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Abstract Applications of optical switches, such as signal
routing and data-intensive computing, are critical in optical
interconnects and optical computing. Integrated optical
switches enabled by two-dimensional (2D) materials and
beyond, such as graphene and black phosphorus, have
demonstrated many advantages in terms of speed and
energy consumption compared to their conventional
silicon-based counterparts. Here we review the state-of-
the-art of optical switches enabled by 2D materials and
beyond and organize them into several tables. The
performance tables and future projections show the
frontiers of optical switches fabricated from 2D materials
and beyond, providing researchers with an overview of this
field and enabling them to identify existing challenges and
predict promising research directions.
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1 Introduction

Optical switches are increasingly considered for applica-
tions in optical computing and interconnections in order to
meet the ever-growing performance demands in data
centers [1,2]. With the advent of the Big Data era, Moore’s
Law is approaching its physical limit. Traditional photonic
integrated circuits (PICs) face crucial challenges in energy
consumption, operation speed, and fabrication cost. As the
basic units of large-scale PICs, integrated optical switches
are of great significance for use in interconnections, the
performance of which always determines the upper limit of
the whole circuit. To provide switches with greater
applicability to high-performance optoelectronics, it is
essential to design an optical switch with a small footprint,
low energy consumption, and fast response time.

Conventional integrated optical switches utilize varia-
tions in the effective refractive index of the waveguide
produced, including the thermo-optic effect [3–7] or
plasma dispersion [8–10]. However, conventional switches
have hit a technical limit imposed by the properties of
traditional bulk materials, which cannot adequately satisfy
the growing needs [11]. Consequently, investigators have
developed hybrid structures to improve the performance of
optical switches, using active substances, such as two-
dimensional (2D) materials [12,13] and polymers [14,15],
that are introduced into the traditional optical devices. In
recent years, 2D materials, such as graphene, black
phosphorus, and transition-metal dichalcogenides, have
become increasingly attractive for integrated photonic
applications in light sources, modulators, and photodetec-
tors [16–21]. Their atomically thin structures reduce the
dimensionality of the material, resulting in unique optical
and electronic properties— including high electron mobi-
lity [22–25], strong anisotropy [26,27], strong photolumi-
nescence [28,29], tunable bandgaps [30,31], large optical
nonlinearity [32–36], etc.— that provide great opportu-
nities for improving the performance of optoelectronic
devices. In particular, the combination of 2D materials and
complementary metal-oxide-semiconductor (CMOS)-
compatible integrated photonics appears very promising.
It can compensate for the intrinsic drawbacks of the
waveguide itself [37], thus providing great potential for
realizing high-performance optical switches. Note that all
the optical switches mentioned below refer particularly to
devices integrated with 2D materials and beyond.
In communication systems, the properties of switches,

such as the extinction ratio, insertion loss, and footprint,
must be carefully considered. We specifically focus on the
operation speed and energy consumption because these
two parameters are of most concern for realistic applica-
tions in large-scale PICs. Furthermore, we expect that
future interconnect technologies will demand optical
components on a chip that consume less energy than one
femtojoule per bit [38]. In particular, we present complete
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tables containing representative optical switches, provid-
ing a useful information resource that summarizes the work
in this area. In addition, the performance of various optical
switches is summarized in terms of switching time and
energy consumption. These data will be updated with
further progress in this field to provide more support for
investigators.

2 Criterion for statistics

The optical switches discussed in this article refer to time-
domain switches or optical modulators rather than to
spatial switches or optical routers that use N � N optical-
switch fabric, which can be built up by connecting the
basic switching cells into switching-fabric topologies [39–
47]. In addition, noteworthy results in mode-multiplexed
photonic switches are not included [48–51], as we focus
exclusively on single-mode systems. All the data in the
following tables and figures are taken from studies
published before April 2020. Different physical mecha-

nisms have been explored to trigger the optical switching
process in integrated devices, which can be classified into
all-optical, thermo-optical, and electro-optical switching.
Energy consumption in integrated devices is always used
to rank the switching performance [38]. To allow for a
detailed and comprehensive analysis, we chose different
units to evaluate the energy consumption for each type of
mechanism. We selected energy per bit (E/bit) for all-
optical and electro-optical switching and selected the
minimum power per free spectral range (FSR) (mW/FSR)
for thermo-optical switching.

3 Performance tables

Table 1 lists the representative studies of all-optical
switches over the years. Most are 2D materials-based
hybrid structures, although a few are polymer-based
devices. The columns include the switching principle,
material, device structure, energy consumption, switching
time, and publication date. Table 2 lists several excellent

Table 1 Performance list of all-optical switches with energy consumption and switching time

switching principle material device structure energy consumption
/(fJ$bit–1)

switching time
/ps

publication time Ref.

carrier-induced nonlinearity InGaAsP PhC nanocavity 0.66 35 May. 2010 [53]

carrier-induced nonlinearity InGaAsP PhC nanocavity 2.5 44 Feb. 2012 [54]

saturable absorption graphene plasmonic waveguide 35 0.26 Nov. 2019 [55]

optical nonlinearity polymer photonic-bandgap
microcavity

520 1.2 Feb. 2008 [56]

third-order nonlinearity WSe2 metallic waveguide 650 0.29 Jul. 2019 [57]

saturable absorption graphene straight waveguide 2100 1.65 Mar. 2020 [58]

carrier-induced nonlinearity CdS free-standing nanowires
/silicon waveguides

NA NA Jun. 2017 [59]

photoluminescence WS2 straight waveguide NA NA Nov. 2017 [60]

Notes: NA—not available, PhC—photonic crystal.

Table 2 Performance list of thermo-optical switches with tuning efficiency and rise/decay times

switching principle device structure tuning efficiency/(mW$FSR–1) rise/decay times/ms publication time Ref.

graphene microheaters silicon PhC waveguides 3.99 0.75/0.525 Feb. 2017 [61]

graphene heater silicon MZI 6.6 980/520 Mar. 2020 [62]

black arsenic-phosphorus micro-
heater

silicon MZI 9.48 30/20 Jan. 2020 [63]

thermal-optic effect of black phos-
phorus

silicon MRR 12.2 0.479/0.113 Jan. 2020 [64]

graphene nanoheaters silicon microdisk resonator 47.25 12.8/8.8 Feb. 2016 [65]

graphene heat conductor silicon MZI 141 20/20 Dec. 2014 [66]

thermal conductivity of graphene Si3N4 MRR 683.5 0.253/0.888 Dec. 2017 [67]

graphene heater silicon MRR NA 0.75/0.8 Oct. 2015 [68]

graphene microheater silicon nanobeam cavity 1.5 nm/mW 1.11/1.47 Aug. 2017 [69]

Notes: NA—not available, PhC—photonic crystal, MZI—Mach–Zehnder interferometer, MRR—microring resonator. The phase change is calculated as Δf ¼ Δl
FSR

2π.
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thermo-optical switches. Here the 2D materials work as
heat conductors or transparent heaters. Table 3 lists the
best-performing electro-optical switches, which are the
most studied and the closest to practical industrial
applications, with the best power consumption of 0.7
fJ/bit [52].
The following charts track the progress and trends of the

switching energy and switching time. Figure 1(a) shows
the trend in energy consumption of all-optical and electro-
optical switches in recent years. The overall energy
consumption of all-optical switches based on 2D materials
is 1–3 orders of magnitude lower than that of electro-
optical switches, the performance of which fluctuates
slightly around hundreds of femtojoules. Notably, the
switching energy of optical switches with plasmonic-
graphene hybrid waveguides can be reduced significantly,
to 35 fJ/bit [55]. This suggests a new solution for energy-
efficient processing, which is further discussed in the next
section. Figure 1(b) depicts the tuning efficiency of
thermo-optic switches over time. By incorporating mono-
layer graphene with a silicon photonic-crystal waveguide,
a graphene microheater has the lowest reported power
consumption (3.99 mW per FSR), which is attributed to the
slow-light waveguide greatly enhancing the light-matter
interactions.
Figure 2 presents the trend in switching time of all-

optical, thermo-optical, and electro-optical switches over
time. Overall, the speed of all three mechanisms has
dropped by almost two orders of magnitude over the past

10 years. All-optical switching has the fastest switching
time (sub-picosecond level), since it can be completely
implemented in the optical domain, avoiding the conver-
sion from external electronic signals to optical ones.
Thermo-optical switches typically employ heating to
change the phase of the light beam. Graphene, used as a
transparent heater, has been integrated onto various silicon
photonic-crystal waveguides to provide enhanced tuning
efficiency, and it outperforms conventional metallic
microheaters [61,69]. Unfortunately, the response times
are relatively slow (hundreds of nanoseconds to tens of
microseconds) because of the intrinsically slow thermal
diffusivity. In contrast, the device response of electro-
optical switches is limited by the electrical bandwidth
rather than by the intrinsic speed of the material. Since
graphene has an ultrahigh electron mobility [23], the
modulation speed is consequently limited by the RC time
constant of the modulator, which can be enhanced with
structural optimization of the electro-optical modulators
[71,74,76,78,79].
Next, we further subdivide optical switches into

categories according to the different device structures.
Figure 3 shows the performance of various switching
devices in two dimensions (energy and time) simulta-
neously. For all-optical switches (Fig. 3(a)), photonic-
crystal microcavities and plasmonic waveguides show
obvious advantages on the energy-time-product line
compared to conventional waveguides. For thermo-optic
switches (Fig. 3(b)), Mach–Zehnder interferometer (MZI)

Table 3 Performance list of electro-optical switches with energy consumption and operation speed

switching principle material device structure energy consumption
/(fJ$bit–1)

operation speed
/GHz

publication time Ref.

Pockels effect polymer silicon slot waveguide 0.7 NA Feb. 2015 [52]

electro-optic effect polymer plasmonic slot
waveguide

25 70 Jul. 2015 [70]

electrically tuning graphene/graphene
capacitor

silicon PhC waveguide 275 12 Nov. 2019 [71]

electrically gating graphene air-slot PhC nanocavity 340 NA Jan. 2013 [72]

electrically tuning graphene silicon rib waveguide 350 2.6–5.9 Jan. 2016 [73]

electrically tuning graphene/graphene
capacitor

silicon nitride MRR 800 30 Jul. 2015 [74]

gate tuning Fermi level graphene silicon MRR 900 NA Nov. 2014 [75]

electrically tuning
Fermi level

double-layer graphene silicon waveguide 1000 1 Feb. 2012 [76]

electrically gating graphene-boron nitride
heterostructure

silicon PhC nanocavity 1000 1.2 Feb. 2015 [77]

electrically tuning graphene silicon MZI 1000 5 Dec. 2017 [78]

electrically gating graphene/graphene
capacitor

silicon straight
waveguide

1400 35 Sep. 2016 [79]

Pockels effect polymer silicon slot waveguide NA 100 May. 2014 [80]

electrically tuning
Fermi level

graphene silicon bus waveguide NA 1.2 May. 2011 [81]

Notes: PhC—photonic crystal, MRR—microring resonator, MZI—Mach–Zehnder interferometer, NA—not available. The energy per bit (E/bit) is calculated as
E=bit ¼ 1=4CV 2, where C is the device capacitance and V is the driving voltage [82].

Yuhan YAO et al. Performance of integrated optical switches based on 2D materials and beyond 131



type optical switches are all located on a roughly similar
energy-time-product line, but the photonic-crystal wave-
guides and optimized microring resonators are located
away from this line. For electro-optical switches
(Fig. 3(c)), plasmonic waveguides show significant
advantages.

4 What lies behind the statistics

4.1 Pros and cons of the three different mechanisms

As mentioned above, optical switches can be classified into
all-optical, thermo-optical, and electro-optical switches,
according to the switching mechanism. All-optical
switches are the most promising candidates for use in
PICs because of their energy-efficient power consumption
and high-speed switching times, since they avoid electro-
optical conversion. All-optical switches use the nonlinear
properties of the material to control one light beam by
another. The key to reducing energy consumption without
affecting speed is effectively to enhance the nonlinear
interaction in a limited volume. This can be achieved by
using high-quality microring resonators, photonic-crystal
microcavities, and metallic nanostructures. An all-optical
switch with a graphene-loaded plasmonic waveguide
shows superior performance, with an ultralow switching
energy of 35 fJ/bit and an ultrafast switching time of 260
fs, thanks to the extremely strong light confinement in the
plasmonic slot waveguide, which enhances the nonlinear
absorption in graphene [55]. By using 2D materials as
thermal conductors or transparent nanoheaters, thermo-
optical switching can be achieved with a simple config-
uration having high efficiency, an easy fabrication process,
and low cost. However, due to the slowness of thermal

diffusion itself, the fastest switching time is only in the
hundreds of nanoseconds. An electro-optic switch is one
based on the electro-optic effect, that is, on the change in
the refractive index of the material caused by a direct
current (DC) or an alternating current (AC) electric field.
This effect can be obtained either from nonlinear optical
materials or from linear electro-optic materials. Electro-
optic switching is widely used in high-speed optical
interconnections, due to its ability to connect the electrical
domain with the optical domain. However, it often requires
complex structural optimization, and the insertion loss is
relatively high, which are challenges that remain to be
improved in the future.

4.2 Results for different device structures

Figure 3 illustrates schematically that the overall perfor-
mance of a device is affected by the different waveguide
structures, such as a photonic-crystal waveguide, plasmo-
nic waveguide, microring, and MZI. The MZI-type optical
switches are among the most commonly used building
blocks in PICs, and they have great advantages in the
fabrication process, manufacturing cost, and good scal-
ability. However, because they are non-resonant devices,
they have been criticized for their lower energy efficiency
and less compactness. Additional control of the powers
obtained from the two arms of the interferometer is also
required to maximize the extinction ratio [83]. Conversely,
the resonance effect in an optical microcavity is capable of
enhancing the light sensitivity. Photonic-crystal wave-
guides and microring resonators can significantly increase
the light-matter interaction inside the switch. Therefore,
resonant cavities with large quality-to-volume (Q/V) ratios
are very promising candidates for reducing the energy
consumption and shrinking the footprint of a device.

Fig. 1 (a) Trends in energy consumption of all-optical and electro-optical switches over time. (b) Trends in the energy consumption of
thermo-optical switches over time
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However, the resonance effect is usually for light of a
specific frequency, which limits the operating-wavelength
range, and both thermal and fabrication tolerance remain
challenges for practical use [84]. Combinations of
nanomaterials with integrated plasmonic nanostructures
are also being explored to provide an alternative way to
enhance the light-matter interactions [85–89]. Metallic
nanostructures that support surface plasmon polaritons
show strong abilities to concentrate light within the
subwavelength region, providing great potential for
realizing high-performance optoelectronic devices with
compact footprints [90].

4.3 Ultrafast integrated optical switches with ultralow
switching energies remain an ongoing challenge

At present, the integration of 2D materials into photonic
platforms is still limited. Although they are not very
mature, 2D materials are far more accessible and flexible
than their III-V counterparts [91–94], and they may prove
to be more adaptable for on-chip integration using simple,
cheap, and scalable post-processing techniques. In the rich
family of 2D materials, more candidates are worth
exploring, and the bottleneck in utilizing them for large-
scale applications may soon be overtaken by recent

Fig. 2 Trends in the switching time of all-optical, electro-optical, and thermo-optical switches over time. The switching time is the
average of the rise and decay times

Fig. 3 (a) Performance of various all-optical switches. (b) Performance of various thermo-optical switches. (c) Performance of various
electro-optical switches. The switching time and switching energy per bit/tuning efficiency are indicated for switches using a photonic-
crystal waveguide (PhCW) [53,54,61,71], plasmonic waveguide (WG) [55,57,70], straight waveguide [58,76,79], rib waveguide [73],
Mach–Zehnder interferometer (MZI) [62,63,66,78], microdisk [65], and microring resonator (MRR) [64,67,74]
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breakthroughs in wafer-scale, synthesis methods and
manufacturing processes [95–97]. In the past few years,
assisted by 2D materials and beyond, several break-
throughs have been made in integrated optical switches, in
terms of switching time and energy consumption. How-
ever, it is still difficult to reduce the energy consumption
further to the attojoule level, which is essential for future
large-scale PICs. This requires meticulous, systematic, and
deep exploration of the mechanism responsible for
enhancing light-matter interactions, that is, of the interac-
tion mechanisms and methods for controlling multi-
physical (optical, thermal, electric) fields within the
medium. Based on the performance of emerging nanoma-
terials and plasmonic, nanophotonic, hybrid integration
performs, ultrafast switching with energy consumption at
the attojoule level may be achievable [98]. More effort
must be devoted to this field to improve the performance
further.
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