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Abstract Faster and better wound healing is a critical
medical issue. Because the repair process of wounds is
closely related to revascularization, accurate early assess-
ment and postoperative monitoring are very important for
establishing an optimal treatment plan. Herein, we present
an extended depth-of-field photoacoustic microscopy
system (E-DOF-PAM) that can achieve a constant spatial
resolution and relatively uniform excitation efficiency over
a long axial range. The superior performance of the system
was verified by phantom and in vivo experiments.
Furthermore, the system was applied to the imaging of
normal and trauma sites of volunteers, and the experi-
mental results accurately revealed the morphological
differences between the normal and traumatized skin of
the epidermis and dermis. These results demonstrated that
the E-DOF-PAM is a powerful tool for observing and
understanding the pathophysiology of cutaneous wound
healing.

Keywords photoacoustic microscopy (PAM), extended
depth-of-field, traumatized skin

1 Introduction

Skin trauma occurs for many different reasons, including
incisions, blunt force, and burns [1]. Chronic wounds,
including diabetic, venous, and pressure ulcers, impose a
significant healthcare burden worldwide [2]. Faster and
better wound healing is a longstanding goal [3]. Accurate
early assessment and postoperative monitoring are very

important for establishing an appropriate treatment plan.
Accurate early assessment can distinguish normal tissue
from necrotic tissue, assist doctors in determining whether
tissue removal and skin grafts are needed, and reduce
waiting times [4]. The real-time postoperative monitoring
of trauma sites can allow timely feedback of the effect of
treatment and help doctors adjust treatment plans as soon
as possible. Scars are the inevitable outcome of wound
healing. Typically, visual observations and surface mea-
surements have been used to evaluate wound healing by
monitoring wound size, color, odor, drainage, and eschar
[5]. However, such measurements are restricted to the
skin’s surface and depend heavily on the experience of
medical professionals, the wound condition, and treatment
history. Angiogenesis, the growth of new blood vessels
from the existing host vasculature, plays an important role
in the process of tissue repair [3]. New blood vessels
support the delivery of nutrients and inflammatory cells to
healing tissue, and its dynamic characteristics can reflect
the situation of scar repair to a certain extent and can be
used as an important indicator of scar monitoring [6].
Biopsies are the gold standard for scar detection, but they
can cause secondary injury; thus, they are not widely used
[7]. Meanwhile, various techniques have been developed
to detect traumatized skin, such as fluorescence imaging,
optical coherence tomography (OCT) imaging, ultrasonic
imaging, laser Doppler perfusion imaging (LDI), and
dynamic laser speckle imaging (LSI), but they have their
own limitations. In fluorescence imaging, exogenous dyes,
such as Evans blue and indocyanine green, are used to
evaluate burn wounds [8–10]; however, the use of
exogenous fuels may cause renal damage and allergic
reactions. LDI and LSI can be used to evaluate vascular
dysplasia in dermatosis without damage, but they cannot
provide deep-resolved blood perfusion and blood flow
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information [11–13]. OCT, which is a promising method
that visualizes photon scattering contrast in tissues, has
been applied to measure the burn depth [14,15]. However,
OCT lacks sensitivity to tissue chromophores, such as
blood vessels with low blood flow or blood stasis.
Ultrasonography has greater penetration depth but suffers
from reduced contrast.
As a hybrid imaging technique, photoacoustic (PA)

imaging (PAI) bridges the gap between optical and
acoustic imaging modalities [16–20]. By offering high-
resolution images with a unique optical contrast, optical
resolution PA microscopy (OR-PAM), which is a unique
implementation of PAI, has thus far been applied to
numerous preclinical and human studies [21–27], includ-
ing burn assessments [28]. However, the depth-of-field
(DOF) of the conventional Gaussian beam PAM (GB-
PAM) with a 4� objective is approximately 55 μm [29].
For wounds with a large area or uneven surface, imaging
results are biased owing to the limited DOF. Recently,
many methods have been proposed to improve the DOF.
Hajireza et al. achieved wavelength-tuned depth scanning
over more than 440 μm by using stimulated Raman
scattering and chromatic aberration [30]. However, this
method sacrifices the ability of functional imaging. Depth
scanning by using a motor-driven linear platform or an
electrically tunable lens can also improve the DOF [31,32];
however, these methods limit the volumetric imaging
speed owing to the slow adjustment. Recently, a novel
method was proposed to rapidly scan the optical focus
along the depth direction in OR-PAM by employing a
high-speed TAG lens [33,34] that can achieve a DOF of
approximately 750 μm. However, this method requires
additional external circuits, which increases the complexity
of the system. As an alternative method, a non-diffracting
Bessel beam can extend the DOF while preserving the high
lateral resolution, and there are several ways to generate a
Bessel beam. Among them, the use of an axicon lens is a
typical method to extend the DOF, and many optical
microscopy methods based on it have been reported [35–
37]. However, it is difficult to produce an ideal conical
surface, which will deform the Bessel beams [38].
Moreover, it usually requires a relay to further demagnify
the initial Bessel beams produced by the axicon, which
increases the complexity of the system. It has also been
reported that a ring slit can be used to generate a Bessel
beam [39]. However, the energy efficiency of this simple
design is quite low. In some PAM systems, spatial light
modulators are used to produce a Bessel beam [29,40]. The
method can effectively improve the DOF but also increase
the system complexity and cost, which is not conducive to
clinical promotion. With the rapid development of etching
technology and binary optical technology, the method of
using refractive and diffractive optical elements to expand
the focal depth provides the characteristics of free focus
control, a high energy utilization rate, and uniform
intensity distribution on the axis [38,41].

In this study, by utilizing a diffractive elongated focus
(EF) lens to generate Bessel beams, we produced an
extended DOF PAM (E-DOF-PAM) system that can
achieve a relatively constant lateral resolution and uniform
excitation efficiency at different depths without axial
scanning. Furthermore, the E-DOF-PAM was applied to
non-invasively explore the image characteristics related to
pathophysiology of normal and traumatized skin.

2 Experimental methods

2.1 Experimental setup

A schematic of the E-DOF-PAM system is shown in
Fig. 1(a). The system employs a 532-nm pulsed laser
(Model DTL-314QT, Russia), which can operate at a
repetition rate of up to 10 kHz. The laser beam is
attenuated by a neutral density filter (NDF) and reshaped
by an optical spatial filter system, which consists of a pair
of lens, L1 and L2, and a pinhole. Then, the reshaped beam
is coupled to a single-mode fiber (SMF) using a fiber
coupler FC (PAF-X-7-A, Thorlabs, Inc., USA). The output
laser beam from the SMF is collimated by a fiber
collimator (F240FC-532, Thorlabs, Inc., USA) into a
parallel one (~4-mm diameter). Then, the collimated beam
passes through an 11-mm diameter EF lens (EF-027-Q-Y-
A, HOLO/OR, Israel) with a focal length of ~25 mm to
generate a Bessel beam, which is focused by a 4�
objective lens. The DOF is proportional to the focal length
of the focusing lens and inversely proportional to the
collimated beam diameter. Additionally, the increase in the
wavelength or refractive index of the medium also extends
the DOF but at the cost of increasing the spot size [42]. The
focused beam illuminates the sample surface through a
hollow customized focused ultrasound transducer (7-mm
outer diameter, 3-mm inner diameter, and central fre-
quency of 40 MHz) and performs a raster-scanning pattern
using a two dimensional scanner (HRXWJ-50R-2, TianRui
ZhongHai, China). Figure 1(b) illustrates the optical path
of the GB-PAM system. Notably, a Bessel beam can be
generated by adding an EF lens to the optical path of the
GB-PAM without significant changes in the optical setup.
The numerical simulation intensity distributions of the
laser beams generated with and without the EF lens along
the optical axis at the focal zone are presented in Figs. 2(a)
and 2(c), respectively. As expected, the Bessel beam has a
longer DOF. Figures 2(b) and 2(d) show the corresponding
laser beam intensity maps indicated by dashed lines A-A'
and B-B' in Figs. 2(a) and 2(c), respectively.

2.2 Data acquisition and processing

The detected PA signals were amplified by a 50-dB low-
noise amplifier (LNA-650, RFBAY, USA) and then
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Fig. 1 Schematic illustration of the E-DOF-PAM (with an EF lens) and conventional GB-PAM (without an EF lens) systems.
(a) Schematic of the E-DOF-PAM system. (b) Optical path of the GB-PAM system. E-DOF-PAM, extended depth-of-field photoacoustic
microscopy; GB-PAM, Gaussian beam photoacoustic microscopy; L1, L2, L3, lenses; Mir., mirror; SMF, single-mode fiber; EF, elongated
focus; NDF, neutral density filter; PD, photodiode; T1, T2, trigger; DAS, data acquisition system; FPGA, field programmable gate array;
WT, water; UT, ultrasound transducer

Fig. 2 Numerical simulation intensity distributions of the laser beams generated with and without elongated focus (EF) lenses in the x-z
and x-y planes. (a) Calculated intensity distribution of the Bessel beam (with EF lens) along the z axis (optical axis) at the focal zone.
(b) Corresponding laser beam intensity maps indicated by the dashed line A-A' in (a). (c) Calculated intensity distribution of the Gaussian
beam (without EF lens) along the z axis. (d) Corresponding laser beam intensity maps indicated by the dashed line B-B' in (c)
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collected by a data acquisition card (M3i.4121, SPEC-
TRUM, Germany) at a sampling rate of 200 MHz. All PA
data were collected and processed by user-defined Lab-
VIEW (National Instruments, Inc., USA) and MATLAB
(R2016a, MathWorks, Natick, MA, USA) programs on a
PC with an Intel(R) Core(TM) i7 CPU @4.0 GHz and 32
GB of RAM. The PA data were averaged 10 times during
the in vivo experiments. To suppress the artifacts
introduced by the side lobes of the Bessel beam, a blind
deconvolution operation proposed in a previous study was
adopted [35].
The PA intensity in the region of interest (ROI) was

analyzed by using ImageJ software. In addition, ImageJ
was used to measure the thickness of the skin epidermis
and the diameters of the blood vessels.

2.3 Phantom studies

Performance of the E-DOF-PAM system was first verified
via phantom studies. For the purpose of assessing the
lateral and axial resolutions, two phantom experiments
were conducted. In the first experiment, a surgical blade
was obliquely inserted into a tissue-mimicking background
phantom [43,44]. The experiment was quantified by
imaging the sharp surgical blade with a scanning step of
1 μm. In the second experiment, the pulse response of the
detector at the focus was measured, and the signal was
transformed using the Hilbert method to test the axial
resolution. Following previous studies [45,46], the axial
resolution was taken as the full width at half-maximum
(FWHM) of the Hilbert-transformed envelope. Addition-
ally, to verify the depth imaging performance of the
system, an experiment involving two human hairs was
performed using the E-DOF-PAM and GB-PAM systems.
The beams were set to the same input power, and each
focus was located on the surface of the sample in the two
systems.

2.4 In vivo human experiments

To demonstrate the clinical potential of the E-DOF-PAM
system, two volunteers from the authors were recruited for
experiments. Normal skin and traumatized skin of the
human subjects were imaged in vivo. To conform to the
American National Standards Institute safety limit (20
mJ/cm2), the NDF was used to adjust the fluence density of
the laser beam on the tissue surface to 15 mJ/cm2. During
the experiment, the volunteers sat in chairs and wore
goggles to avoid potential laser damage. After the
experiment, the clinician examined the imaged area, and
no obvious damage was found. The consents of the
volunteers were obtained prior to the experiments, and all
procedures were approved by South China Normal
University in Guangzhou, China.

3 Results

3.1 Resolution characterization

For the PAM system, the field characteristic of the built
transducer is a critical factor that determines the accuracy
of the image reconstruction. Figure 3(a) shows the
measured acoustic pressure distribution of the transducer.
The acoustic field was well focused, and the focal length
was approximately 8 mm. The DOF of the transducer was
approximately 3.8 mm. Figure 3(b) depicts the pulse
response of the transducer at the focus (black line), and the
red dashed line is the corresponding Hilbert-transformed
envelope. The axial resolution was measured to be
approximately 35 μm. The amplitude–frequency response
of the transducer is shown in Fig. 3(c). Based on the
amplitude–frequency response, the central frequency and
bandwidth of the transducer were estimated to be 40 MHz
and 120%, respectively. To evaluate the lateral resolution,
the fitted edge spread function (ESF) was estimated from
the blade’s PA data along the white dashed line shown in
Fig. 3(e). The line spread function (LSF) was calculated as
the derivative of the ESF, and the FWHM of the LSF was
defined as the lateral resolution. As shown in Fig. 3(d), the
lateral resolution of the E-DOF-PAM was slightly worse
than that of the GB-PAM system (6.5 μm vs. 4.7 μm,
respectively). The deconvolution operation may degrade
the effective resolution. Figure 3(f) illustrates the variation
of the experimentally measured lateral resolution along the
optical axis of the E-DOF-PAM and GB-PAM. The lateral
resolution of the E-DOF-PAM changed slightly, whereas
that of the GB-PAM varied dramatically as it moved away
from the focus. The DOF of the E-DOF-PAMwas found to
be approximately 1.0 mm, which was much longer than
that of the GB-PAM.

3.2 Verification of depth imaging performance

To demonstrate the depth imaging performance of the
E-DOF-PAM, a phantom study was performed. A 3D
schematic illustration of the phantom is shown in Fig. 4(a).
Two human hairs were embedded in a tissue-mimicking
background phantom. One was placed horizontally, and
the other was inserted obliquely; additionally, the vertical
drop of the two hairs ranged from 0 to 1.0 mm. Figures 4
(b) and 4(c) show the maximum amplitude projection
(MAP) PA images acquired by the two systems, respec-
tively. As expected, E-DOF-PAM exhibited a consistent
PA intensity throughout the entire depth, whereas the
intensity of the PA image acquired by GB-PAM showed
significant differences. Moreover, the line profiles, as
indicated by dashed lines 1 and 2 in Figs. 4(b) and 4(c),
across the human hairs at different depths were taken to
quantitatively compare the signal amplitudes, and the
results are shown in Figs. 4(d) and 4(e). Apparently,
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toward the ends of the depth range, the PA signal
amplitudes were more resolvable in the E-DOF-PAM
than in the GB-PAM. Moreover, a variation graph of the
normalized PA signal amplitudes vs. the depth from Figs.
4(b) and 4(c) is shown in Fig. 4(f). Owing to the severe
degradation of Gaussian beams out of focus, the PA
amplitude acquired by GB-PAM reduced to half when the
depth was 0.3 mm. However, when the depth was 1 mm,
the PA amplitude of E-DOF-PAM was still as high as 0.6.
Overall, the results demonstrated that E-DOF-PAM has a
better depth imaging performance.

3.2.1 In vivo imaging of normal skin

To verify the in vivo imaging ability of the GB-PAM and E-
DOF-PAM systems on uneven tissue, an area in the middle
finger of a healthy volunteer’s opisthenar was chosen for
PA imaging; the imaged area was 5 mm � 4 mm. The

speed of the fast axis motor was set to 10 mm/s, which
means that the step size of the x axis was 10 μm over an
average of 10 times, and the step size of the y axis was also
set to 10 μm to ensure equidistant sampling. The MAP
images acquired by the GB-PAM and E-DOF-PAM
systems are presented in Figs. 5(a) and 5(b), respectively.
Owing to the limited DOF, the PA image acquired by the
GB-PAM system (Fig. 5(a)) shows a significant fluctuation
in PA intensity over the scanning range. However, the
image acquired by the E-DOF-PAM system (Fig. 5(b))
reveals uniform PA intensity over a long depth range.
Figures 5(c) and 5(d) show PA cross-sectional images
corresponding to the dashed lines A-A' and B-B' in Figs.
5(a) and 5(b), respectively. As shown, the stratum corneum
(SC) and stratum basale (SB) layers in the epidermis are
clearly visible in Figs. 5(c) and 5(d); however, the PA
intensity of the SB and SC at the focus is much stronger
than that of the defocus in Fig. 5(c). Figures 5(e) and 5(g)

Fig. 3 Performance of the E-DOF-PAM system. (a) Acoustic pressure distribution of the transducer. (b) Pulse response of the detector at
the focus. (c) Amplitude–frequency response of the detector. (d) Edge spread function (ESF) extracted from (e) along the dashed line and
the line spread function (LSF) obtained by taking the derivative of the ESF by the conventional GB-PAM (without an EF lens) and E-
DOF-PAM (with an EF lens) systems, respectively. (e) Photo of a sharp-edged surgical blade. (f) Lateral resolution of the GB-PAM and E-
DOF-PAM systems vs. the depth along the z axis
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show the corresponding B-scan images at positions I and II
in Fig. 5(c), and Figs. 5(f) and 5(h) show the B-scan images
corresponding to positions III and IV in Fig. 5(d),
respectively. Obviously, owing to the tight light focus,
there are many blood vessels beneath the epidermis shown
in the B-scan image at position I, whereas the epidermis for
the B-scan at position II can be hardly distinguished
because of the reduction in the light excitation energy.
However, as shown in Figs. 5(f) and 5(h), there is no
significant difference in the PA images at positions III and
IV, and both show a large number of blood vessels under
the epidermal layer. The corresponding PA amplitude
profiles along the dashed lines at positions I–IV in Figs.
5(c) and 5(d) are presented in Figs. 5(i) and 5(j),
respectively. Thus, for the same depth range (~500 μm),
the amplitude of the corresponding PA signal at positon I is
approximately 2.8 times that at position II, whereas the
amplitudes of the signals at positions III and IV are almost
the same. Therefore, we concluded that E-DOF-PAM is
superior to GB-PAM when imaging tissue with an uneven
surface, which is more suitable for in vivo quantitative
measurement and imaging over a large area.

3.2.2 In vivo imaging of traumatized skin

To further demonstrate the clinical feasibility of monitor-
ing the revascularization of traumatized skin, normal and
trauma sites of another volunteer were imaged and

quantitatively analyzed by the E-DOF-PAM system.
Figure 6(a) shows a photograph of the volunteer’s
opisthenar, where the sites of normal skin (enclosed by
black dashed box I) and traumatized skin (enclosed by
white dashed box II) were chosen for PA imaging (imaging
area was approximately 5 mm � 4 mm). Through visual
inspection, the trauma site, which was caused by a burn,
was dark red. Figures 6(b) and 6(c) show the correspond-
ing PA MAP images. As shown in Fig. 6(c), there was a
clear boundary between the normal and trauma sites, and
the morphological features of the traumatized skin were
quite different from those of normal skin. Figures 6(d) and
6(e) show the B-scan images marked by white dashed lines
A-A' and B-B' in Fig. 6(c), respectively. According to
simple observation, the epidermis of normal skin has
continuous SC and SB layers, and the PA intensity of the
SB layer is significantly higher than that of the SC layer,
which is mainly because that there are many melanosomes
in the SB layer [47]. However, in Fig. 6(d), the SB layer
disappeared, and the intensity of the SC layer was higher
than that of normal skin. This may be due to destruction of
cells in the SB layer. To more intuitively observe the
changes in different layers of traumatized skin, volumetric
(3D) PA images of the trauma site at different depths were
generated. For this, an automatic segmentation algorithm
[41] was used to segment the 3D images into depth-
resolved physiologic layers. The generated three layers
were the SC layer, SB layer, and vascular network layer,

Fig. 4 PA image of human hairs acquired by the E-DOF-PAM and GB-PAM systems. (a) 3D schematic diagram of the phantom.
(b) and (c) Maximum amplitude projection (MAP) PA images acquired by the E-DOF-PAM and GB-PAM systems, respectively.
(d) and (e) Corresponding line profiles at positions indicated by dashed lines 1 and 2 are shown in (b) and (c). (f) Normalized PA amplitude
versus the depth for the two systems
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which are shown in Figs. 6(f)–6(h), respectively. In the SC
layer (Fig. 6(f)), the trauma site was irregular and
completely different from that of the normal site.
According to ROIs 3 and 4 in Fig. 6(g), the SB layer at
the trauma site was severely damaged and replaced with a
large number of capillaries, which may be the reason why
the trauma site was darker than the normal site. Figure 6(h)
shows the vascular network beneath the epidermis.
Obviously, the blood vessels in the trauma site were very

different in morphology and diameter from the blood
vessels in the normal site. The microvasculature at the
trauma site was small and dense. Figure 6(i) shows a
statistical analysis of the thickness and normalized PA
amplitude of the SC layers for the normal and trauma sites.
The SC’s thickness and PA amplitude of the traumatized
skin were 1.58 times and 3.57 times that of the normal
skin, respectively. The thickness of the SC layer was
measured from Figs. 6(d) and 6(e), and the normalized PA

Fig. 5 Verification of in vivo imaging abilities of the GB-PAM and E-DOF-PAM systems on uneven tissue in the middle finger of a
volunteer. (a) and (b) MAP PA images acquired by the GB-PAM and E-DOF-PAM systems, respectively. (c) and (d) PA cross-sectional
images along the dashed lines A-A' and B-B' in (a) and (b), respectively. (e) and (g) Corresponding PA cross-sectional images along the
dashed lines at positons I and II in (c), respectively. (f) and (h) Corresponding PA cross-sectional images along the dashed lines at positons
III and IV in (d), respectively. (i) and (j) Corresponding PA amplitude profiles along the dashed lines at positions I–IV in (c) and (d),
respectively. EP, epidermis; SC, stratum corneum layer; SB, stratum basale. Scalar bar, 500 μm
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amplitudes were obtained from ROIs 1 and 2 in Fig. 6(f).
To compare the diameters of the blood vessels in the
normal and trauma sites, the profiles traced along lines C-
C' and D-D' in Fig. 6(h) are shown in Fig. 6(j). Obviously,
the diameters of the blood vessel at the trauma site were
smaller than those at the normal site. These results show
that E-DOF-PAM has the ability to reveal the morpholo-
gical changes of traumatized skin, and it can be used to
monitor the revascularization of traumatized skin.

4 Discussion and conclusions

We developed an E-DOF-PAM system by using an EF lens
to generate a non-diffracting Bessel beam, which can
achieve a DOF of up to 1000 μm and have a relative
uniform excitation efficiency at the focus. Meanwhile,
scattering phantoms and in vivo human skin experiments
demonstrated that the E-DOF-PAM has superior capacity
to image uneven tissues with high resolution and a large

Fig. 6 Feasibility of the E-DOF-PAM system in the detection of uneven traumatized skin. (a) Photograph of another volunteer’s skin,
where the normal and trauma sites, which are enclosed by dashed black and white boxes, were chosen for PA imaging. (b) and (c) MAP PA
images corresponding to the normal and trauma sites. (d) and (e) PA cross-sectional images along dashed lines A-A' and B-B' in (c),
respectively. (f)–(h) MAP PA images of the SC layer, SB layer, and vascular network beneath the epidermis, respectively. (i) Statistical
analysis of the measured thickness and normalized PA amplitude of the SC of the normal and traumatized skin. (j) Corresponding line
profiles along the lines C-C' and D-D' in (h). SC, stratum corneum; SB, stratum basale; ROI, region of interest. Scalar bar, 500 μm
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DOF. Furthermore, E-DOF-PAM was used to image
traumatized skin, and the volumetric PA images clearly
revealed detailed information about the epidermal structure
and neovascularization. The morphological differences
between normal skin and traumatized skin demonstrate the
feasibility of E-DOF-PAM in monitoring skin trauma and
regeneration, helping clinicians to quantitatively access the
treatment outcome. However, there are still some limita-
tions. Primarily, the cohort recruited here would not be
sufficient for a more comprehensive clinical investigation,
and only the feasibility of the E-DOF-PAM system for
monitoring traumatized skin is demonstrated in this study.
Additionally, the contact measurement limits the clinical
settings to some extent. The system can be further
developed to provide pathophysiological information in a
noncontact fashion, such as by being equipped with a high-
frequency air-coupled ultrasonic transducer or by using an
all-optical detection method [28,48]. Finally, to obtain a
greater imaging depth, a longer wavelength irradiation
source may be needed. Moreover, a multi-wavelength
application should be added to the system, which would
enable the system to measure oxyhemoglobin saturation.
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