as
shown in Fig. 6. Light from a tunable continuous-wave
laser (EXFO, T100S-HP, Canada) passes through a
polarization controller (PC) before being coupled to the
device. Square-wave or Gaussian RF pulses are generated
by an arbitrary waveform generator (AWG, SHF, 19120 B,

Germany), amplified by an RF amplifier (SHF 810,
broadband amplifier, Germany) and then combined with
the DC bias voltage through a bias-tee before they are
applied to the travelling-wave electrode (TWE) of the
device via a 40-GHz microwave probe for electro-optic
modulation. The other end of the TWE is terminated by a
50-Ω resistor for impedance matching. The modulated
optical signal output from the device is then amplified by
an erbium-doped fiber amplifier (EDFA) to compensate for
device insertion loss, followed by a 3-nm bandwidth
optical filter to suppress the amplified spontaneous
emission noise. Finally, the optical signal is received by
a photodetector and measured using an oscilloscope
(Keysight, Infinium UXR0804A, USA) and an electrical
spectrum analyzer (ESA, R&S, FSUP 50, Germany).

Fig. 4 Resonance spectra at four voltages (Vps) on the phase shifter

Fig. 5 (a) Fano resonance spectral shifts with different voltages (Vd) applied to the PN junction. (b) Extracted waveguide effective
refractive index variation as a function of voltage on the PN junction
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Figure 7(a) shows the UWB monocycles generated at
the wavelength of 1548.93 nm. The RF square-wave
driving signal has a frequency of 200 MHz and a duty
cycle of 35%. The voltage swing is from – 0.94 to 2.76 V.
The PN junction works mainly in the forward bias regime
to utilize its high modulation efficiency. The UWB
monocycle signal has a pulse width of approximately
150 ps at the rising edge of the RF signal. Because the
falling edge of the driving signal is slower than the rising
edge owing to the waveform distortion from the AWG, it
generates a broader UWB monocycle pulse in the opposite
polarity. Figure 7(c) shows the resulting UWB monocycle
pulses when the device was modulated at the wavelength

of 1553.74 nm. The pulse width was approximately 98 ps.
Figures 7(b) and 7(d) show the RF spectra of the UWB
waveforms. The discrete frequency lines have a spacing of
200 MHz, which is equal to the repetition rate of the
monocycle pulses.
When the RF driving signal is altered to Gaussian

pulses, UWB doublet pulses can be generated. The
Gaussian pulses have a frequency of 200 MHz and a
duty cycle of 15% with a voltage swing from – 1 to 3.7 V.
Figure 8 shows the UWB doublet signals and the
corresponding RF spectra.
If we still use a square wave as the electrical driving

signal and increase its voltage swing, higher-order UWB

Fig. 7 Generation of UWB monocycle pulses. (a) Monocycle pulses at the Fano resonance wavelength of 1548.93 nm and (b) its
electrical spectrum. (c) Monocycle pulses at the Fano resonance wavelength of 1553.74 nm and (d) its electrical spectrum

Fig. 6 Experimental setup for UWB signal generation and characterization. PC: polarization controller, EDFA: erbium-doped fiber
amplifier, PD: photodetector, AMP: RF amplifier, AWG: arbitrary waveform generator, ESA: electrical spectrum analyzer
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pulses can be generated, as shown in Fig. 9. When the
driving signal voltage swing is from – 1.1 to 3.9 V, the
device generates UWB doublet pulses (Fig. 9(a)). When
the voltage swing is from – 0.7 to 4.3 V, it generates UWB
triplet pulses (Fig. 9(c)). When the driving voltage is
further enlarged with a swing from – 1.16 to 5.16 V, UWB
quadruplet pulses are generated (Fig. 9(e)). The frequency
spacing in the electrical spectrum is 100 MHz, which
corresponds to the repetition rate of the RF driving signal.
Higher-order UWB pulses have better potential for
communication applications because the interference
between UWB signals and other wireless signals decreases
[18].
Table 1 illustrates the extracted RF central frequencies,

10-dB bandwidths, and fractional bandwidths of the
generated UWB signals. The 10-dB bandwidths of the
generated UWB signals are all wider than 500 MHz, and
the fractional bandwidths are over 20%, which qualifies as
the basic definition of a UWB signal. The RF central
frequencies are approximately 1 GHz, which is out of the
bandwidth of a typical power-efficient UWB signal (from
3.1 to 10.6 GHz). Perhaps the low central frequencies of
the generated UWB signals are caused by the limited
electro–optic (EO) bandwidth of the modulator. Particu-
larly, as the doublet generated by Gaussian pulses is

essentially a combination of two monocycles, it is possible
to produce FCC-compliant UWB pulses by tuning the full
width at half maximum (FWHM) of the Gaussian pulses
for the UWB doublet pulses [21,50]. Of note, there is
infringement in the global positioning system band (from
0.96 to 1.61 GHz). These unwanted RF frequencies could
be filtered by an UWB antenna.

4 Conclusions

We have realized a reconfigurable RC-MZI device on a
silicon photonics platform. It can generate Fano resonances
with asymmetric line shapes when there is a proper phase
difference between the two arms of the parent MZI. The
Fano resonance is modulated when a RF signal drives the
PN junction in the MRR, producing optical UWB
monocycle and doublet signals. UWB signals in opposite
polarity can be easily obtained by modulating at the other
asymmetric Fano resonance. Even higher-order UWB
pulses can be produced when the driving signal is
enhanced with a larger voltage swing. UWB technology
has superior performances in terms of accuracy, power
consumption, robustness in wireless connectivity, and
security. It is a promising technology in the era of 5G IoT,

Fig. 8 Generation of UWB doublet pulses. (a) Doublet pulses at the Fano resonance wavelength of 1548.93 nm and (b) its electrical
spectrum. (c) Doublet pulses at the Fano resonance wavelength of 1553.74 nm with the opposite polarity and (d) its electrical spectrum
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Fig. 9 Generation of high-order UWB pulses using a square-wave driving signal. (a) and (b) UWB doublet pulses and the electrical
spectrum. (c) and (d) UWB triplet pulses and the electrical spectrum. (e) and (f) UWB quadruplet pulses and the electrical spectrum

Table 1 Extracted key performance specifications of the generated UWB pulses

electrical driving
signal

200-MHz square wave 200-MHz Gaussian wave 100-MHz square wave

UWB signal UWB monocycle UWB monocycle UWB doublet UWB doublet UWB doublet UWB triplet UWB quadruplet

optical
wavelength/nm

1548.93 1553.74 1548.93 1553.74 1548.93 1548.93 1548.93

central
frequency/GHz

1.2 0.8 0.8 1.2 1 1.1 1.3

10-dB
bandwidth/GHz

2.2 1.4 3 1.4 1.2 0.8 1

fractional
bandwidth/%

183 175 375 117 120 72.7 76.9
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whose applications include industrial automation, sensing
network, home/office automation, and accurate indoor
positioning.
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