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Abstract Perovskite-based optoelectronic devices, espe-
cially perovskite light-emitting diodes (PeLEDs) and
perovskite solar cells, have recently attracted considerable
attention. The National Renewable Energy Laboratory
(NREL) chart inspires us to develop a counterpart for
PeLEDs. In this study, we collect the record performance
of PeLEDs including several new entries to address their
latest external quantum efficiency (EQE), highest lumi-
nance, and stability status. We hope that these performance
tables and future updated versions will show the frontiers
of PeLEDs, assist researchers in capturing the overview of
this field, identify the remaining challenges, and predict the
promising research directions.

Keywords metal halide perovskite, light-emitting diode
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1 Introduction

Metal halide perovskites, a class of promising semicon-
ductor materials with superior photoelectric properties,
have produced a significant progress in solar cells, light-
emitting diodes (LEDs), photodetectors, and lasers [1].
Thus far, the most active research area is solar cells, which
enjoy a continually improved efficiency and growing
commercial activities. Their efficiency evolution is avail-
able on the National Renewable Energy Laboratory
(NREL) chart, which records the best certified efficiencies
of state-of-the-art solar cells from 1976 to the present day.
This chart allows readers to conveniently track industry
trends and cutting-edge research status, which accelerates
the advancement of this field.
However, until now, there has been no record line, chart,

or even a review for perovskite light-emitting diodes
(PeLEDs). In 2018, Cao et al. [2] and Lin et al. [3] have
simultaneously reported highly efficient near-infrared and
green PeLEDs with an external quantum efficiency (EQE)
greater than 20%. The EQEs of PeLEDs matched those of
commercial organic LEDs (OLEDs) in approximately four
years after their development [4], which suggests the
unparalleled potential of PeLEDs in lighting and display
applications. Soon after, a red PeLED with an EQE of
21.6% was developed [5], which marked 2018 as a
milestone in the development of PeLEDs. In addition,
efficient blue PeLEDs have been recently reported [6,7].
Encouraged by the unprecedentedly rapid progress [8],
more researchers have focused on PeLEDs and produced
many encouraging results.
In this paper, we present useful tables containing world-

class PeLEDs, aiming to provide researchers working on
PeLED technologies with a valuable information resource.
In addition, some performance tables summarize the core
parameters of PeLEDs with the best EQE, record
luminance, and noteworthy operation lifetime. Moreover,
PeLEDs, which are based on lead-free materials and new
manufacturing processes, are separately collected to
exploit additional benefits. These tables will be renewed
with the further progress of this field to provide additional
support for researchers. Thus, this study reviews the
present status and outlines the future trends of PeLED
research.

2 Criterion for statistics

All data in the following figures and tables are extracted
from reported studies that were published before April
2020. Of note, standard certification for LEDs has not been
adopted to evaluate the performance of PeLEDs [9].
Herein, peak EQE is used to rank the PeLED efficiency
regardless of the errors between different measurement
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systems. For the operation stability, superior devices and
competitive cases are shown despite different test condi-
tions. A compromised rule is developed to distinguish the
emission color of PeLEDs as follows: electroluminescence
(EL) peak shorter than 500 nm is blue, 510–540 nm is
green, 630–700 nm is red, and beyond 750 nm is near-
infrared.

3 Performance tables

Classified according to the EL peak, Table 1 lists the best-
performing PeLEDs in different emission bands. The
columns include color, perovskite composition, dimen-
sionality, EL peak, device structure, EQE, maximum
luminance (Lmax), current efficiency, stability, active area,
full width at half maximum (FWHM), CIE coordinate,
note, and publication date. We attempted to make this table
current and comprehensive by recording all notable studies
on solution-processed lead-based PeLEDs. In addition,
special cases are also recorded such as optical out-coupling
enhancement. The stability and luminance records are
separately noted irrespective of the EQE value.
Of note, perovskites in Table 1 are all fabricated by spin

coating, which is facile for manufacturing in a laboratory.
We insist that vacuum deposition also shows considerable
advantages in perovskite film processing (e.g., absence of
solubility limit, good reproducibility with uniform mor-
phology, and scaled-up production [10]), which makes it a
competitive fabrication technique for the potential com-
mercialization of PeLEDs. Table 2 lists several PeLEDs
produced by vacuum methods, which include thermal
evaporation (co-evaporation or layer-by-layer deposition),
chemical vapor deposition (CVD), and vacuum-assisted
multi-deposition. There is only one report on vacuum-
deposited blue or red PeLEDs; more attention is dedicated
to green PeLEDs. After approximately three years, the
EQEs of vacuum-fabricated LEDs gradually exceeded 4%;
however, these values are still considerably lower than
those of solution-processed PeLEDs.
Finally, Table 3 shows lead-free LEDs to demonstrate

environmentally friendly candidates without the toxic
heavy metal. Only several studies incorporated lead-free
perovskites or perovskite derivatives into LEDs, with the
best EQE of 3.8%. However, there have been many lead-
free materials with good photoluminescence properties
reported in the literature [46–50], which enables further
EQE and luminance improvement of lead-free LEDs. In
addition, the FWHM of lead-free PeLEDs is several times
wider than that of lead-based PeLEDs, which make them
more suitable for lighting instead of display applications.
After compiling the performance of state-of-the-art

PeLEDs, we further subdivide perovskite categories into
three parts by dimensionality (Fig. 1). From the material
point of view, dimensionality engineering has been widely
adopted. Low-dimensional perovskites with a larger

exciton binding energy show enhanced radiative recombi-
nation and higher EQE [62]. Therefore, we summarized
the highest EQEs (Fig. 1(a)) and luminance (Fig. 1(b)) of
bulk, quasi-two-dimensional (quasi-2D), and quantum dot
(QD) PeLEDs with conventional device architectures apart
from out-coupling strategies.

4 What lies behind the statistics

Metal halide perovskites possess considerable potential
in LED applications. The EQEs of green, red, and near-
infrared PeLEDs have reached over 20%, which is
comparable to those of commercial OLEDs. In addition,
the FWHM of PeLEDs is narrower than that of OLEDs,
which indicates a more saturated color gamut in the
National Television System Committee (NTSC) standard.
This rapid and exciting progress attracts and encourages
more researchers toward this rising field, as indicated by
the upsurge in published papers in this field. With more
institutions and researchers delving into this field, the
performance, stability, and manufacturability of PeLEDs
can be hopefully pushed to surpass those of OLEDs in the
near future, which enables their display and lighting
applications.
Operation stability is the major existing challenge.

The reported lifetime of PeLEDs lags far behind that of
OLEDs and QLEDs, which impedes their commercializa-
tion. With an increase in the device EQE, stability is the
major drawback that must be solved. Strategies to enhance
stability will be aided by researching the following aspects:
intrinsic instability of perovskite materials and degradation
mechanism of PeLEDs, which require meticulous and
systematic exploration.
Efficient blue PeLEDs with a synergetic EL stability

enhancement deserve more efforts. The relatively poor
performance of blue PeLEDs originates from unsatisfac-
tory EQE and inferior operation stability. Blue emitters can
be achieved by mixed halide perovskites, which always
undergo EL redshift stemming from phase segregation.
Blue PeLEDs from reduced-dimensional perovskites suffer
from the inefficiency of electrically-driven carrier injection
and difficulty of single-phase control. Exploring ways to
produce efficient and stable blue PeLEDs is an essential
and challenging subject that must be addressed in the
future.
Efficiency-oriented exploration of new materials and

process methods requires further studies. As discussed
above, solution-processed Pb-based PeLEDs have been
considerably improved in the past few years; however, the
high toxicity of lead and relatively low reproducibility cast
doubt on their potential commercialization. Electrolumi-
nescent devices that are based on lead-free perovskites or
perovskite derivatives are one direction that is worth
further exploration. The other worthwhile direction is to
identify more commercially viable fabrication strategies.
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Inkjet printing or electrohydrodynamic printing is the top
choice for the fabrication of ultra-large-size displays.
Thermal evaporation (preferably single-sourced), which is
compatible with existing OLED manufacturing lines, also
deserves more research attention. More efforts must be
devoted to these new technologies to improve their
performance through composition, morphology, grain
engineering, and device physics.
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