Abstract
There are a variety of elementary and collective terahertz-frequency excitations in condensed matter whose magnetic field dependence contains significant insight into the states and dynamics of the electrons involved. Often, determining the frequency, temperature, and magnetic field dependence of the optical conductivity tensor, especially in high magnetic fields, can clarify the microscopic physics behind complex many-body behaviors of solids. While there are advanced terahertz spectroscopy techniques as well as high magnetic field generation techniques available, a combination of the two has only been realized relatively recently. Here, we review the current state of terahertz time-domain spectroscopy (THz-TDS) experiments in high magnetic fields. We start with an overview of time-domain terahertz detection schemes with a special focus on how they have been incorporated into optically accessible high-field magnets. Advantages and disadvantages of different types of magnets in performing THz-TDS experiments are also discussed. Finally, we highlight some of the new fascinating physical phenomena that have been revealed by THz-TDS in high magnetic fields.

Keywords: high magnetic field, terahertz time-domain spectroscopy (THz-TDS)
Acknowledgements
J. K. acknowledges support from the U.S. Army Research Office (W911NF-17-1-0259), the U.S. National Science Foundation (NSF MRSEC DMR-1720595), the U.S. Department of Energy (DEFG02-06ER46308), and the Robert A. Welch Foundation (C-1509).
Footnotes
Andrey Baydin is a postdoctoral scholar in Department of Electrical and Computer Engineering at Rice University, USA. He obtained his Ph.D. degree in Physics from Vanderbilt University, USA in May 2018. His current research interests include ultra-fast spectroscopy of quantum materials and light-matter interaction in the ultrastrong coupling regime.
Takuma Makihara joined Prof. Kono’s laboratory in the spring of 2019, where he focused on terahertz time-domain magnetospectrscopy of orthoferrites using the Rice Advanced Magnet with Broadband Optics. He received his B.S. degree in Physics from Rice University, USA in 2020, and is currently pursuing his Ph.D. at Stanford University, USA with a focus on quantum hardware.
Nicolas Marquez Peraca received his B.S. degree in Physics from University of the Republic in Montevideo, Uruguay in 2016. Before joining Prof. Kono’s laboratory in the fall of 2018, he was a Guest Researcher for two years at National Institute of Standards and Technology in Gaithersburg, MD, USA, where he worked in the electric and opto-electronic characterization of multijunction solar cells. His research interests include ultrafast phenomena in condensed matter physics, terahertz magnetospectroscopy of quantum materials, and quantum technology.
Junichiro Kono is Karl F. Hasselmann Chair in Engineering, Professor in Departments of Electrical & Computer Engineering, Physics & Astronomy, and Materials Science & Nanoengineering, and Chair of Applied Physics at Rice University, USA. He received his B.S. and M.S. degrees in Applied Physics from University of Tokyo, Japan in 1990 and 1992, respectively, and completed his Ph.D. in Physics from State University of New York at Buffalo, USA in 1995. He was a postdoctoral research associate at University of California Santa Barbara, USA from 1995 to 1997, and the W. W. Hansen Experimental Physics Laboratory Fellow in Department of Physics at Stanford University, USA from 1997 to 2000. His current research interests include quantum optics in condensed matter, ultrastrong light-matter coupling, and terahertz science and technology.
Contributor Information
Andrey Baydin, Email: baydin@rice.edu.
Junichiro Kono, Email: kono@rice.edu.
References
- 1.Nuss M C, Orenstein J. Terahertz time-domain spectroscopy. In: Grüner G, editor. Millimeter and Sub-millimeter Wave Spectroscopy of Solids. Berlin: Springer-Verlag; 1998. pp. 7–50. [Google Scholar]
- 2.Schmuttenmaer C A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews. 2004;104(4):1759–1780. doi: 10.1021/cr020685g. [DOI] [PubMed] [Google Scholar]
- 3.Lee Y S. Principles of Terahertz Science and Technology, vol. 170. Berlin: Springer; 2009. [Google Scholar]
- 4.Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews. 2011;5(1):124–166. [Google Scholar]
- 5.Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics. 2011;83(2):543–586. [Google Scholar]
- 6.Neu J, Schmuttenmaer C A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS) Journal of Applied Physics. 2018;124(23):231101. [Google Scholar]
- 7.Cong K, Noe G T, II, Kono J. Excitons in Magnetic Fields. Oxford: Elsevier; 2018. pp. 63–81. [Google Scholar]
- 8.MacDonald A H, Rezayi E H. Fractional quantum Hall effect in a two-dimensional electron-hole fluid. Physical Review B: Condensed Matter and Materials Physics. 1990;42(5):3224–3227. doi: 10.1103/physrevb.42.3224. [DOI] [PubMed] [Google Scholar]
- 9.Dzyubenko A B, Lozovik Y E. Symmetry of Hamiltonians of quantum two-component systems: condensate of composite particles as an exact eigenstate. Journal of Physics A, Mathematical and General. 1991;24(2):415–424. [Google Scholar]
- 10.Apal’kov V M, Rashba E I. Magnetospectroscopy of 2D electron-gas: cusps in emission-spectra and Coulomb gaps. JETP Letters. 1991;53:442–448. [Google Scholar]
- 11.Rashba E I, Sturge M D, Yoon H W, Pfeiffer L N. Hidden symmetry and the magnetically induced “Mott transition” in quantum wells containing an electron gas. Solid State Communications. 2000;114(11):593–596. [Google Scholar]
- 12.Proust C, Taillefer L. The remarkable underlying ground states of cuprate superconductors. Annual Review of Condensed Matter Physics. 2019;10(1):409–429. [Google Scholar]
- 13.Shi Z, Baity P G, Sasagawa T, Popović D. Vortex phase diagram and the normal state of cuprates with charge and spin orders. Science Advances. 2020;6(7):eaay8946. doi: 10.1126/sciadv.aay8946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P. Extreme magnetic field-boosted superconductivity. Nature Physics. 2019;15(12):1250–1254. doi: 10.1038/s41567-019-0670-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L. Multicomponent fractional quantum Hall effect in graphene. Nature Physics. 2011;7(9):693–696. [Google Scholar]
- 16.Moll P J, Potter A C, Nair N L, Ramshaw B J, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R, Ronning F, Analytis J G. Magnetic torque anomaly in the quantum limit of Weyl semimetals. Nature Communications. 2016;7(1):12492. doi: 10.1038/ncomms12492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters. 1995;67(24):3523–3525. [Google Scholar]
- 18.Wu Q, Zhang X C. Ultrafast electro-optic field sensors. Applied Physics Letters. 1996;68(12):1604–1606. [Google Scholar]
- 19.Nahata A, Weling A S, Heinz T F. A wide-band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters. 1996;69(16):2321–2323. [Google Scholar]
- 20.Wu Q, Zhang X C. 7 terahertz broadband GaP electro-optic sensor. Applied Physics Letters. 1997;70(14):1784–1786. [Google Scholar]
- 21.Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters. 2000;76(22):3191–3193. [Google Scholar]
- 22.Liu K, Xu J, Zhang X C. GaSe crystals for broadband terahertz wave detection. Applied Physics Letters. 2004;85(6):863–865. [Google Scholar]
- 23.Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics. 1988;24(2):255–260. [Google Scholar]
- 24.Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America B, Optical Physics. 2009;26(9):A66–A73. [Google Scholar]
- 25.Elzinga P A, Kneisler R J, Lytle F E, Jiang Y, King G B, Laurendeau N M. Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling. Applied Optics. 1987;26(19):4303–4309. doi: 10.1364/AO.26.004303. [DOI] [PubMed] [Google Scholar]
- 26.Janke C, Först M, Nagel M, Kurz H, Bartels A. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Optics Letters. 2005;30(11):1405–1407. doi: 10.1364/ol.30.001405. [DOI] [PubMed] [Google Scholar]
- 27.Yasui T, Saneyoshi E, Araki T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Applied Physics Letters. 2005;87(6):061101. [Google Scholar]
- 28.Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T. Ultrafast time-domain spectroscopy based on highspeed asynchronous optical sampling. Review of Scientific Instruments. 2007;78(3):035107. doi: 10.1063/1.2714048. [DOI] [PubMed] [Google Scholar]
- 29.Spencer B, Smith W F, Hibberd M T, Dawson P, Beck M, Bartels A, Guiney I, Humphreys C J, Graham D M. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique. Applied Physics Letters. 2016;108(21):212101. [Google Scholar]
- 30.Tauser F, Rausch C, Posthumus J H, Lison F. Proceedings of Commercial and Biomedical Applications of Ultrafast Lasers VIII. San Jose: SPIE; 2008. Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers; p. 688100. [Google Scholar]
- 31.Kim Y, Yee D S. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Optics Letters. 2010;35(22):3715–3717. doi: 10.1364/OL.35.003715. [DOI] [PubMed] [Google Scholar]
- 32.Liu J, Mbonye M K, Mendis R, Mittleman D M. Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications. San Jose: IEEE; 2010. Measurement of terahertz pulses using electronically controlled optical sampling (ECOPS) pp. 1–2. [Google Scholar]
- 33.Noe G T I, Zhang Q, Lee J, Kato E, Woods G L, Nojiri H, Kono J. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics. 2014;53(26):5850–5855. doi: 10.1364/AO.53.005850. [DOI] [PubMed] [Google Scholar]
- 34.Molter D, Ellrich F, Weinland T, George S, Goiran M, Keilmann F, Beigang R, Léotin J. High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field. Optics Express. 2010;18(25):26163–26168. doi: 10.1364/OE.18.026163. [DOI] [PubMed] [Google Scholar]
- 35.Teo S M, Ofori-Okai B K, Werley C A, Nelson K A. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Review of Scientific Instruments. 2015;86(5):051301. doi: 10.1063/1.4921389. [DOI] [PubMed] [Google Scholar]
- 36.Minami Y, Hayashi Y, Takeda J, Katayama I. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror. Applied Physics Letters. 2013;103(5):051103. [Google Scholar]
- 37.Topp M, Rentzepis P, Jones R. Time-resolved absorption spectroscopy in the 10–12-sec range. Journal of Applied Physics. 1971;42(9):3415–3419. [Google Scholar]
- 38.Topp M, Rentzepis P, Jones R. Time resolved picosecond emission spectroscopy of organic dye lasers. Chemical Physics Letters. 1971;9(1):1–5. [Google Scholar]
- 39.Kim K Y, Yellampalle B, Taylor A J, Rodriguez G, Glownia J H. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons. Optics Letters. 2007;32(14):1968–1970. doi: 10.1364/ol.32.001968. [DOI] [PubMed] [Google Scholar]
- 40.Katayama I, Sakaibara H, Takeda J. Real-time time-frequency imaging of ultrashort laser pulses using an echelon mirror. Japanese Journal of Applied Physics. 2011;50(10):102701. [Google Scholar]
- 41.Noe G T I, Katayama I, Katsutani F, Allred J J, Horowitz J A, Sullivan D M, Zhang Q, Sekiguchi F, Woods G L, Hoffmann M C, Nojiri H, Takeda J, Kono J. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Optics Express. 2016;24(26):30328–30337. doi: 10.1364/OE.24.030328. [DOI] [PubMed] [Google Scholar]
- 42.Makihara T, Hayashida K, Noe G T II, Li X, Kono J. Magnonic quantum simulator of antiresonant ultrastrong light-matter coupling. 2020, arXiv:2008:10721
- 43.Jiang Z, Zhang X C. Electro-optic measurement of THz field pulses with a chirped optical beam. Applied Physics Letters. 1998;72(16):1945–1947. [Google Scholar]
- 44.Jiang Z, Zhang X C. Single-shot spatiotemporal terahertz field imaging. Optics Letters. 1998;23(14):1114–1116. doi: 10.1364/ol.23.001114. [DOI] [PubMed] [Google Scholar]
- 45.Matlis N, Plateau G, van Tilborg J, Leemans W. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation. Journal of the Optical Society of America B, Optical Physics. 2011;28(1):23–27. [Google Scholar]
- 46.Noe G T, II, Zhang Q, Lee J, Kato E, Woods G L, Nojiri H, Kono J. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics. 2014;53(26):5850–5855. doi: 10.1364/AO.53.005850. [DOI] [PubMed] [Google Scholar]
- 47.Walecki W, Some D, Kozlov V, Nurmikko A. Terahertz electromagnetic transients as probes of a two-dimensional electron gas. Applied Physics Letters. 1993;63(13):1809–1811. [Google Scholar]
- 48.Some D, Nurmikko A V. Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures. Applied Physics Letters. 1994;65(26):3377–3379. [Google Scholar]
- 49.Some D, Nurmikko A V. Coherent transient cyclotron emission from photoexcited GaAs. Physical Review B: Condensed Matter and Materials Physics. 1994;50(8):5783–5786. doi: 10.1103/physrevb.50.5783. [DOI] [PubMed] [Google Scholar]
- 50.Some D, Nurmikko A V. Ultrafast photoexcited cyclotron emission: contributions from real and virtual excitations. Physical Review B: Condensed Matter and Materials Physics. 1996;53(20):R13295–R13298. doi: 10.1103/physrevb.53.r13295. [DOI] [PubMed] [Google Scholar]
- 51.Crooker S A. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments. 2002;73(9):3258–3264. [Google Scholar]
- 52.Wang X, Hilton D J, Ren L, Mittleman D M, Kono J, Reno J L. Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas. Optics Letters. 2007;32(13):1845–1847. doi: 10.1364/ol.32.001845. [DOI] [PubMed] [Google Scholar]
- 53.Sumikura H, Nagashima T, Kitahara H, Hangyo M. Development of a cryogen-free terahertz time-domain magnetooptical measurement system. Japanese Journal of Applied Physics. 2007;46(4A):1739–1744. [Google Scholar]
- 54.Ikebe Y, Shimano R. Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect. Applied Physics Letters. 2008;92(1):012111. [Google Scholar]
- 55.Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science. 2012;335(6074):1323–1326. doi: 10.1126/science.1216022. [DOI] [PubMed] [Google Scholar]
- 56.George D K, Stier A V, Ellis C T, McCombe B D, Cerne J, Markelz A G. Terahertz magneto-optical polarization modulation spectroscopy. Journal of the Optical Society of America. B, Optical Physics. 2012;29(6):1406–1412. [Google Scholar]
- 57.Wood C D, Mistry D, Li L H, Cunningham J E, Linfield E H, Davies A G. On-chip terahertz spectroscopic techniques for measuring mesoscopic quantum systems. Review of Scientific Instruments. 2013;84(8):085101. doi: 10.1063/1.4816736. [DOI] [PubMed] [Google Scholar]
- 58.Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science. 2016;354(6316):1124–1127. doi: 10.1126/science.aaf5541. [DOI] [PubMed] [Google Scholar]
- 59.Crooker S. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments. 2002;73(9):3258–3264. [Google Scholar]
- 60.Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nature Physics. 2010;6(2):126–130. [Google Scholar]
- 61.Arikawa T, Wang X, Hilton D J, Reno J L, Pan W, Kono J. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Physical Review B: Condensed Matter and Materials Physics. 2011;84(24):241307. [Google Scholar]
- 62.Arikawa T, Wang X, Belyanin A A, Kono J. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Optics Express. 2012;20(17):19484–19492. doi: 10.1364/OE.20.019484. [DOI] [PubMed] [Google Scholar]
- 63.Zhang Q, Arikawa T, Kato E, Reno J L, Pan W, Watson J D, Manfra M J, Zudov M A, Tokman M, Erukhimova M, Belyanin A, Kono J. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Physical Review Letters. 2014;113(4):047601. doi: 10.1103/PhysRevLett.113.047601. [DOI] [PubMed] [Google Scholar]
- 64.Zhang Q, Lou M, Li X, Reno J L, Pan W, Watson J D, Manfra M J, Kono J. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nature Physics. 2016;12(11):1005–1011. [Google Scholar]
- 65.Li X, Bamba M, Zhang Q, Fallahi S, Gardner G C, Gao W, Lou M, Yoshioka K, Manfra M J, Kono J. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity. Nature Photonics. 2018;12(6):324–329. [Google Scholar]
- 66.Li X, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M, Xu K, Jin Z, Ren W, Ma G, Cao S, Turchinovich D, Kono J. Observation of Dicke cooperativity in magnetic interactions. Science. 2018;361(6404):794–797. doi: 10.1126/science.aat5162. [DOI] [PubMed] [Google Scholar]
- 67.Toth J, Bird M D, Bole S, O’Reilly J W. Fabrication and assembly of the NHMFL 25 T resistive split magnet. IEEE Transactions on Applied Superconductivity. 2012;22(3):4301604. [Google Scholar]
- 68.Curtis J A, Burch A D, Barman B, Linn A G, McClintock L M, O’Beirne A L, Stiles M J, Reno J L, McGill S A, Karaiskaj D, Hilton D J. Broadband ultrafast terahertz spectroscopy in the 25 T Split Florida-Helix. Review of Scientific Instruments. 2018;89(7):073901. doi: 10.1063/1.5023384. [DOI] [PubMed] [Google Scholar]
- 69.Curtis J A, Tokumoto T, Nolan N K, McClintock L M, Cherian J G, McGill S A, Hilton D J. Ultrafast pump-probe spectroscopy in gallium arsenide at 25 T. Optics Letters. 2014;39(19):5772–5775. doi: 10.1364/OL.39.005772. [DOI] [PubMed] [Google Scholar]
- 70.Paul J, Stevens C E, Smith R P, Dey P, Mapara V, Semenov D, McGill S A, Kaindl R A, Hilton D J, Karaiskaj D. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. Review of Scientific Instruments. 2019;90(6):063901. doi: 10.1063/1.5055891. [DOI] [PubMed] [Google Scholar]
- 71.Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics. 2008;2(10):605–609. [Google Scholar]
- 72.Kress M, Löffler T, Eden S, Thomson M, Roskos H G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters. 2004;29(10):1120–1122. doi: 10.1364/ol.29.001120. [DOI] [PubMed] [Google Scholar]
- 73.Molter D, Torosyan G, Ballon G, Drigo L, Beigang R, Léotin J. Step-scan time-domain terahertz magneto-spectroscopy. Optics Express. 2012;20(6):5993–6002. doi: 10.1364/OE.20.005993. [DOI] [PubMed] [Google Scholar]
- 74.Noe G T, II, Nojiri H, Lee J, Woods G L, Léotin J, Kono J. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T. Review of Scientific Instruments. 2013;84(12):123906. doi: 10.1063/1.4850675. [DOI] [PubMed] [Google Scholar]
- 75.Post K W, Legros A, Rickel D G, Singleton J, McDonald R D, He X, Bozovic I, Xu X, Shi X, Armitage N P, Crooker S A. Observation of cyclotron resonance and measurement of the hole mass in optimally-doped La2−xSrxCuO4. 2020, arXiv:2006.09131
- 76.Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics. 2008;25(7):B6–B19. [Google Scholar]
- 77.McCombe B D, Wagner R J. Intraband magneto-optical studies of semiconductors in the far-infrared. I. In: Marton L, editor. Advances in Electronics and Electron Physics, vol. 37. New York: Academic Press; 1975. pp. 1–78. [Google Scholar]
- 78.Mittleman D M. Sensing with Terahertz Radiation. Berlin: Springer; 2003. [Google Scholar]
- 79.Basov D N, Averitt R D, VanDerMarel D, Dressel M, Haule K. Electrodynamics of correlated electron materials. Reviews of Modern Physics. 2011;83(2):471–541. [Google Scholar]
- 80.Dexheimer S L. Terahertz Spectroscopy: Principles and Applications. Boca Raton, Florida: CRC press; 2017. [Google Scholar]
- 81.Kézsmárki I, Szaller D, Bordács S, Kocsis V, Tokunaga Y, Taguchi Y, Murakawa H, Tokura Y, Engelkamp H, Rõõm T, Nagel U. Oneway transparency of four-coloured spin-wave excitations in multiferroic materials. Nature Communications. 2014;5(1):3203. doi: 10.1038/ncomms4203. [DOI] [PubMed] [Google Scholar]
- 82.Bordács S, Kézsmárki I, Szaller D, Demkó L, Kida N, Murakawa H, Onose Y, Shimano R, Rõõm T, Nagel U, Miyahara S, Furukawa N, Tokura Y. Chirality of matter shows up via spin excitations. Nature Physics. 2012;8(10):734–738. [Google Scholar]
- 83.Penc K, Romhányi J, Rõõm T, Nagel U, Antal A, Fehér T, Jánossy A, Engelkamp H, Murakawa H, Tokura Y, Szaller D, Bordács S, Kézsmárki I. Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7. Physical Review Letters. 2012;108(25):257203. doi: 10.1103/PhysRevLett.108.257203. [DOI] [PubMed] [Google Scholar]
- 84.Peedu L, Kocsis V, Szaller D, Viirok J, Nagel U, Rõõm T, Farkas D G, Bordács S, Kamenskyi D L, Zeitler U, Tokunaga Y, Taguchi Y, Tokura Y, Kézsmárki I. Spin excitations of magnetoelectric LiNiPO4 in multiple magnetic phases. Physical Review B: Condensed Matter and Materials Physics. 2019;100(2):024406. [Google Scholar]
- 85.Talbayev D, LaForge A D, Trugman S A, Hur N, Taylor A J, Averitt R D, Basov D N. Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites. Physical Review Letters. 2008;101(24):247601. doi: 10.1103/PhysRevLett.101.247601. [DOI] [PubMed] [Google Scholar]
- 86.Mihály L, Talbayev D, Kiss L F, Zhou J, Fehér T, Jánossy A. Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3. Physical Review B: Condensed Matter and Materials Physics. 2004;69(2):024414. [Google Scholar]
- 87.Mihály L, Fehér T, Dóra B, Náfrádi B, Berger H, Forró L. Spin resonance in the ordered magnetic state of Ni5(TeO3)4Cl2. Physical Review B: Condensed Matter and Materials Physics. 2006;74(17):174403. [Google Scholar]
- 88.Kézsmárki I, Nagel U, Bordács S, Fishman R S, Lee J H, Yi H T, Cheong S W, Rõõm T. Optical diode effect at spin-wave excitations of the room-temperature multiferroic BiFeO3. Physical Review Letters. 2015;115(12):127203. doi: 10.1103/PhysRevLett.115.127203. [DOI] [PubMed] [Google Scholar]
- 89.Autore M, Engelkamp H, D’Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S. Observation of magnetoplasmons in Bi2Se3 topological insulator. ACS Photonics. 2015;2(9):1231–1235. [Google Scholar]
- 90.Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, Loidl A. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Physical Review Letters. 2017;119(22):227202. doi: 10.1103/PhysRevLett.119.227202. [DOI] [PubMed] [Google Scholar]
- 91.Sahasrabudhe A, Kaib D A S, Reschke S, German R, Koethe T C, Buhot J, Kamenskyi D, Hickey C, Becker P, Tsurkan V, Loidl A, Do S H, Choi K Y, Grüninger M, Winter S M, Wang Z, Valentí R, van Loosdrecht P H M. High-field quantum disordered state in α-RuCl3: spin flips, bound states, and multi-particle continuum. Physical Review B: Condensed Matter and Materials Physics. 2020;101(14):140410. [Google Scholar]
- 92.LaForge A D, Frenzel A, Pursley B C, Lin T, Liu X, Shi J, Basov D N. Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B: Condensed Matter and Materials Physics. 2010;81(12):125120. [Google Scholar]
- 93.Schafgans A, Post K W, Taskin A A, Ando Y, Qi X L, Chapler B C, Basov D N. Landau level spectroscopy of surface states in the topological insulator Bi0.91Sb0.09 via magneto-optics. Physical Review B: Condensed Matter and Materials Physics. 2012;85(19):195440. [Google Scholar]
- 94.Schafgans A A, LaForge A D, Dordevic S V, Qazilbash M M, Padilla W J, Burch K S, Li Z Q, Komiya S, Ando Y, Basov D N. Towards a two-dimensional superconducting state of La2−xSrx-CuO4 in a moderate external magnetic field. Physical Review Letters. 2010;104(15):157002. doi: 10.1103/PhysRevLett.104.157002. [DOI] [PubMed] [Google Scholar]
- 95.Dresselhaus G, Kip A F, Kittel C. Cyclotron resonance of electrons and holes in silicon and germanium crystals. Physical Review. 1955;98(2):368–384. [Google Scholar]
- 96.Lax B, Mavroides J G. Cyclotron resonance. In: Seitz F, Turnbull D, editors. Solid State Physics, vol. 11. New York: Academic Press; 1960. pp. 261–400. [Google Scholar]
- 97.McCombe B D, Wagner R J. Intraband magneto-optical studies of semiconductors in the far-infrared. II. In: Marton L, editor. Advances in Electronics and Electron Physics, vol. 38. New York: Academic Press; 1975. pp. 1–53. [Google Scholar]
- 98.Kono J, et al. Cyclotron resonance. In: Kaufmann E N, et al., editors. Methods in Materials Research. New York: John Wiley & Sons; 2001. [Google Scholar]
- 99.Kono J, Miura N. Cyclotron resonance in high magnetic fields. In: Miura N, Herlach F, editors. High Magnetic Fields: Science and Technology, Volume III. Singapore: World Scientific; 2006. pp. 61–90. [Google Scholar]
- 100.Hilton D J, Arikawa T, Kono J. Cyclotron resonance. In: Kaufmann E N, editor. Characterization of Materials. 2nd edition. New York: John Wiley & Sons, Inc.; 2012. pp. 1–15. [Google Scholar]
- 101.Wang X, Hilton D J, Reno J L, Mittleman D M, Kono J. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases. Optics Express. 2010;18(12):12354–12361. doi: 10.1364/OE.18.012354. [DOI] [PubMed] [Google Scholar]
- 102.Dicke R H. Coherence in spontaneous radiation processes. Physical Review. 1954;93(1):99–110. [Google Scholar]
- 103.Miura N, Yokoi H, Kono J, Sasaki S. High field cyclotron resonance and the electron effective masses in AlAs. Solid State Communications. 1991;79(12):1039–1042. [Google Scholar]
- 104.Kono J, Miura N, Takeyama S, Yokoi H, Fujimori N, Nishibayashi Y, Nakajima T, Tsuji K, Yamanaka M. Observation of cyclotron resonance in low-mobility semiconductors using pulsed ultra-high magnetic fields. Physica B, Condensed Matter. 1993;184(1–4):178–183. [Google Scholar]
- 105.Kono J, Takeyama S, Takamasu T, Miura N, Fujimori N, Nishibayashi Y, Nakajima T, Tsuji K. High-field cyclotron resonance and valence-band structure in semiconducting diamond. Physical Review B: Condensed Matter and Materials Physics. 1993;48(15):10917–10925. doi: 10.1103/physrevb.48.10917. [DOI] [PubMed] [Google Scholar]
- 106.Kono J, Takeyama S, Yokoi H, Miura N, Yamanaka M, Shinohara M, Ikoma K. High-field cyclotron resonance and impurity transition in n-type and p-type 3C-SiC at magnetic fields up to 175 T. Physical Review B: Condensed Matter and Materials Physics. 1993;48(15):10909–10916. doi: 10.1103/physrevb.48.10909. [DOI] [PubMed] [Google Scholar]
- 107.Knap W, Contreras S, Alause H, Skierbiszewski C, Camassel J, Dyakonov M, Robert J L, Yang J, Chen Q, Asif Khan M, Sadowski M L, Huant S, Yang F H, Goiran M, Leotin J, Shur M S. Cyclotron resonance and quantum hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface. Applied Physics Letters. 1997;70(16):2123–2125. [Google Scholar]
- 108.Wang Y, Kaplan R, Ng H K, Doverspike K, Gaskill D K, Ikedo T, Akasaki I, Amono H. Magneto-optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance. Journal of Applied Physics. 1996;79(10):8007–8010. [Google Scholar]
- 109.Cheng B, Taylor P, Folkes P, Rong C, Armitage N P. Magnetoterahertz response and Faraday rotation from massive dirac fermions in the topological crystalline insulator Pb0.5Sn0.5Te. Physical Review Letters. 2019;122(9):097401. doi: 10.1103/PhysRevLett.122.097401. [DOI] [PubMed] [Google Scholar]
- 110.Jeffries C D. Electron-hole condensation in semiconductors: electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties. Science. 1975;189(4207):955–964. doi: 10.1126/science.189.4207.955. [DOI] [PubMed] [Google Scholar]
- 111.Zhang Q, Wang Y, Gao W, Long Z, Watson J D, Manfra M J, Belyanin A, Kono J. Stability of high-density two-dimensional excitons against a Mott transition in high magnetic fields probed by coherent terahertz spectroscopy. Physical Review Letters. 2016;117(20):207402. doi: 10.1103/PhysRevLett.117.207402. [DOI] [PubMed] [Google Scholar]
- 112.Li X, Yoshioka K, Zhang Q, Marquez Peraca N, Katsutani F, Gao W, Noe G T II, Watson J D, Manfra M J, Katayama I, Takeda J, Kono J. Observation of terahertz gain in two-dimensional magnetoexcitons. 2020, arXiv:2004.11459 [DOI] [PubMed]
- 113.Hangyo M, Tani M, Nagashima T. Terahertz time-domain spectroscopy of solids: a review. International Journal of Infrared and Millimeter Waves. 2005;26(12):1661–1690. [Google Scholar]
- 114.von Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters. 1980;45(6):494–497. [Google Scholar]
- 115.Ikebe Y, Morimoto T, Masutomi R, Okamoto T, Aoki H, Shimano R. Optical Hall effect in the integer quantum Hall regime. Physical Review Letters. 2010;104(25):256802. doi: 10.1103/PhysRevLett.104.256802. [DOI] [PubMed] [Google Scholar]
- 116.Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H. Quantum Faraday and Kerr rotations in graphene. Nature Communications. 2013;4(1):1841. doi: 10.1038/ncomms2866. [DOI] [PubMed] [Google Scholar]
- 117.Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D, Applied Physics. 2005;38(8):R123–R152. [Google Scholar]
- 118.Yu S, Dhanasekhar C, Adyam V, Deckoff-Jones S, Man M K L, Madéo J, Wong E L, Harada T, Murali Krishna M B, Dani K M, Talbayev D. Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo4O7. Physical Review B. 2017;96(9):094421. [Google Scholar]
- 119.Armitage N P, Wu L. On the matter of topological insulators as magnetoelectrics. SciPost Physics. 2019;6:046. [Google Scholar]
- 120.Essin A M, Moore J E, Vanderbilt D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Physical Review Letters. 2009;102(14):146805. doi: 10.1103/PhysRevLett.102.146805. [DOI] [PubMed] [Google Scholar]
- 121.Maciejko J, Qi X L, Drew H D, Zhang S C. Topological quantization in units of the fine structure constant. Physical Review Letters. 2010;105(16):166803. doi: 10.1103/PhysRevLett.105.166803. [DOI] [PubMed] [Google Scholar]
- 122.Morimoto T, Furusaki A, Nagaosa N. Topological magnetoelectric effects in thin films of topological insulators. Physical Review B: Condensed Matter and Materials Physics. 2015;92(8):085113. [Google Scholar]
- 123.Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics. 2008;78(19):195424. [Google Scholar]
- 124.Tse W K, MacDonald A H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Physical Review Letters. 2010;105(5):057401. doi: 10.1103/PhysRevLett.105.057401. [DOI] [PubMed] [Google Scholar]
- 125.Tse W K, MacDonald A H. Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems. Physical Review B: Condensed Matter and Materials Physics. 2011;84(20):205327. [Google Scholar]
- 126.Wang J, Lian B, Qi X L, Zhang S C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Physical Review B: Condensed Matter and Materials Physics. 2015;92(8):081107. [Google Scholar]
- 127.Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Physical Review Letters. 2019;122(20):206401. doi: 10.1103/PhysRevLett.122.206401. [DOI] [PubMed] [Google Scholar]
- 128.Wilczek F. Two applications of axion electrodynamics. Physical Review Letters. 1987;58(18):1799–1802. doi: 10.1103/PhysRevLett.58.1799. [DOI] [PubMed] [Google Scholar]
- 129.Hancock J N, van Mechelen J L, Kuzmenko A B, van der Marel D, Brüne C, Novik E G, Astakhov G V, Buhmann H, Molenkamp L W. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Physical Review Letters. 2011;107(13):136803. doi: 10.1103/PhysRevLett.107.136803. [DOI] [PubMed] [Google Scholar]
- 130.Jenkins G S, Sushkov A B, Schmadel D C, Butch N P, Syers P, Paglione J, Drew H D. Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3. Physical Review B: Condensed Matter and Materials Physics. 2010;82(12):125120. [Google Scholar]
- 131.Valdés Aguilar R, Stier A V, Liu W, Bilbro L S, George D K, Bansal N, Wu L, Cerne J, Markelz A G, Oh S, Armitage N P. Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. Physical Review Letters. 2012;108(8):087403. doi: 10.1103/PhysRevLett.108.087403. [DOI] [PubMed] [Google Scholar]
- 132.Wu L, Tse W K, Brahlek M, Morris C M, Aguilar R V, Koirala N, Oh S, Armitage N P. High-resolution Faraday rotation and electron-phonon coupling in surface states of the bulk-insulating topological insulator Cu0.02Bi2Se3. Physical Review Letters. 2015;115(21):217602. doi: 10.1103/PhysRevLett.115.217602. [DOI] [PubMed] [Google Scholar]
- 133.Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Böttcher J, Tkachov G, Hankiewicz E M, Brüne C, Buhmann H, Molenkamp L W. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nature Communications. 2017;8(1):15197. doi: 10.1038/ncomms15197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Li X, Yoshioka K, Xie M, Noe G T, Lee W, Marquez Peraca N, Gao W, Hagiwara T, Handegård Ø S, Nien L W, Nagao T, Kitajima M, Nojiri H, Shih C K, MacDonald A H, Katayama I, Takeda J, Fiete G A, Kono J. Terahertz Faraday and Kerr rotation spectroscopy of Bi1−xSbx films in high magnetic fields up to 30 Tesla. Physical Review B: Condensed Matter and Materials Physics. 2019;100(11):115145. [Google Scholar]
- 135.Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nature Communications. 2016;7(1):12245. doi: 10.1038/ncomms12245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Morris C M, Valdés Aguilar R, Ghosh A, Koohpayeh S M, Krizan J, Cava R J, Tchernyshyov O, McQueen T M, Armitage N P. Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb2O6 investigated by high-resolution time-domain terahertz spectroscopy. Physical Review Letters. 2014;112(13):137403. doi: 10.1103/PhysRevLett.112.137403. [DOI] [PubMed] [Google Scholar]
- 137.Little A, Wu L, Lampen-Kelley P, Banerjee A, Patankar S, Rees D, Bridges C A, Yan J Q, Mandrus D, Nagler S E, Orenstein J. Antiferromagnetic resonance and terahertz continuum in α-RuCl3. Physical Review Letters. 2017;119(22):227201. doi: 10.1103/PhysRevLett.119.227201. [DOI] [PubMed] [Google Scholar]
- 138.Wu L, Little A, Aldape E E, Rees D, Thewalt E, Lampen-Kelley P, Banerjee A, Bridges C A, Yan J Q, Boone D, Patankar S, Goldhaber-Gordon D, Mandrus D, Nagler S E, Altman E, Orenstein J. Field evolution of magnons in α-RuCl3 by highresolution polarized terahertz spectroscopy. Physical Review. B. 2018;98(9):094425. [Google Scholar]
- 139.Ozel I O, Belvin C A, Baldini E, Kimchi I, Do S, Choi K Y, Gedik N. Magnetic field-dependent low-energy magnon dynamics in α-RuCl3. Physical Review. B. 2019;100(8):085108. [Google Scholar]
- 140.Shi L, Liu Y Q, Lin T, Zhang M Y, Zhang S J, Wang L, Shi Y G, Dong T, Wang N L. Field-induced magnon excitation and in-gap absorption in the Kitaev candidate RuCl3. Physical Review B: Condensed Matter and Materials Physics. 2018;98(9):094414. [Google Scholar]
- 141.Yu S, Gao B, Kim J W, Cheong S W, Man M K L, Madéo J, Dani K M, Talbayev D. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Physical Review Letters. 2018;120(3):037601. doi: 10.1103/PhysRevLett.120.037601. [DOI] [PubMed] [Google Scholar]
- 142.Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics. 2019;91(2):025005. [Google Scholar]
- 143.Kockum A F, Miranowicz A, De Liberato S, Savasta S, Nori F. Ultrastrong coupling between light and matter. Nature Reviews Physics. 2019;1(1):19–40. [Google Scholar]
- 144.Hagenmüller D, De Liberato S, Ciuti C. Ultra-strong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor. Physical Review B: Condensed Matter and Materials Physics. 2010;81(23):235303. [Google Scholar]
- 145.Herrmann G. Resonance and high frequency susceptibility in canted antiferromagnetic substances. Journal of Physics and Chemistry of Solids. 1963;24(5):597–606. [Google Scholar]
- 146.Artoni M, Birman J L. Polaritonsqueezing: theory and proposed experiment. Quantum Optics: Journal of the European Optical Society Part B. 1989;1(2):91–97. [Google Scholar]
- 147.Schwendimann P, Quattropani A. Nonclassical properties of polariton states. Europhysics Letters. 1992;17(4):355–358. [Google Scholar]
- 148.Ciuti C, Bastard G, Carusotto I. Quantumvacuum properties of the intersubband cavity polariton field. Physical Review B: Condensed Matter and Materials Physics. 2005;72(11):115303. [Google Scholar]
