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Abstract All-optical devices, which are utilized to
process optical signals without electro-optical conversion,
play an essential role in the next generation ultrafast,
ultralow power-consumption optical information proces-
sing systems. To satisfy the performance requirement,
nonlinear optical materials that are associated with fast
response, high nonlinearity, broad wavelength operation,
low optical loss, low fabrication cost, and integration
compatibility with optical components are required.
Graphene is a promising candidate, particularly consider-
ing its electrically or optically tunable optical properties,
ultrafast large nonlinearity, and high integration compat-
ibility with various nanostructures. Thus far, three all-
optical modulation systems utilize graphene, namely free-
space modulators, fiber-based modulators, and on-chip
modulators. This paper aims to provide a broad view of
state-of-the-art researches on the graphene-based all-
optical modulation systems. The performances of different
devices are reviewed and compared to present a compre-
hensive analysis and perspective of graphene-based all-
optical modulation devices.

Keywords graphene, saturable absorption, low power
consumption, all-optical modulation

1 Introduction

The continuously growing internet data traffic has led to a
burgeoning demand for faster and more energy-efficient
information processing technology, which has prompted
extensive research on ultrafast, ultralow power consuming,
and miniature modulators [1,2]. The state-of-the-art
electro-optical modulator (EOM) has recorded significant

progress recently. The thin-film LiNbO3-based EOM has a
modulation bandwidth close to or exceeding 100 GHz with
a modulation speed of over 100 Gb/s and energy
dissipation of tens or hundreds of femto-joules per bit
[3,4]. Silicon-based modulators also have modulation
speeds higher than 100 Gb/s with a 3-dB bandwidth of
over 50 GHz [5]. Moreover, silicon-organic-hybrid
modulators can function at a 3-dB bandwidth higher than
100 GHz [6]. Through strong nanoscale local-field
enhancement, plasmonic phase modulators [7–9] could
be scaled down to the micron level while maintaining
femto-joule energy consumption and modulation speeds of
hundreds-of-Gb/s. Although significant progress has been
achieved recently, the intrinsic limitation from the parasitic
capacitance and resistance in the electric circuit, as well as
the energy consumption from the electro-optical conver-
sion still limit their ultimate performance. It is difficult to
simultaneously elevate the modulation rate up to Tb/s and
impress the power dissipation down to femto-joules per bit.
All-optical modulators (AOMs), where the modulation

is realized by using a pump light to control the probe light
[10–13], have a great potential to overcome the bottleneck
of the EOM. Compared to the EOM, AOMs could
eliminate the electro-optical-electro conversion and
achieve lower power consumption with a larger bandwidth
[14]. A variety of photonic platforms have been applied to
achieve all-optical modulation via ultrafast nonlinear
interaction [15–18]. Materials with ultra-high nonlinearity
play a key role in determining the ultimate speed and
energy consumption limit of AOMs, and resonance or
plasmonic structures could be assisted to achieve a high
ON/OFF ratio and small device footprint. In 2004, by
harnessing the optical plasma dispersion effect induced by
resonance-enhanced two-photon absorption, silicon ring
resonator AOMs were first reported by Michal Lipson’s
group with a response time of 200 ps and an energy
consumption of 25 pJ/bit [15]. Later in 2010, Nozaki et al.
fabricated an InGaAsP photonic crystal cavity with a
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record performance of 0.42 fJ/bit and a 20 ps switching
time [19]. Leveraging the four-wave mixing (FWM)
phenomenon in the As2S3 [20] or silicon [21] waveguide,
all-optical logic gate devices with a speed of 160 Gb/s and
a power consumption of 65 fJ/bit have been developed.
Recently, metal-polymer hybrid epsilon-near-zero materi-
als have also been integrated into silicon slot ring
resonators or plasmon nanocavities for all-optical switch-
ing and logical devices [22–25]. All-optical programmable
logic arrays based on semiconductor optical amplifiers
could operate at a speed of 40 Gb/s [26]. Ultralow power-
consumption and ultra-compact devices with response
times of tens of picoseconds were obtained. However, the
trade-off between the large nonlinearity and ultrafast
switching limited the ultimate performance of the existing
all-optical modulation technology, and new materials and
device platforms for AOMs are yet to be explored [13].
The intriguing properties of two-dimensional (2D)

materials [27–31] have attracted significant attention for
application in emerging ultrafast photonic devices, includ-
ing mode-lock lasers [32–40], photodetectors [41–46], and
modulators [47–51]. Among those layered materials,
graphene [52] is a highly versatile material that offers
exceptional optical and electrical properties, particularly
strong nonlinearity and ultrafast relaxation. With all these
extraordinary properties, graphene has been studied
extensively for application in optical devices such as
ultrafast lasers [53–57], detectors [58–60], broadband
modulators [61–65], switches [66,67], polarizers [68],
and solar cells [69]. In 2011, Xiang Zhang’s group first
reported a graphene-based electro-optic silicon modulator
[63], where gating electrodes modulated the absorption of
the graphene. A 3-dB bandwidth of 1.2 GHz had been
achieved with an energy consumption of 880 fJ/bit. In
2015, ring resonators with two layers of graphene acting as
two electrodes of a capacitor realized a 3-dB bandwidth of
30 GHz with a power consumption of 800 fJ/bit [65]. In
2018, graphene–silicon Mach-Zehnder interferometer
(MZI) modulators operating in the gigahertz regime with
a modulation efficiency of 0.28 V$cm and an operating
speed of 10 Gbit/s were demonstrated [70]. The photonic
crystal cavity was also introduced in the graphene-based
EOM, reported in 2019 by Xinliang Zhang’s group with a
bandwidth reaching 12 GHz [71]. In the same year, an
EOM based on graphene integrated with photonic crystal
fiber was reported. A broadband response from 1150 to
1600 nm and a large modulation depth of ~20 dB/cm at
1550 nm under a low gate voltage of ~2 V were realized
[72]. Moreover, 2D materials have application prospects in
all-optical modulation [73]. Recently, Masaya Notomi’s
group fabricated an ultrafast graphene-loaded ultra-com-
pact plasmonic slot-waveguide all-optical switching
device with a switching energy of 35 fJ and a switching
time of 0.26 ps, which corresponded a bandwidth of
1.2 THz [1]. These signs of progress and the potential for
complementary metal oxide semiconductor (CMOS)-

compatible integration capability highlight graphene as
an auspicious material for application in AOMs.
In this review, we focus on graphene as a great candidate

for application in AOMs. In the following sections, we
discuss the recent progress in graphene-based AOM
research. First, we briefly introduce the status of graphene
photonics. In Section 2, we discuss the nonlinear effects of
graphene in the all-optical modulation scheme. In Section
3, we present the latest experimental demonstrations of
graphene-based AOMs. Finally, we conclude our paper
with current challenges and outlook in Section 4.

2 Optical modulation in graphene

Graphene is a single-layered atomic crystal. Its Dirac cone
type electronic band structure [74] exhibits linear energy
dispersion without a bandgap [75], which accounts for its
extraordinary electrical and optical characteristics. The
carrier mobility at room temperature can reach 2 � 105

cm2/(V$s) [76,77], which is essential for ultrafast modula-
tion. The absorption coefficient, πα, of mono-layered
graphene from the visible to the mid-infrared region (300–
6000 nm) is 2.293% [78], which supports ultra-broadband
operation [79]. The most significant property for applica-
tion in modulators is its ultralow threshold of saturable
absorption and ultrashort relaxation time, which has been
experimentally validated to be in the range of femtose-
conds ((8�3) fs) to picoseconds (1.63 ps) [80,81].
Furthermore, graphene is compatible with the CMOS
fabrication process and could be integrated with various
materials and photonic structures, which guarantees
tunable light–matter interaction. The four nonlinear effects
involved in the graphene-based AOM are discussed in the
following subsections and are summarized in Fig. 1.

Fig. 1 Mechanisms and corresponding response time of
referenced graphene-based AOMs. The modulation of complex
refractive index ñ can be concluded into the modulation of the real
part of refractive index (n for phase modulation) and imaginary
part of refractive index (k for amplitude modulation)
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2.1 Opto-thermal effect

Light modulation or switching by thermal tuning is widely
utilized in silicon photonic circuits [82]. Graphene
possesses an ultra-high thermal conductivity in the range
of 4840–5300 W/mK due to the fast phonon transportation
in its lattices [83]. The excited carriers can transfer their
energy to phonons during the relaxation process, thereby
elevating the temperature of the material. Therefore, when
integrated with optical waveguides, graphene can be used
as an efficient and compact heat generator and conductor
for optical-induced thermo-optic modulation. The heat
generated from light absorption in graphene can be
transferred to surrounding materials, which changes the
refractive index of the material and, consequently, results
in the realization of phase modulation. Based on both the
microfiber [84,85] and on-chip [86] platform, the photo-
thermal effect of graphene was utilized to achieve phase
modulation. The phase modification could be achieved
with a proper choice of substrate or encapsulant. The time
constant for the heat dissipation is typically low, and the
switching time ranges from micro to milliseconds, which is
limited by phonon coupling between graphene and the
surrounding materials. The cooling time of the hBN-
graphene-hBN sandwich structure was reported to be less
than 10 ps, which contributes to the out-of-plane heat
transfer through electron-hyperbolic phonon polariton
coupling [87]. This exciting result revealed a potential
path to ultrafast opto-thermal modulation.

2.2 Optical-induced carrier effect

The optical illumination of graphene and its surrounding
materials can produce electron–hole pairs. The carrier pairs
are separated between the interface of graphene and its
contacted semiconductors. These optical-induced carriers
could accumulate and change the real and imaginary parts
of the refractive index for both materials through the
plasma dispersion effect [88]. The modulation of the THz
wave is achieved by integrating graphene with silicon [89]
or germanium [90]. Subsequently, the photon-induced
electron–hole pairs generated in the illuminated area of
silicon or germanium are transferred to graphene, which
changes the conductivity of graphene and silicon/germa-
nium, thereby resulting in the modulation of the THz wave
absorption. The lifetime of interlayer carriers is usually in
the range of nano- to micro-seconds with a low power
threshold. However, the response time is still significantly
below the requirement for ultrafast all-optical modulation.

2.3 Optical Kerr effect

To achieve high-speed all-optical modulation, ultrafast
nonlinear phenomena, such as the optical Kerr effect, can
be induced. The Kerr effect is induced by separating
photon-induced electron–hole pairs, and the index change

linearly varies with the pump power [13]. This effect could
be expressed by the power-induced change of the real part
of the refractive index: Δn = n0 + n2ΔI [13], where n0 is the
linear refractive index, n2 is the nonlinear refractive index,
and ΔI is the change in the pump light intensity. Graphene
delivers a nonlinear refractive index of n2 ≈ 10–7 cm2/W,
which is several orders of magnitude larger than those of
bulk dielectrics [91]. By integrating graphene into an MZI
based on an optical fiber system, the Kerr-effect-induced
refractive index change in graphene was used to modify
the phase difference between interference arms and to,
therefore, fine-tune the output transmission, which was
applied for signal processing with a response time in the
order of nanoseconds [92].

2.4 Saturable absorption

Another type of ultrafast all-optical modulation is achieved
by nonlinear saturable absorption, which was widely used
for graphene-based AOMs. The saturable absorption in
graphene is due to the Pauli blocking effect [93]. When a
pump light with a photon energy twice the Fermi energy
level (or chemical potential) of graphene is injected into a
graphene-based AOM, the electrons in graphene are
excited from the valence band to the conduction band
[94,95]. The excitation process of the carriers leads to a
photobleaching effect [96], which results in a significant
reduction in the light absorption capacity of graphene.
Therefore, through the photobleaching effect, a pump light
with a relatively high photon energy (short wavelength)
could be used to modulate the absorption of a signal light
with a relatively low photon energy [97].
Immediately following optical injection, at a timescale

of tens of femtoseconds [98], the population of carriers
evolves through electron–electron scattering [96] into a
hot-carrier distribution [99] along the Dirac cone, resulting
in an increased electronic temperature higher than the
lattice temperature. In materials with strong electron–
electron interactions, photoexcitation can even trigger a
cascade of multiple electron–hole generation processes
[100]. Subsequently, the non-equilibrium carrier distribu-
tion is broadened by the intrinsic carrier population via
carrier–carrier scattering to form a hot Fermi-Dirac
distribution. This ultrafast scattering process lasts for
only tens to hundreds of femtoseconds [101]. The
thermalized carriers are further cooled through the
intraband carrier–phonon scattering [102], which occurs
in a time scale of less than one picosecond. Beyond ~1 ps,
electron–hole recombination becomes the dominant pro-
cess, and energy could be transferred to the lattice through
scattering with phonons. The equilibrium of the electronic
temperature with the surrounding environment could be
achieved via phonon–phonon scattering and electron-
lattice cooling (dominated by supercollisions [103]). The
overall evolution is summarized in Fig. 2. The time scale of
the excitation–relaxation processes mentioned above
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actually depends on the system under investigation and the
excitation power. Experimentally, Fermi-level-dependent
ultrafast dynamics with intraband relaxation times in the
0.4–1.7 ps range were measured by optical-pump-optical-
probe spectroscopy [101,104,105]. Recently, ultrafast
modulation based on saturable absorption was experimen-
tally demonstrated using a metal-plasmonic-slot-based
AOM with a response time of 0.26 ps [1]. These results
indicated that the all-optical modulation speed could
theoretically reach terabit(s) per second.
A hot electron model [106] showed that changes in hot

electron temperature could modify the nonlinear absorp-
tion of graphene [99]. For ultrafast excitations, i.e., at
bandwidths over the THz level, the temperature of the
electron could be as high as 103 K [99], and the
corresponding saturation threshold and insertion loss of
the AOM could increase nonlinearly, which would
deteriorate the performance of the AOM. The quality of
graphene is one of the main factors that has an inevitable
impact on the performances of AOMs. Poor-quality
graphene is associated with lattice defects [107] and
impurities, which could deteriorate its conductivity and
enhance its scattering loss. The scattering coefficient of
graphene is also a key factor determining its absorption
[97]. Defects lead to increased absorption and, conse-
quently, increased insertion loss for AOMs.

3 All-optical modulation with graphene

As discussed in the previous section, graphene has been
identified as an auspicious material, and mesoscopic to
nanoscopic structures integrated with graphene have been
developed to achieve high-performance all-optical mod-
ulation. The key performance metrics [2] for graphene-
based AOMs include energy consumption, response time,

modulation depth, insertion loss, and device footprint.
Among them, energy consumption is particularly impor-
tant for specific applications, such as in interconnects and
optical computation chips. Usually, the lowest pump
power required to support the modulator working at or
above a certain modulation depth is called the threshold
power. Therefore, the lowest energy utilized in a single bit
for the pump light corresponds to the energy consumption,
which is in Joule per bit (J/bit). The response time is related
to the modulation speed, which determines the final
bandwidth of the all-optical modulation. Modulation
depth characterizes the modulator’s capability to change
the amplitude of the signal light. Insertion loss also plays
an important role. A relatively low loss can help reduce the
pump power required to generate a nonlinear effect in the
modulator and ensure that signals with adequate energy are
transmitted through the device to be detected by the
receiver. The footprint of the device is related to the power
consumption because a small size induces strong light–
matter interaction with less threshold power. Based on the
different configurations for launching the pump and probe
light, graphene-based AOMs could be categorized into
free-space modulators, fiber-based modulators, and inte-
grated modulators. Here, we summarize the latest progress.

3.1 Free-space all-optical modulation

Free-space graphene-based AOMs can be fabricated by
depositing graphene on top of planar substrates or photonic
nanostructures, after which the pump and probe light is
launched perpendicular to the devices. For instance, the
attenuation of the THz range light wave could be achieved
by the deposition of graphene on silicon (GOS), as
depicted in Fig. 3(a) [89]. Photon-induced electron–hole
pairs were produced in the illuminated area of silicon, and
the charge could be transferred to graphene, thereby
changing the conductivity of both graphene and silicon.
Since the mobility of graphene is much higher than that of
silicon, the absorption of the THz wave could be enhanced
tremendously. In this work, light waves with frequencies
from 0.2 to 2 THz could be attenuated by a 780 nm pulsed
light. A modulation depth of 70%with a modulation power
of 40 mW was reached, as shown in Fig. 3(b). With a
relatively high modulation power, the enhancement
decreased due to the charge-carrier saturation. In 2014,
Wen et al. developed an all-optical terahertz modulator
based on monolayer graphene deposited on germanium
(GOG), which could be modulated by a 1.55 mm laser with
a low photodoping power [90]. With the same operation
principle, the modulation of the THz wave is achieved with
a frequency ranging from 0.25 to 1 THz. A dynamic
modulation measurement setup is depicted in Fig. 3(c),
which uses a continuous wave source with a frequency of
0.34 THz and a 1550 nm pumping laser. At a modulation
bandwidth of 20 kHz, a modulation depth of 94% can be
achieved. However, the modulation depth decreased

Fig. 2 Evolution of carriers in graphene from the optical
excitation state to the equilibrium state. Reproduced from Ref.
[108]
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rapidly when the modulation rate was above 200 kHz, as
shown in Fig. 3(d).
Although single-layered graphene on semiconductor

could attenuate the intensity of the THz wave over 99%,
light could pass through graphene only once for the free-
space configuration, which resulted in a weak light–matter
interaction in the visible and infrared region. The resonant
structures [109] and meta-surface structures [110,111]
utilized in electro-optical modulation were also employed
in their all-optical counterpart [112] to further boost the
modulation efficiency. In 2015, Shi et al. fabricated a
graphene-cladded photonic crystal AOM [113], as shown
in Fig. 3(e), which exhibited a saturable absorption
threshold as low as 10 kW/cm2. The ultralow threshold
was attributed to the optically induced transparency (OIT),
free-carrier absorption (FCA), and free-carrier dispersion
effects induced by the 1064 nm pump light. The electrons
in graphene excited by the pump light would be transferred
into silicon, which would decrease the Fermi level of
graphene, inducing the Pauli blocking effect in the probe
light at a wavelength of 1550 nm. This could result in a
decrease in the absorption loss inside the cavity and, thus,
change the coupling condition. Moreover, the carrier
injected into the silicon from graphene could further

induce the FCA and the plasma dispersion effect. With the
index change of silicon, the resonant peak could shift to as
high as 3.5 nm under a very low pump power input, as
shown in Fig. 3(f). However, the long response time and
high total energy consumption limit its applications. To
solve this issue, a novel photonic platform should be
introduced to enhance the interaction between light and
graphene.

3.2 Fiber-based all-optical modulation

The traveling wave interaction approach could directly
increase the interaction strength. In the fiber-based
platform, the control light can be absorbed by graphene
along its propagation path, which largely enhances the
graphene–light interaction via the evanescent field of the
microfiber. In 2013, Liu et al. developed an AOM by
covering the 8-mm-diameter microfiber surface with 16-
mm-long polydimethylsiloxane-supported graphene on a
low refractive index MgF2 substrate, as depicted in
Fig. 4(a) [114]. The modulation wavelength range was
50 nm wide, the maximum modulation depth was 13 dB,
and the insertion loss was 15 dB. The laser power of the
pump source was 2.2 W. The interface between graphene

Fig. 3 (a) Illustration of the structure and modulation configuration of the graphene on silicon (GOS) AOM. The inset at the bottom
illustrates the spatial dependence of the THz beam power along with the device when the modulation beam is switched on. (b) Modulation
depth versus signal power of the GOS modulator. (c) Schematic of the experimental configuration used for the modulation measurements
of the graphene on germanium (GOG) AOM. (d) Modulated THz signal under different modulation frequencies of the GOG modulator.
(e) Experimental setup and scanning electron microscopy (SEM) image of a graphene-cladding silicon photonic crystal cavity modulator.
The probe light is a narrow-band tunable semiconductor laser with a wavelength around 1550 nm, and the control laser is a 1064 nm laser.
(f) Resonance wavelength variation with the control laser power of the modulator in (e). Reproduced from Refs. [89,90,113]
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and the fiber was indeed overly small in such an
incomplete fiber-covering configuration that the interaction
was not adequate. Moreover, the power required for the
pump and probe light to achieve a high modulation depth
was high, as shown in Figs. 4 (b) and 4(c). A representative
work was reported in 2014 by Li et al. [104] The ultrafast
AOM based on a double-layer graphene-cladded micro-
fiber (GCM) was introduced, as shown in Fig. 4(d).
Without the carrier generation and transfer process to the
semiconductor substrate, the ultrafast nature of graphene
could be preserved. The relaxation time of the saturable
absorption of graphene was approximately 2.2 ps,
measured using the pump–probe setup, shown in
Fig. 4(e), indicating a modulation bandwidth close to
200 GHz. The threshold power density in the fiber was
0.2 GW/cm2, and the modulation depth reached 38%.
To further increase the interaction length, an all-optical

fiber modulator based on a stereo graphene–microfiber
structure (GMF) was proposed by Chen et al. [115]. As
illustrated in Fig. 4(f), the microfiber was wrapped onto a
graphene-coated rod, achieving a modulation depth of
7.5 dB (2.5 dB) and a modulation efficiency of 0.2 dB/W

(0.07 dB/W) for both polarizations. The limitation of the
modulation depth was mainly determined by the loss
resulted from the intrinsic absorption. Yu et al. demon-
strated ultrafast optical modulation using a single 1-mm-
diameter graphene-decorated microfiber. Benefiting from
the strong evanescent wave outside the waveguide core
due to the considerably small waveguide, light could
actively interact with piled graphene flakes in a droplet, as
shown in Fig. 4(g). The response time for the AOMs was
2.5 ps with a threshold power of 1.75 W (60 MW/cm2)
[116]. In another work, the same group incorporated
graphene into a fiber core using drawn graphene-polymer
microfiber, and the saturable absorption threshold could be
less than 0.25 pJ per pulse [117].
Apart from the saturable absorption, the thermal effect

and Kerr effect had also been applied for fiber-based
graphene all-optical modulation. The phase modulation
induced by the two effects could be measured from fiber-
based interferometric and resonant structures. In 2015, Gan
et al. demonstrated a graphene-assisted all-fiber phase
shifter and MZI switch by photothermal effect [84], as
shown in Fig. 5(a). The heat generation from light

Fig. 4 (a) Schematic illustration or microscope image of broadband all-optical modulation using a PDMS-supported-graphene/
microfiber/MgF2 structure. Intensity variations of the probe signal with the input pump power when (b) the input probe power is fixed at
2.5 mW and (c) the input pump power is fixed at 512 mW. (d) Schematic illustration of the GCM. (e) Differential transmittance of the
probe light as a function of the pump–probe time delay showing a response time of approximately 2.2 ps. The inset shows the dependence
of the modulation depth on the pump intensity. Schematic diagram of (f) the stereo graphene–microfiber structure, where graphene was
first wrapped on a rod followed by the microfiber; (g) the graphene-decorated microfiber with a pile of graphene flakes in the surrounding
space and the evanescent field. Reproduced from Refs. [104,114–116]
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absorbed by graphene increased the local temperature of
the graphene-covered microfiber. The optical-induced
thermo-optic effect changed the refractive index of the
microfiber, and the phase shift modulated the intensity of
the light output from the MZI switch. The modulation
depth could be as high as 20 dB. The phase shift energy
efficiency was 0.09 π/mW, while the fall time was around
3.2 ms. To further boost the energy efficiency and
modulation speed, microfiber resonators with wrapped
graphene have been fabricated, and light could be
circulating inside the ring to enhance the absorption by
graphene [85], as illustrated in Fig. 5(b). Thus, the all-
optical switch could achieve a 71 pm/mW resonance peak
wavelength shift efficiency and a modulation depth of
13 dB with a response speed with a rising (fall) time of
294.7 ms (212.2 ms). However, the thermal response time
was slow, and the ultrafast phase modulation could only be
achieved by the Kerr effect. As shown in Fig. 5(c), a GCM
structure was inserted into an MZI with variable internal
attenuators to fine-tune the output transmission [92]. Using
a fiber-based wavelength division multiplexer, 1064 nm
nanosecond pulses were injected as switching light. With a
peak power of 1.18 W, the phase modulation could be as
high as 0.18 π, with a response time of < 10 ns due to the
optical Kerr effect.
Besides the microfibers, side-polished D-shape fibers

have also been used in graphene-based AOMs. In 2016,
Zhang et al. [118] fabricated an in-fiber optical modulator
developed on a side-polished optical fiber (shown in

Fig. 5(d)). By polishing the fiber to an ultra-smooth
surface (roughness < 1 nm), scattering from the interface
was minimized, and consequently, low insertion loss (< 1
dB) could be achieved. To enhance the light–matter
interaction, the graphene film was coated with a high
index polyvinyl butyral (PVB) layer so that the light field
could be drawn closer to graphene. Using this innovative
approach, an extinction ratio of 9 dB and response time
less than 1 ps were realized. Debnath et al. [119]
demonstrated a similar structure, as depicted in Fig. 5(e).
All-optical switching near 1550 nm was elucidated by
exploiting FWMwith in situ grown graphene. The incident
signal was modulated at a speed of up to 20 GHz, and the
modulation information was successfully transferred to the
generated signals at different wavelengths.
During the past 10 years, fiber-based AOMs have made

great progress with modulation depths over 99% and
response times around 2 ps with a low switching threshold.
However, the microfiber system is fragile, and the
fabrication process for D-shaped fiber is nontrivial. It is
difficult to build a complex photonic network based on the
fiber platform via large-scale integration. The integrated
graphene all-optical switches discussed in the next
subsection could be the potential solution to this challenge.

3.3 On-chip all-optical modulation

To further enhance the light–matter interaction, integrated
graphene with a high index contrast planar photonic

Fig. 5 (a) Optical microscopic image of the tapered graphene-coated microfiber and schematic of the measurement setup.
(b) Microscope image of graphene on the microfiber resonator and the graphene-coated region is annotated by the white curve.
(c) Schematic diagram of GCM-based AOMs based on an all-fiber MZI. (d) Schematic and cross-sectional view of the polyvinyl butyral
(PVB)-covered graphene on a partly-polished fiber AOM. The longitudinal cross-section shows detailed layers of the device. (e) Structural
diagram of the as-grown graphene on a D-shaped fiber, and the FWM process shows two newly generated signals (ω3 and ω4).
Reproduced from Refs. [84,85,92,118,119]
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structure [120] could be a favorable solution. To the best of
our knowledge, the earliest on-chip device was reported in
2014. Local and nonlocal OIT effects (slightly different
from the OIT effect mentioned in Subsection 3.1) in
graphene on silica/silicon hybrid photonic integrated
circuits [121] were demonstrated, as shown in Fig. 6(a).
The probe light was coupled into the circuit by a grating
coupler, while the pump light was vertically illuminating
onto the 100-mm-long interaction zone, exciting the
carriers in silicon. Subsequently, the excited carriers are
transferred to graphene, causing its Fermi level to shift.
The power required for producing the OIT effect is as low
as 0.1 mW for a continuous wave of light. The
corresponding power density is 2 W/cm2, while the
modulation rate is in the Hz level, as depicted in
Fig. 6(b). The power–speed trade-off is clearly reflected.
Such an in-direct interaction between the signal light and
graphene results in a low modulation speed.
In 2017, Qiu et al. [86] realized all-optical control on a

graphene-on-Si3N4 chip based on the photothermal effect.
Graphene was integrated with the ring resonator, as
depicted in Fig. 6(c), with a length of 43.4 mm. The heat
generated from the graphene by absorption of the pump
light changed the refractive index of the Si3N4 waveguide
and induced the shifting of the resonant wavelength. A
switching response time of 253.0 ns (rise time of the
modulated signal, Fig. 6(d)) with a switching energy of
~50 nJ was obtained, demonstrating a modulation depth of
10 dB. However, the response time is still lower than those
of state-of-the-art fiber-based all-optical switches [104].

To take advantage of the ultrafast response of graphene,
the saturable absorption effect should play a major role.
The AOM based on the Pauli blocking effect in a
dielectric-loaded waveguide (DLW) with a graphene–
silicon heterojunction structure (GSH) is shown in
Fig. 6(e) [122]. The DLW–GSH structure supports a TM
mode, where the maximum electric field intensity locates
at the bottom of the waveguide, where the graphene is
positioned, facilitating a strong light–graphene interaction.
Under the modulation light with a wavelength of 532 nm
and a power of 60 mW, a modulation efficiency of 0.0275
dB/mm was achieved, as illustrated in Fig. 6(f). To further
increase the interaction strength, an AOM based on a
graphene–plasmonic slot-waveguide structure was devel-
oped [123], as shown in Fig. 6(g). The length of the
graphene–plasmonic slot-waveguide device was 10 mm.
The modulation efficiency was enhanced by the strong
interaction between the light and the graphene–plasmonic
structure because of the high local-field distribution. Even
though the modulation speed was not mentioned either, a
modulation efficiency of 0.21 dB/mm was obtained, as
plotted in Fig. 6(h). In these two examples, the interaction
between the pump light and graphene is achieved by free-
space illuminated on top of the devices. To further improve
the pump efficiency, it is necessary to also couple the pump
light in the plane along with the photonic structure.
Recently, an AOM based on the graphene–silicon hybrid

waveguides with a graphene length of 30 mm was
demonstrated [124]. A modulation depth of 22.7% was
achieved with the saturation threshold lowered to 1.38 pJ

Fig. 6 (a) Three-dimensional schematic illustration of a graphene/silicon/silica hybrid nanophotonic waveguide. The probe light is
coupled using grating couplers, and the pump light is emitted from the top of the sample. (b) Dynamic responses of the output power for
the TE and TM modes of hybrid nanophotonic wires with a local pump light. (c) Schematic diagram of the graphene-on-Si3N4 all-optical
device. (d) Temporal response of the output probe pulse. Inset: average temperature change. (e) Schematic illustration of the graphene–
silicon heterojunction modulator with the signal coupled by grating couplers and pump light illuminating from the free space.
(f) Comparative performance of GSH and pure silicon AOMs at different modulation laser powers. (g) Schematic illustration of the
graphene–plasmonic slot-waveguide AOM. (h) Modulation efficiency with respect to the modulation power. Reproduced from Refs.
[86,121–123]
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per pulse, and a response time of 1.65 ps. In 2019, a device
similar to the one in Ref. [123] with graphene-loaded ultra-
compact plasmonic slot waveguides was reported by
Masaya Notomi’s group [1]. The all-optical plasmonic
slot switch had a relatively small interaction volume and
exhibited more significant confinement of the light
propagating in graphene. Ultrafast and energy-efficient
all-optical switches have been realized since the traditional
trade-off between energy consumption and the modulation
speed has been overcome. First, deep subwavelength
plasmonic waveguides with a mode volume of only 30 nm
� 20 nm were used to provide extreme light confinement,
and therefore, greatly enhanced nonlinear absorption in
graphene was achieved. Secondly, two ultralow-loss mode

converters [125] were applied to minimize the insertion
loss between the silicon waveguide and the plasmonic
waveguide, as depicted in Fig. 7(a), which guaranteed a
high pump light coupling efficiency. Thirdly, both the
pump and probe light were coupled from the silicon
waveguide to the interaction region with a length of fewer
than 10 mm, and the traveling wave configuration was not
perturbed by the photon lifetime of the cavity structure.
Moreover, the ultrafast carrier diffusion out of the 30-nm-
wide slot region [126] guaranteed the ultrashort response
time, which is even shorter than the relation time of
excitons in graphene. With a modulation depth of 3.5 dB,
ultrafast all-optical switching with a switching energy of
35 fJ and a switching time of 0.26 ps was achieved, as

Fig. 7 (a) Schematic of the graphene-loaded metal–insulator–metal (MIM)-waveguide (WG). Cross-sectional side view of the MIM-
WG. Calculated field profile of the eigenmode of the graphene-loaded MIM-WG. The air slot width (wslot) is 30 nm, and the Au thickness
(tAu) is 20 nm. The scale bar is 20 nm. (b) Left: results of the pump–probe measurement. (Red circles) All-optical switching in the bilayer-
graphene-loaded MIM-WG. (Blue circles) The autocorrelation of the input pulse. The input pulse width was 210 fs. (Solid black line) The
Gaussian fit of the pump–probe signal. The control and signal pulse energies were 35 and 1.3 fJ, respectively, in the input silicon-wire
WG. The pump–probe signals predicted from tpulse (210 fs) and the relaxation time of the graphene carrier, t, are also shown, where two
Gaussian functions (FWHM= 210 fs) and a single exponential decay function (t from 100 fs to 1 ps) are convoluted. The magenta,
orange-yellow, green, and light blue lines are for t = 100 fs, 200 fs, 300 fs, 500 fs, and 1 ps, respectively. Right: control pulse energy
dependence of the extinction ratio for the bilayer-graphene-loaded MIM-WG. Reproduced from Ref. [1]
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exhibited in Fig. 7(b). The switching energy is a new
record in graphene-based devices and all-optical switch
operating at a few picoseconds or less. In addition, the
compatibility with existing silicon photonic technologies
reveals the great application potential of the graphene-
based deep subwavelength metal–insulator–metal all-
optical switch in the next generation ultrafast and ultralow
power photonic networks on-a-chip.

4 Discussion and outlook

All-optical signal processing is an indispensable part of
optical interconnection systems. Developing small, fast,
and energy-efficient AOMs has been and will be an
everlasting goal of the research community. For practical
applications, superior performance is always favored, and
graphene, with an intrinsic ultrashort relaxation time and
high nonlinearity, could well satisfy this need. In this
review, we discussed the substantial progress in the
performance of graphene-based AOMs, and the perfor-
mance matrix for the state-of-the-art devices is listed in
Table 1, where Rt, MF, MD, PC, TPD, Ref., and Gra refer
to the response time, modulation frequency, modulation
depth, power consumption, threshold power density,
reference number, and graphene, respectively.
The free-space approach and the fiber-based approach

are highly suitable for the fabrication process. The light–
matter interaction in the free-space pumping AOM is quite
weak; therefore, the applications are limited. In the
microfiber platform, the interaction, which occurs on the
surface of the microfiber, could significantly enhance the
interaction with graphene at a low power threshold [127]
with an ultrafast response time (lowered to picoseconds).
However, the power density required in the microfiber is
still high. Due to the strong light confinement requirement
for the on-chip AOMs, their size and energy consumptions
were typically considerably low. To date, the graphene-
based AOM has delivered the best performance among
AOMs, presenting the smallest power threshold and fastest

relaxation process. The on-chip strategy shows remarkable
advantages and plays an irreplaceable role in the AOM
research field.
Although significant progress has been made in the

graphene-based AOM field in the past few years, some
challenges still exist. The first is related to the method of
obtaining high-quality and new graphene-based hetero-
structure nonlinear materials with relatively fast response
times and large optical nonlinearity. The second is related
to the method of integrating novel structures with CMOS
compatibility with the single layer of graphene to enhance
light interaction. The third challenge is that graphene-
based all-optic logic devices with reconfigurability have
not been developed yet. Encouragingly, these challenges
help establish future research directions. The first research
direction is centered on the exploration of novel 2D
materials and their heterostructures with graphene to
achieve high-performance nonlinear optical van-der
Waals materials. Apart from graphene, other 2D materials
such as black phosphorus (BP) [128] and 2D transition
metal dichalcogenides (TMDs) [28] with unique spectral
responses are also attractive frontiers for achieving high-
performance AOMs. Moreover, these novel 2D materials
could be combined with graphene with different stacking
angles, band structures, and layer numbers, which would
probably offer new mechanisms and configurations for all-
optical modulation. The second research direction is aimed
toward the development of a CMOS-compatible metallic
plasmonic structure [123,129,130] for large-scale photonic
integration. Thirdly, graphene-based all-optical process
integrated photonic circuits with cascaded reconfigurable
nanoscale switches would be greatly instrumental in
complicated logic processing circuits, ultra-high band-
width photonic interconnect on-a-chip, and quantum
photonic networks.
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Table 1 Performance matrix of the state-of-the-art graphene-based AOMs

structure principle Rt/MF MD PC/TPD Ref.

Gra/Ge subsrate carrier induced Dk 200 kHz 94% 400 mW [90]

Gra/silicon PhC
saturable absorption,
carrier induced Dn

– – 10 kW/cm2 [113]

Gra/fiber saturable absorption 2.2 ps 38% 0.2 GW/cm2 [104]

Gra/fiber MZI Kerr 10 ns 52% 52.5 mW [92]

Gra/fiber knot thermal 294.7 μs 13 dB 2.6 mW [85]

Gra/Si3N4/SiO2 thermal 253 ns 10 dB 50 nJ [86]

Gra/SOI saturable absorption 1.65 ps 22.7% 1.38 pJ [124]

105Gra/MIM slot saturable absorption 0.26 ps 3.5 dB 35 fJ [1]
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