Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Jul 10;13(2):129–138. doi: 10.1007/s12200-020-1058-3

Performance of integrated optical switches based on 2D materials and beyond

Yuhan Yao 1, Zhao Cheng 1, Jianji Dong 1,, Xinliang Zhang 1
PMCID: PMC9743869  PMID: 36641553

Abstract

Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.

graphic file with name 12200_2020_1058_Fig1_HTML.jpg

Keywords: two-dimensional (2D) materials, integrated optics, optical switches, performance table

Acknowledgements

This work was supported in part by the National Key Research and Development Project of China (No. 2018YFB2201901) and in part by the National Natural Science Foundation of China (Grant No. 61805090).

Footnotes

Yuhan Yao is currently a Ph.D. candidate in Huazhong University of Science and Technology, Wuhan, China. Her current research interests include the integration of silicon photonics and two-dimensional materials as well as RF channelization.

Zhao Cheng is currently a Ph.D. candidate in Huazhong University of Science and Technology, Wuhan, China. His current research interests include 2D materials-based photonic modulators and photodetectors as well as photonic crystal waveguide.

Jianji Dong is a Professor at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), China. He received his Ph. D. degree of Optical Engineering from HUST in 2008. Subsequently, he worked as postdoc at Cambridge University, UK until 2010. From March 2010, he returned to HUST and was promoted to a full professor in 2013. His research interests include integrated microwave photonics, silicon photonics, and photonic computing. He has published more than 100 journal papers, including in Nature Communications, Light Science and Applications, and Physical Review Letters. He has made some special contributions to energy-efficient graphene silicon microheater, programmable temporal cloak, and complex spectrum analyzer of orbital angular momentum mode. He was honored with the Fund of Excellent Youth Scholar by the National Natural Science Foundation of China and honored with the First Award of Natural Science of Hubei Province. He is the editorial member of Scientific Reports, associate editor of IET Optoelectronics, and executive editor-in-chief of Frontier of Optoelectronics. He is an IEEE Senior Member and OSA member.

Xinliang Zhang received his Ph.D. degree in Physical Electronics from Huazhong University of Science and Technology (HUST), Wuhan, China in 2001. He is currently with Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, HUST as a Professor. He is the author or coauthor of more than 300 journal and conference papers. His current research interests include InP-based and Si-based devices and integration for optical network, high-performance computing and microwave photonics. In 2016, he was elected as an OSA Fellow.

References

  • 1.Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica. 2018;5(11):1354. [Google Scholar]
  • 2.Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Optics Express. 2018;26(12):16022–16043. doi: 10.1364/OE.26.016022. [DOI] [PubMed] [Google Scholar]
  • 3.Geis M W, Spector S J, Williamson R C, Lyszczarz T M. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters. 2004;16(11):2514–2516. [Google Scholar]
  • 4.Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express. 2010;18(19):20298–20304. doi: 10.1364/OE.18.020298. [DOI] [PubMed] [Google Scholar]
  • 5.Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A, St-Gelais R, Lipson M. On-chip thermo-optic tuning of suspended microresonators. Optics Express. 2017;25(11):12109–12120. doi: 10.1364/OE.25.012109. [DOI] [PubMed] [Google Scholar]
  • 6.Li X, Xu H, Xiao X, Li Z, Yu Y, Yu J. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters. 2014;39(4):751–753. doi: 10.1364/OL.39.000751. [DOI] [PubMed] [Google Scholar]
  • 7.Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics. 2019;12(2):148–156. [Google Scholar]
  • 8.Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express. 2007;15(2):430–436. doi: 10.1364/oe.15.000430. [DOI] [PubMed] [Google Scholar]
  • 9.Manipatruni S, Dokania R K, Schmidt B, Sherwood-Droz N, Poitras C B, Apsel A B, Lipson M. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters. 2008;33(19):2185–2187. doi: 10.1364/ol.33.002185. [DOI] [PubMed] [Google Scholar]
  • 10.Timurdogan E, Sorace-Agaskar C M, Sun J, Shah Hosseini E, Biberman A, Watts M R. An ultralow power athermal silicon modulator. Nature Communications. 2014;5(1):4008. doi: 10.1038/ncomms5008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ferrari A C, Bonaccorso F, Fal’ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman J N, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider G F, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko A N, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams G M, Hong B H, Ahn J H, Kim J M, Zirath H, van Wees B J, van der Zant H, Occhipinti L, Di Matteo A, Kinloch I A, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil S R, Tannock Q, Löiwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7(11):4598–4810. doi: 10.1039/c4nr01600a. [DOI] [PubMed] [Google Scholar]
  • 12.Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics. 2014;8(12):899–907. [Google Scholar]
  • 13.Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics. 2016;10(4):227–238. [Google Scholar]
  • 14.Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics. 2009;3(4):216–219. [Google Scholar]
  • 15.Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics. 2014;8(3):229–233. [Google Scholar]
  • 16.Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics. 2010;4(5):297–301. [Google Scholar]
  • 17.Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics. 2015;9(4):247–252. [Google Scholar]
  • 18.Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D N, Hone J, Lipson M. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics. 2020;14(4):256–262. [Google Scholar]
  • 19.Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature. 2015;520(7545):69–72. doi: 10.1038/nature14290. [DOI] [PubMed] [Google Scholar]
  • 20.Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X. Monolayer excitonic laser. Nature Photonics. 2015;9(11):733–737. [Google Scholar]
  • 21.Yao Y, Xia X, Cheng Z, Wei K, Jiang X, Dong J, Zhang H. All-optical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:10.1109/JSTQE.2020.2982985
  • 22.Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics. 2016;6(6):1205–1218. [Google Scholar]
  • 23.Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications. 2008;146(9–10):351–355. [Google Scholar]
  • 24.Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 2D materials: to graphene and beyond. Nanoscale. 2011;3(1):20–30. doi: 10.1039/c0nr00323a. [DOI] [PubMed] [Google Scholar]
  • 25.Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015;520(7549):656–660. doi: 10.1038/nature14417. [DOI] [PubMed] [Google Scholar]
  • 26.Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B. 2014;89(23):235319. [Google Scholar]
  • 27.Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications. 2014;5(1):4475. doi: 10.1038/ncomms5475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials. 2018;30(24):1705963. doi: 10.1002/adma.201705963. [DOI] [PubMed] [Google Scholar]
  • 29.Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, Wang Z, Ning C Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology. 2017;12(10):987–992. doi: 10.1038/nnano.2017.128. [DOI] [PubMed] [Google Scholar]
  • 30.Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters. 2010;105(13):136805. doi: 10.1103/PhysRevLett.105.136805. [DOI] [PubMed] [Google Scholar]
  • 31.Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials. 2011;23(37):4248–4253. doi: 10.1002/adma.201102306. [DOI] [PubMed] [Google Scholar]
  • 32.Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters. 2010;105(9):097401. doi: 10.1103/PhysRevLett.105.097401. [DOI] [PubMed] [Google Scholar]
  • 33.Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters. 2012;37(11):1856–1858. doi: 10.1364/OL.37.001856. [DOI] [PubMed] [Google Scholar]
  • 34.Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y, Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q, Fan D, Zhang H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH) Laser & Photonics Reviews. 2018;12(2):1700229. [Google Scholar]
  • 35.Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X, Zhao J. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications. 2020;9(1):63. doi: 10.1038/s41377-020-0304-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics. 2012;6(8):554–559. [Google Scholar]
  • 37.Li J, Liu C, Chen H, Guo J, Zhang M, Dai D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0093
  • 38.Miller D. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE. 2009;97(7):1166–1185. [Google Scholar]
  • 39.Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express. 2016;24(9):9295–9307. doi: 10.1364/OE.24.009295. [DOI] [PubMed] [Google Scholar]
  • 40.Jia H, Xia Y, Zhang L, Ding J, Fu X, Yang L. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology. 2017;35(15):3237–3241. [Google Scholar]
  • 41.Lee B G, Dupuis N. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology. 2019;37(1):6–20. [Google Scholar]
  • 42.Jia H, Zhou T, Zhao Y, Xia Y, Dai J, Zhang L, Ding J, Fu X, Yang L. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics. 2018;7(5):827–835. [Google Scholar]
  • 43.Zheng D, Doménech J D, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters. 2019;44(11):2629. [Google Scholar]
  • 44.Li Z, Zhou L, Lu L, Zhao S, Li D, Chen J. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research. 2016;4(1):21. [Google Scholar]
  • 45.Seok T J, Quack N, Han S, Muller R S, Wu M C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica. 2016;3(1):64. [Google Scholar]
  • 46.Han S, Seok T J, Quack N, Yoo B W, Wu M C. Large-scale silicon photonic switches with movable directional couplers. Optica. 2015;2(4):370. [Google Scholar]
  • 47.Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature. 2013;493(7431):195–199. doi: 10.1038/nature11727. [DOI] [PubMed] [Google Scholar]
  • 48.Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L. General architectures for on-chip optical space and mode switching. Optica. 2018;5(2):180. [Google Scholar]
  • 49.Xiong Y, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica. 2017;4(9):1098. [Google Scholar]
  • 50.Jia H, Zhou T, Zhang L, Ding J, Fu X, Yang L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express. 2017;25(17):20698–20707. doi: 10.1364/OE.25.020698. [DOI] [PubMed] [Google Scholar]
  • 51.Zhou T, Jia H, Ding J, Zhang L, Fu X, Yang L. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express. 2018;26(7):8375–8384. doi: 10.1364/OE.26.008375. [DOI] [PubMed] [Google Scholar]
  • 52.Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P C, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C. Femtojoule electrooptic modulation using a silicon-organic hybrid device. Light, Science & Applications. 2015;4(2):e255. [Google Scholar]
  • 53.Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics. 2010;4(7):477–483. [Google Scholar]
  • 54.Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics. 2012;6(4):248–252. [Google Scholar]
  • 55.Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics. 2020;14(1):37–43. [Google Scholar]
  • 56.Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics. 2008;2(3):185–189. [Google Scholar]
  • 57.Klein M, Badada B H, Binder R, Alfrey A, McKie M, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J, Schaibley J R. 2D semiconductor nonlinear plasmonic modulators. Nature Communications. 2019;10(1):3264. doi: 10.1038/s41467-019-11186-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research. 2020;8(4):468. [Google Scholar]
  • 59.Chen B, Wu H, Xin C, Dai D, Tong L. Flexible integration of freestanding nanowires into silicon photonics. Nature Communications. 2017;8(1):20. doi: 10.1038/s41467-017-00038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q. CMOS-compatible WS2-based all-optical modulator. ACS Photonics. 2018;5(2):342–346. [Google Scholar]
  • 61.Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications. 2017;8(1):14411. doi: 10.1038/ncomms14411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Song Q Q, Chen K X, Hu Z F. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology. 2020;38(6):1358–1364. [Google Scholar]
  • 63.Liu Y, Wang H, Wang S, Wang Y, Wang Y, Guo Z, Xiao S, Yao Y, Song Q, Zhang H, Xu K. Highly efficient silicon photonic microheater based on black arsenic-phosphorus. Advanced Optical Materials. 2020;8(6):1901526. [Google Scholar]
  • 64.Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:10.1515/nanoph-2019-0510
  • 65.Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica. 2016;3(2):159. [Google Scholar]
  • 66.Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters. 2014;105(25):251104. [Google Scholar]
  • 67.Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports. 2017;7(1):17046. doi: 10.1038/s41598-017-16989-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Gan S, Cheng C, Zhan Y, Huang B, Gan X, Li S, Lin S, Li X, Zhao J, Chen H, Bao Q. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale. 2015;7(47):20249–20255. doi: 10.1039/c5nr05084g. [DOI] [PubMed] [Google Scholar]
  • 69.Xu Z, Qiu C, Yang Y, Zhu Q, Jiang X, Zhang Y, Gao W, Su Y. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express. 2017;25(16):19479–19486. doi: 10.1364/OE.25.019479. [DOI] [PubMed] [Google Scholar]
  • 70.Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics. 2015;9(8):525–528. [Google Scholar]
  • 71.Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenløwe L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:10.1515/nanoph-2019-0381
  • 72.Gan X, Shiue R J, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D, Jr, Hone J, Heinz T F, Englund D. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters. 2013;13(2):691–696. doi: 10.1021/nl304357u. [DOI] [PubMed] [Google Scholar]
  • 73.Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews. 2016;10(2):307–316. [Google Scholar]
  • 74.Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics. 2015;9(8):511–514. [Google Scholar]
  • 75.Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q. Efficient modulation of 1.55 µm radiation with gated graphene on a silicon microring resonator. Nano Letters. 2014;14(12):6811–6815. doi: 10.1021/nl502363u. [DOI] [PubMed] [Google Scholar]
  • 76.Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters. 2012;12(3):1482–1485. doi: 10.1021/nl204202k. [DOI] [PubMed] [Google Scholar]
  • 77.Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D, Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters. 2015;15(3):2001–2005. doi: 10.1021/nl504860z. [DOI] [PubMed] [Google Scholar]
  • 78.Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene-silicon phase modulators with gigahertz bandwidth. Nature Photonics. 2018;12(1):40–44. [Google Scholar]
  • 79.Dalir H, Xia Y, Wang Y, Zhang X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics. 2016;3(9):1564–1568. [Google Scholar]
  • 80.Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon-organic hybrid modulator. Light, Science & Applications. 2014;3(5):e173. [Google Scholar]
  • 81.Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature. 2011;474(7349):64–67. doi: 10.1038/nature10067. [DOI] [PubMed] [Google Scholar]
  • 82.Miller D A B. Energy consumption in optical modulators for interconnects. Optics Express. 2012;20(S2):A293–A308. doi: 10.1364/OE.20.00A293. [DOI] [PubMed] [Google Scholar]
  • 83.Qiao L, Tang W, Chu T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports. 2017;7(1):42306. doi: 10.1038/srep42306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics. 2010;4(8):518–526. [Google Scholar]
  • 85.Yan S, Zhu X, Dong J, Ding Y, Xiao S. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0074
  • 86.Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenkøwe L K, Jin K J, Mortensen N A, Xiao S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale. 2017;9(40):15576–15581. doi: 10.1039/c7nr05994a. [DOI] [PubMed] [Google Scholar]
  • 87.Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics. 2019;6(1):154–161. [Google Scholar]
  • 88.Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenkøwe L K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics. 2020;9(2):317–325. [Google Scholar]
  • 89.Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N. Hybrid graphene plasmonic waveguide modulators. Nature Communications. 2015;6(1):8846. doi: 10.1038/ncomms9846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P, Fedoryshyn Y, Niegemann J, Hafner C, Leuthold J. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics. 2015;21(4):276–283. [Google Scholar]
  • 91.Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology. 2016;34(2):419–424. [Google Scholar]
  • 92.Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express. 2008;16(15):11513–11518. doi: 10.1364/oe.16.011513. [DOI] [PubMed] [Google Scholar]
  • 93.Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films. 2012;520(8):3354–3360. [Google Scholar]
  • 94.Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Van Campenhout J, Merckling C, Van Thourhout D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics. 2015;9(12):837–842. [Google Scholar]
  • 95.Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature. 2019;567(7748):323–333. doi: 10.1038/s41586-019-1013-x. [DOI] [PubMed] [Google Scholar]
  • 96.Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, Kim J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials. 2019;18(6):550–560. doi: 10.1038/s41563-019-0335-2. [DOI] [PubMed] [Google Scholar]
  • 97.Stanford M G, Rack P D, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications. 2018;2(1):20. [Google Scholar]
  • 98.Sorger V J, Amin R, Khurgin J B, Ma Z, Dalir H, Khan S. Scaling vectors of attoJoule per bit modulators. Journal of Optics. 2018;20(1):014012. [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES