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1  |  BACKGROUND

Microbial communities play important roles in environmental and 
human health systems and can often reach great complexity. In 

these rich ecosystems, microbes interact with each other, forming 
relationships based on predator– prey dynamics (Corno et al., 2013), 
competition for resources (Burkepile et al., 2006), cross- feeding of 
small compounds, (LaSarre et al., 2017) and other factors. Identifying 
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Abstract
Microbiome studies are often limited by a lack of statistical power due to small sam-
ple sizes and a large number of features. This problem is exacerbated in correlative 
studies of multi- omic datasets. Statistical power can be increased by finding and sum-
marizing modules of correlated observations, which is one dimensionality reduction 
method. Additionally, modules provide biological insight as correlated groups of mi-
crobes can have relationships among themselves. To address these challenges, we de-
veloped SCNIC: Sparse Cooccurrence Network Investigation for compositional data. 
SCNIC is open- source software that can generate correlation networks and detect 
and summarize modules of highly correlated features. Modules can be formed using 
either the Louvain Modularity Maximization (LMM) algorithm or a Shared Minimum 
Distance algorithm (SMD) that we newly describe here and relate to LMM using simu-
lated data. We applied SCNIC to two published datasets and we achieved increased 
statistical power and identified microbes that not only differed across groups, but 
also correlated strongly with each other, suggesting shared environmental drivers or 
cooperative relationships among them. SCNIC provides an easy way to generate cor-
relation networks, identify modules of correlated features and summarize them for 
downstream statistical analysis. Although SCNIC was designed considering proper-
ties of microbiome data, such as compositionality and sparsity, it can be applied to a 
variety of data types including metabolomics data and used to integrate multiple data 
types. SCNIC allows for the identification of functional microbial relationships at scale 
while increasing statistical power through feature reduction.
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correlated pairs of microbes can suggest potential interactions or 
shared environmental preferences. Accordingly, studies have iden-
tified complex networks of co- occurring microbes in a variety of dif-
ferent environments ranging from the human mouth and gut (Faust 
et al., 2012) to soil (Barberán et al., 2012) and stream ecosystems 
(Widder et al., 2014).

To detect correlations between microbes, a variety of methods 
have been developed. While traditional correlation metrics are used 
by some (Bray & Curtis, 1957; Pearson, 1909; Spearman, 1904), 
newer methods have been developed that take into account the 
properties of 16S rRNA sequencing data (Haas et al., 2011; Huse 
et al., 2010; Kuczynski et al., 2010). A recent review tested these 
methods on a variety of models and identified some methods that 
performed better than others in ways that can depend on under-
lying data characteristics (Weiss et al., 2016). Although these tools 
are useful for finding pairwise relationships between organisms, less 
attention has been given towards developing methods for finding 
correlations among groups of microbes.

One way to explore complex interactions is to form networks in 
which correlated organisms are joined with an edge, and highly cor-
related sets of microbes are defined. Here, we refer to these sets as 
modules, which are synonymous to clusters or groups. There are two 
primary benefits of finding modules of correlated microbes. First, 
the combination of microbes in a module could be further explored 
to understand microbial interactions, such as cross- feeding relation-
ships, or shared environmental niches (Ban et al., 2015; Barberán 
et al., 2012; Dugas et al., 2018; Lozupone et al., 2012). Second, con-
sidering correlation structure among microbes can aid in statistical 
analysis aimed at uncovering relationships between microbes and 
other environmental factors. Specifically, by eliminating or sum-
marizing highly correlated features, dependence between features 
is decreased. Feature reduction will increase accuracy of methods 
that assume the independence of features such as false discovery 
rate technique (FDR) measurements like the Benjamini- Hochberg 
Correction (Benjamini & Hochberg, 2000), and statistical power is 
increased by reducing the number of feature comparisons.

One workflow for considering groups of correlated microbes 
in downstream statistical analyses requires three steps: first, cor-
relations between microbes must be measured and used to form a 
network; second, modules must be identified; and third, abundance 
of the microbes in modules must be summarized for use in subse-
quent statistical analyses. One software tool that has implemented 
this workflow, developed for application to gene expression data, is 
weighted gene correlation network analysis (WGCNA) (Langfelder 
& Horvath, 2008). WGCNA builds correlation networks based on 
a correlation coefficient (such as Pearson, Spearman, or biweight 
midcorrelation (Wilcox, 2011)), and detects modules as subtrees in 
a hierarchical cluster of features (Barabási & Albert, 1999). Modules 
are summarized by setting module abundance to that of network 
hubs or an eigenvector of the abundance of all module members 
(Langfelder & Horvath, 2008).

Several groups have used WGCNA to find correlations within 
16S rRNA sequencing data (Castillo et al., 2017; Tong et al., 2014; 

Yin et al., 2017; Younge et al., 2017), but this approach may not be 
appropriate for several reasons (Jackson et al., 2018). First, the cor-
relation metrics implemented in WGCNA do not account for sparsity 
and compositionality. Most sequencing- based microbiome datasets 
are sparse (i.e. there are many zeros) and compositional, meaning 
they only carry information on relative abundances of taxa instead 
of absolute abundances, which can lead to the detection of spuri-
ous correlations if proper statistical methods are not used (Gloor 
et al., 2017). Thus, the use of WGCNA for compositional data may be 
leading to the detection of spurious edges in microbiome networks. 
Second, the primary method WGCNA uses to pick modules assumes 
the correlation network will have a scale- free topology that may 
not be relevant to microbiome data (Broido & Clauset, 2019). Third, 
summarizing modules through identifying hub taxa works well in 
gene expression where a single transcription factor can control the 
expression of many genes, but may not be appropriate in microbial 
communities. Both the hub and eigenvector approaches to module 
summarization do not allow for output tables that maintain the total 
counts of microbial abundance per sample. Therefore, the hub and 
eigenvector approaches cannot be used with tools developed for mi-
crobiome data analysis that make assumptions based on total sample 
counts, such as ANCOM (Mandal et al., 2015) or metagenomeSeq 
(Paulson et al., 2013).

Optimal methods for identifying and summarizing modules of 
correlated features in 16S rRNA sequencing data have not been 
deeply explored. One study (Jackson et al., 2018) recommended 
an ensemble approach for correlation detection, and the Louvain 
modularity maximization (LMM) method (Blondel et al., 2008) to 
identify modules. LULU is a tool that follows a binning approach 
towards OTUs that co- occur, but only does so if they are highly 
phylogenetically related (Frøslev et al., 2017). Another tool, CoNet, 
uses an ensemble approach to build and visualize networks (Faust & 
Raes, 2016). However, no implementation of module summarization 
was made available for downstream statistical analysis.

To address these gaps, we have developed a tool for sparse, com-
positional correlation network investigation for compositional data 
(SCNIC), which uses methods optimized for microbiome data analy-
sis. SCNIC is available as standalone Python software, via Bioconda 
(Grüning et al., 2018) and the package installer for Python (pip), 
and as a QIIME 2 plugin (Bolyen et al., 2019). The source code for 
SCNIC and the QIIME 2 plugin is freely available on GitHub (https://
github.com/lozup onela b/SCNIC, https://github.com/lozup onela b/
q2- SCNIC) under the BSD- 3- Clause Licence.

2  |  MATERIAL S AND METHODS

2.1  |  The SCNIC method

SCNIC takes a feature table containing counts of each feature in 
all samples as input and performs three steps: (1) a correlation net-
work is built, (2) modules are detected in the network and (3) fea-
ture counts within a module are summed into a new single feature 

https://github.com/lozuponelab/SCNIC
https://github.com/lozuponelab/SCNIC
https://github.com/lozuponelab/q2-SCNIC
https://github.com/lozuponelab/q2-SCNIC
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(identified as “module- x” where x is whole numbered consecutively 
starting at zero; Figure 1). The modules are ordered based on size, 
where the lower numbered modules have a larger number of mem-
bers compared to higher numbered modules. To summarize mod-
ules, SCNIC uses a sum of count data from all features in a module. 
There is no maximum or minimum size constraint on module size 
when modules are created. The newly generated modules are in-
cluded in a new feature table alongside all features not grouped into 
a module. This maintains the total counts per sample, allowing for 
downstream analyses with tools that have assumptions related to 
total sample counts. SCNIC produces a graph modelling language 
(GML) format (Himsolt, 1997) file compatible with Cytoscape 
(Shannon et al., 2003) for network visualization in which the edges 
in the correlation network represent the positive correlations which 
are stronger than a user specified R- value cutoff (between 0 and 
1), a file describing which features compose each defined module, 
and a feature table in the Biological Observation Matrix (BIOM) 
(McDonald et al., 2012; Figure 1).

SCNIC allows users to choose between multiple methods for 
detecting correlations and of defining modules of co- occurring mi-
crobes. For correlations, SCNIC can implement traditional correla-
tion metrics (including Pearson's r, Spearman's ⍴ and Kendall's τ) or 
the compositionality-  and sparsity- aware correlation metric from 

SparCC (Friedman & Alm, 2012; Watts et al., 2019) to correct for as-
pects of microbiome data. SparCC has been shown to perform well 
in detecting correlations compared to other correlation measures 
(Weiss et al., 2016). Specifically, SparCC performs well in communi-
ties with an inverse Simpson index above 13 (which would be indic-
ative of a high number of successful species, a complex food web, 
and many ecological niches, as would be seen in many high biomass 
microbial communities such as gut or soil microbiomes) (Fernandes 
et al., 2014; Watts et al., 2019), and it thus was chosen as the default 
metric.

To define modules of co- correlated features, we implement two 
methods: (1) Louvain modularity maximization (LMM) and (2) a novel 
shared minimum distance (SMD) module detection algorithm; un-
like WGCNA, neither of these algorithms make assumptions about 
network topology. LMM was previously proposed as a method for 
clustering correlation networks of microbes into modules (Blondel 
et al., 2008). LMM works by first assigning one module per feature. 
Each pair of adjacent modules are joined and the change in modu-
larity (defined by the number of edges within the module compared 
to outside) is calculated for each module. The pair which increases 
the mean modularity of the network the most is then joined. This 
process is repeated until the modularity of the network is not in-
creased. LMM uses two parameters provided by the user: The first 

F I G U R E  1  SCNIC schematic and data flow. (a) The basic process of SCNIC involves first identifying pairwise correlations between species 
and using them to build a correlation network. Modules of correlated features are identified and then summarized for downstream statistical 
analysis, or multi- omic analysis between modules of microbes and other feature types. (b) The input to SCNIC comes in the form of a count 
table in BIOM format. The first step takes the table and generates a correlation table and network. The table is in a tab delimited format and 
the network is in GML format and can be used to visualize the network in Cytoscape. Modules are detected and summarized in the final step 
which generates a module membership file indicating which features are in each module. The collapsed BIOM table contains the same total 
counts per sample as the original table, but with less features. All features not included in modules are retained with their original counts and 
all modules have a total count per sample of the sum of the counts of all features in that module.
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parameter, R- value, defines the minimum correlation coefficient for 
defining an edge between features. The second parameter, gamma 
(also referred to as resolution), controls the size of modules detected, 
with large gamma values yielding larger modules.

WGCNA and LMM have a potential weakness in that modules 
can contain pairs of taxa that are not strongly correlated (e.g., if they 
are several steps away from each other in the network). To address 
this weakness, we also implement the SMD method to ensure that 
correlations between all pairs of features in the module have an R- 
value greater than the user provided minimum (Figure 2). Specifically, 
the SMD method defines modules by first applying complete linkage 
hierarchical clustering to correlation coefficients to make a tree of 
features. Next, SMD defines modules as subtrees where correla-
tions between all pairs of tips have an R- value above the specified 
value. SMD has been set as the default method in SCNIC because of 
the desirable property of only producing modules where all features 
are correlated over a user- specified threshold.

A large proportion of microbiome studies sample highly un-
even communities which leads to strong compositionality- driven 
artefacts (Fernandes et al., 2014; Gloor et al., 2017; Tsilimigras & 
Fodor, 2016). Because of this, we use SparCC, specifically the im-
plementation of FastSpar (Watts et al., 2019), as the default correla-
tion measure. SparCC was used as the correlation metric based on 
analysis that suggested a high precision in the number of correct 
edges recovered when correlations were calculated in synthetic 
data (Weiss et al., 2016). SCNIC additionally includes the option 
of using Pearson's r, Spearman's ⍴ and Kendall's τ to evaluate non- 
compositional or dense data types.

2.2  |  Evaluating the SMD algorithm using 
simulated data

Since SMD has not been applied to microbiome module detection 
before, we compared SMD to LMM using simulated data. In order 
to evaluate the performance of SMD for module detection under 
different parameter settings and compare it to LMM, we simulated 
a wide range of networks. The simulations had networks with simi-
lar characteristics to those seen in networks generated from micro-
biome datasets. These included networks with power law degree 
distributions (N = 175) with values of ɑ, the exponent term of the 
power law formula (y = kX−ɑ), varying between 1.8 and 2.6, as well 
as networks with regular degree distributions (N = 200) with p, the 
probability of one node being connected to another, varying from 
0.001 to 0.2. The power law and regular degree distribution net-
works were created using the NetworkX v2.6.3 implementations 
of configuration_model and erdos_renyi_graph, respectively, and 
all had a size of 500. The networks with power law degree distri-
butions had modularity values between 0.2 and 0.9, with higher ɑ 
corresponding to higher modularity, and the networks with regu-
lar degree distributions had modularity values between 0.07 and 
0.98, with lower p corresponding to higher modularity. Higher 
modularity scores indicate many connections within modules and 
fewer connections between modules. We then calculated SMD 
and LMM partitions (with LMM gamma = 1) of each network and 
compared the homogeneity between the two partitions. Because 
SMD modules are smaller than LMM modules, we used the homo-
geneity metric described by Rosenberg and Hirschberg (Rosenberg 

F I G U R E  2  SMD algorithm for 
defining modules. SMD defines a module 
as a group where all features have a 
correlation above a given threshold. To 
do this SMD first uses complete linkage 
hierarchical clustering on correlation 
coefficients to create a tree. Each 
module is defined as a subtree where the 
correlation coefficients between all tips 
are greater than the threshold.
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& Hirschberg, 2007) (implemented via Scikit- learn v0.24.2) to as-
sess whether nodes partitioned together by SMD are a subset of 
the module partitioned by LMM. A score of 1 represents that all 
nodes in SMD modules represent sub- modules of LMM- partitioned 
modules, whereas a score of 0 represents that no two nodes that 
were classified by SMD into the same module were partitioned into 
a module together by the LMM method.

2.3  |  Demonstrating the use of SCNIC

We demonstrate the use of SCNIC with two example datasets. These 
are (1) a study that used 16S rRNA sequencing of faecal material to 
compare microbiome composition in individuals with and without 
HIV and in men who have sex with men (MSM) who were at a high 
risk of contracting HIV (Noguera- Julian et al., 2016), and (2) a dataset 
analysing the microbiome of water samples at various depths in two 
of the Great Lakes. We chose these two datasets so that we could 
evaluate performance using datasets from both host- associated and 
free- living microbiomes. We also used the Great Lakes dataset to 
compare module size and modularity between SMD and LMM se-
lected modules.

2.4  |  HIV dataset

The HIV data set was retrieved from NCBI SRA accession number 
SRP068240, and samples from the BCN0 cohort were used for these 
analyses. Reads were error corrected, quality trimmed, and prim-
ers were removed using default parameters in BBTools (Bushnell 
et al., 2017). DADA2 (Callahan et al., 2016) was used to define am-
plicon sequence variants (ASVs) with reads trimmed from the left by 
30 base pairs and truncated at 269. ASVs were binned into opera-
tional taxonomic units (OTUs) using USEARCH (Edgar, 2010) at 99% 
identity using QIIME 1 (Caporaso et al., 2010). A phylogenetic tree 
was made using a single representative sequence from each OTU 
and the SEPP protocol (Janssen et al., 2018; Mirarab et al., 2012) 
using QIIME 2 (Bolyen et al., 2019). We evaluated the average phy-
logenetic distance between OTUs in the same module using the dis-
tance method of Biopython (Cock et al., 2009; Talevich et al., 2012). 
Taxonomy was assigned using the Naive Bayes QIIME 2 feature clas-
sifier, version gg- 13- 8- 99- 515- 806- nb- classifier.qza.

The original study describing these data showed a strong di-
vergence in gut microbiome composition in MSM compared to 
non- MSM independent of HIV infection status and more subtle dif-
ferences associated with HIV infection when controlling for MSM 
behaviour. The goal of our analysis was to evaluate whether com-
paring gut microbiome composition between HIV negative MSM 
and non- MSM with SCNIC modules provide additional significant 
taxa compared to without, and additional insights as to which taxa 
that differ with MSM also are in turn demonstrating co- correlated 
structure with each other. Co- correlation of microbes may indicate 
that they are a part of a broader community type, interact with each 

other, or have shared environmental drivers of their prevalence. A 
further goal of this analysis is to examine the effects of using differ-
ent R- value thresholds on the results. The SMD method was specif-
ically used with SparCC R- value thresholds between 0.20 and 1.0, 
with 0.05 increments.

2.4.1  |  Great Lakes dataset

The Great Lakes dataset was previously published as part of the 
Earth Microbiome Project (Thompson et al., 2017). This study evalu-
ated patterns of microbial relative abundance across depths in Lake 
Michigan (N = 16) and Lake Superior (N = 33), with depth of sam-
ples collected ranging from 5 to 3654 meters. The study addition-
ally recorded data on pH and salinity. The Great Lakes data set was 
retrieved from QIITA accession number 1041 (Gonzalez et al., 2018). 
ASVs were found using DADA2 with a left trim of 30 and a trun-
cation length of 135. OTUs were subsequently picked on the ASVs 
using VSEARCH (Rognes et al., 2016) with a 99% identity thresh-
old, resulting in 3871 OTUs. These steps were done with QIIME 2 
(Bolyen et al., 2019). SCNIC was applied with the SMD method and 
0.2, 0.4 and 0.65 R- value thresholds.

2.4.2  |  Comparison of SMD to LMM using the Great 
Lakes dataset

To identify differences in module structure from SMD versus LMM 
partitions, we assessed the module size and modularity of 221 sepa-
rately partitioned networks from the Great Lakes dataset using 
varying parameters for SCNIC. The parameters included SCNIC R 
thresholds ranging from 0.1 to 0.7 and gamma ranging from 0.15 to 
0.9 for LMM.

2.5  |  Evaluating effects of applying SCNIC to 
discern microbes that differ between groups in the 
HIV and Great Lakes datasets

OTUs/modules that differed with MSM status (HIV study) and 
between lakes (Great Lakes study) were identified using ANCOM 
(Mandal et al., 2015) for each feature. For the first study, we focused 
on evaluating differences in the microbiome between MSM and non- 
MSM without confounding by HIV infection status, by only using 
samples from HIV negative individuals. We chose ANCOM because 
it is also a tool designed specifically for working with compositional 
microbiome data. ANCOM was applied to the original feature table 
where SCNIC was not applied, as well as to feature tables output 
from SCNIC using SparCC at different R- value thresholds with the 
SMD algorithm.

While applying SparCC, SCNIC uses the recommended prac-
tice of the SparCC manuscript of filtering based on average relative 
abundance across samples (Friedman & Alm, 2012).The SparCC 
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manuscript suggests this filter because removing features with 
high abundances, even in a few samples, will upset the ability of the 
method to control for the number of reads per sample in its composi-
tionality adjustment. Because this method can retain OTUs that are 
highly abundant in only a single sample, we removed features that 
had 0 values in more than 5% (~29/146) of samples before applying 
ANCOM but after applying SparCC. Significant differences between 
groups were determined as those above the W- value threshold de-
termined by ANCOM.

2.6  |  Time and memory usage by SCNIC

To evaluate the memory resources needed by SCNIC, we ran the 
SCNIC modules step locally on a 2015 MacBook Pro with 16 GB 
RAM with a 2.5 GHz Quad- Core Intel Core i7 processor for both 
the Great Lakes dataset and an integrated microbiome- metabolome 
dataset with 1301 features, which will be referred to as the GT data-
set. The runtime was recorded across 3 runs per method (SMD vs 
LMM) for each dataset using GNU Time, and memory was profiled 
using memory- profiler 0.60.0. The “within” step, which calculates 
correlations between features and creates the correlation network 
was not tested because it depends greatly on the correlation met-
ric used, and the runtime and memory usage of FastSpar (likely the 
most computationally intensive correlation metric to be used in this 
step) have already been profiled (Watts et al., 2019). The modules 
step only utilizes a correlation matrix and as such does not scale with 
the number of samples, only the number of features, except when 
the values of the count table are being summed, which is a generally 
trivial calculation compared to the module generation step.

3  |  RESULTS

3.1  |  Comparison of LMM to SMD on real and 
simulated data

In order to evaluate the relationship between modules detected 
with SMD versus LMM, we chose modules on the Great Lakes data-
set using SMD at R- value thresholds ranging from 0.05 to 0.7 and 
with LMM at the same R- value thresholds and gamma values ranging 
from 0.15 to 0.9. We found that with both LMM and SMD, modu-
larity increased with increasing R- value thresholds. However, SMD 
produced less modular partitions and smaller modules than LMM, 
even when LMM was applied with very low values for the gamma 
parameter that controls module size (Figure 3a,b).

In order to determine whether SMD produced related modules 
to LMM (e.g., since SMD modules are smaller, whether they repre-
sent sub- graphs of the larger LMM modules), we calculated a ho-
mogeneity score (described in methods section) between SMD and 
LMM modules in simulated networks. All networks contained 500 
nodes. Modularity was calculated for the LMM partitions, and the 
homogeneity of SMD and LMM partitions was calculated. From 

our simulated networks, the homogeneity between SMD and LMM 
module partitions was between 0.55 and 0.87 (Figure 3c,d). Notably, 
we found that for networks simulated with both power law and 
regular node degree distributions, as modularity of LMM partitions 
increased, the homogeneity between SMD-  and LMM- partitioned 
modules increased (power law network Pearson R = 0.87, p < .001; 
regular network Pearson R = 0.93, p < .001). Thus, when network 
modularity is high (i.e., there is a high number of edges within the 
module compared to between modules), SMD partitions tend to be 
sub- partitions of LMM partitions.

3.2  |  R- value thresholds influence module size and 
phylogenetic relatedness of OTUs binned into 
a module

A key parameter in SCNIC is the R- value threshold used to pick mod-
ules. Use of a high R- value threshold would be expected to bin only 
very tightly correlated microbes with strong relationships, while less 
stringent thresholds may identify community- level patterns repre-
senting more loosely connected microbial pairs. To illustrate this 
concept, we binned OTUs into modules using the SMD method at 
R- value thresholds between 0.2 and 1.0 using the HIV dataset. As 
expected, at lower R- value thresholds, more OTUs were binned into 
modules and lower numbers of modules of smaller average size were 
formed as the threshold increased (Figure 4a). To illustrate the ef-
fects of R- values thresholds on the nature of the identified modules, 
we compare SCNIC outputs using R- value thresholds of 0.2, 0.4, and 
0.65. As shown in Figure 4, which visualizes modules in Cytoscape 
using SCNIC output files, the R- value threshold influences the size 
and connectivity of the network. We also illustrate the effect of 
using different thresholds by examining the correlations between 
OTUs that are included in the first module output by SCNIC, which 
is the largest module (module- 0) (Figure 5). All OTUs in module- 0 
are positively correlated with each other, since SCNIC only captures 
positive correlations.

Microbes co- occurring in the same environmental niche have 
previously been observed to be phylogenetically closer on average 
(Faust et al., 2012). This is likely because phylogenetic relatedness 
has been correlated with functional relatedness, such as through 
having more shared genome content, leading towards success in 
similar environments (Zaneveld et al., 2010). We show that increas-
ing the R- value threshold results in modules that contain OTUs that 
are more phylogenetically similar on average (Figure 5).

3.3  |  Use of SCNIC influences the detection of 
OTUs that differ between MSM and non- MSM

We next evaluated the effects of applying SCNIC with default SparCC 
and SMD parameters and varying R- value thresholds on downstream 
statistical analysis results. To investigate differential abundance 
based on MSM status in the HIV dataset we used ANCOM (Mandal 
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et al., 2015). After removing taxa that were not present in at least 
5% of the samples the OTU table had 317 samples and 639 OTUs. 
We found that 12 OTUs were significantly different between MSM 
and non- MSM without using SCNIC. Using SCNIC at R- values of 0.2, 
0.4, and 0.65 and running ANCOM on the filtered output feature 
table, we found that most of the significant features were modules 
at an R- value of 0.2 and 0.4 but not 0.65 (e.g., 14 of the 15 significant 
features were modules at R = 0.2) (Table 1). This was the case even 
though the vast majority of OTUs were not a part of modules at the 
0.4 R- value threshold (Figure 4a). The majority of 12 of the OTUs that 
were significant without running SCNIC, were grouped into modules 
with each other and with OTUs that were not individually significant 
without running SCNIC. These significant modules contained 74, 26, 
and 1 new OTU at R- values of 0.2, 0.4 and 0.65 respectively. Using 
SCNIC also resulted in the identification of 1, 5 and 25 (at R- values of 
0.2, 0.4 and 0.65) OTUs that were individually significant that were 
not significant without running SCNIC, with no OTUs that were in-
dividually significant losing significance because they were binned in 
a module, indicating an increase in statistical power resulting from 
running a test like ANCOM that controls the FDR.

Considering correlation structure of significant features can help 
in understanding the broader community context of bacteria that 
differ with MSM status. In module- 0 for each of the R- values, which 
significantly differed by MSM status in all cases, Prevotella was the 
dominant genus (Figure 5). At an R- value of 0.65, all OTUs in module- 0 

were assigned to the genus Prevotella (Figure 5c). However, at an R- 
value of 0.4 module- 0 included seven Prevotella OTUs, one Dialister, 
and an unidentified member of the Paraprevotellaceae family. At the 
R- value of 0.2, Prevotella accounted for 13 of the 25 OTUs and 11 
of the 12 pre- SCNIC significant OTUs were all found in this module. 
This suggests that individual OTUs that differ with MSM status may 
in some cases be a part of a consortium of diverse members that 
collectively display features that may contribute to differences in 
microbiome function.

To further explore this concept, we investigated the results gen-
erated with an R- value of 0.4, as the significant features maintain 
a strong level of correlation while being phylogenetically diverse. 
When running ANCOM on this feature table, we found that these 
individually significant OTUs tended to be joined into modules with 
other highly co- correlated microbes and that these modules signifi-
cantly differed with MSM (Figure 6). Of particular note, we observe 
that the modules and taxa that are significantly related to MSM do 
not all correlate with each other. At the R- value of 0.4, module- 36 
contains two taxa, Erysipelotrichaceae and Clostridium that are 
negatively correlated with the other significant taxa and modules 
(Figure 6). Module- 2 contains Eubacterium, Catenibacterium and 
Prevotella which are phylogenetically heterogenous but mutually 
co- occurring. A follow up experiment, which leverages insights that 
SCNIC generates, may combine different strains of microbes to as-
semble a community type to test for functional correlates of disease.

F I G U R E  3  Comparison of the SMD and LMM algorithms for module selection. Panels A and B show a comparison of module size and 
modularity between SMD and LMM selected modules on the Great Lakes data at R thresholds ranging from 0.1 to 0.7 and gamma ranging 
from 0.15 and 0.9 for LMM. Panel a compares average module size and Panel b shows modularity across these parameters. In Panels C and 
D the homogeneity of LMM versus SMD selected module was calculated using simulated networks formed using both Power- Law (Panel c) 
and Regular (Panel d) degree distributions. Nodes are coloured by the ɑ (exponent) parameter for power law degree distributions in Panel c 
and by p (probability of one node being connected to any other node) in regular degree distributions in Panel d. A homogeneity of 1 denotes 
that all SMD modules are sub- modules of the LMM modules, whereas a homogeneity of 0 denotes that no two nodes grouped into a SMD 
module were partitioned into the same module by LMM.

(a) (b)

(c) (d)
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3.4  |  Use of SCNIC results in the detection of lake 
associated taxa

To test consistency in patterns across different datasets, we also 
tested the effects of applying SCNIC with default SparCC and SMD 
parameters and varying R- value thresholds on results from the Great 
Lakes dataset. Specifically, we identified features that significantly 
differed between Lake Michigan (N = 16) and Lake Superior (N = 33) 
using ANCOM (Mandal et al., 2015).

We began with a table of 3871 OTUs, and 725 of these remained 
after removing OTUs not present in at least 5% of the samples. We 
found that 168 OTUs were significantly different between lakes with-
out using SCNIC using ANCOM. Using SCNIC at R- values of 0.2, 0.4, 
and 0.65 and running ANCOM on the filtered output OTU table, we 
found that most significant features were modules at an R thresh-
old of 0.4 but not 0.2 or 0.65 (Table 1). Use of SCNIC resulted in the 

detection of individual OTUs that were now significant that were not 
before (3 and 13 for R- value thresholds of 0.4 and 0.65 respectively). 
Application of SCNIC also identified many additional OTUs that be-
come of interest because they were now part of significant modules 
(139, 64, and 12 OTUs at 0.2, 0.4, and 0.65 respectively; Table 1). 
However, unlike for the HIV dataset, several OTUs that were individu-
ally significant were no longer significant with ANCOM after applying 
SCNIC and this effect was the most pronounced with lower R- value 
thresholds (64, 14, and 6 OTUs that were significant with SCNIC were 
no longer significant after applying SCNIC at 0.2, 0.4, and 0.65 R- value 
thresholds respectively; Table 1). This is likely because microbes that 
differed between lakes were binned with loosely correlated microbes 
that did not, leading to a loss of signal. Thus, in this case, only SCNIC 
with a moderate to high R- value threshold appeared to balance the 
benefit of the increased power and disadvantages of loss of signal 
from binning loosely correlated features.

F I G U R E  4  SCNIC feature reduction and visualization of SCNIC networks. (a) We used SCNIC to select modules using the OTU table from 
the HIV dataset, the SMD module selection algorithm, and SparCC R- values ranging from 0.2 to 1.0, in increments of 0.05. The R- value is 
plotted against the number of features in the resulting BIOM table produced by SCNIC. As the R- value increases the number of modules 
decreases and the number of single features (modules + OTUs not included in modules) increases. After the R- value of 0.65, the number of 
features in the resulting file remained the same at 4351 features, because there were no modules that were created past a SparCC R of 0.65.
The Cytoscape output allows for easy exploration and visualization of relationships between different OTUS/taxa in an interactive interface. 
(b) R = 0.65 (c) R = 0.4 (d) R = 0.2. As the R- value increases, the size of the network decreases as SCNIC does not include singletons (features 
with no significant positive correlations) in the resulting network file. Correlation network where edges are correlations with a R- value 
greater than the threshold set. Nodes are OTUs and node colour represents module membership (i.e., module- 0 is pink in Panel b).
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3.5  |  Time and memory resources used by SCNIC

SCNIC's module generation step can be run locally on a laptop 
computer. For both the Great Lakes and GT datasets, which had 
764 and 1301 features respectively, SCNIC's module generation 

step ran in <2 min when using the SMD method and <30 s when 
using the Louvain method. The Great Lakes dataset used <200 
mebibytes (MiB) memory, and the GT dataset required a maximum 
of 300 MiB memory. Table S1 shows time and memory usage dur-
ing SCNIC.

F I G U R E  5  Module- 0 across different R- values. Module- 0 expanded to view taxonomy and correlations among them at R- values of 0.2 
(a), 0.4 (b), and 0.65 (c). The heatmap in the lower triangle corresponds to the correlation found by SparCC coloured on a light red (low 
correlation) to dark red (high correlation) spectrum as defined in the colour bar on the right. The heatmap in the upper triangle represents 
the phylogenetic distance between organism pairs coloured on a yellow (small phylogenetic distance) to dark blue (high phylogenetic 
distance) spectrum as defined in the colour bar on the right. As the R- value increases, the species in module- 0 become more phylogenetically 
similar. Module- 0 has 11, 5 and 2 of the significant Pre- SCNIC OTUs at R- values of 0.2, 0.4 and 0.65, and are highlighted in a yellow border.

TA B L E  1  Significant SCNIC modules and features across R- values in the HIV and Great Lakes datasets ANCOM analysis of the HIV and 
Great Lakes datasets after using SCNIC at R- value thresholds at 0.2, 0.4, and 0.65

HIV dataset

R- value New OTUs in sig. modules New significant OTUs Lost significant OTUs # of significant modules
Total significant 
features

0.2 74 1 0 14 15

0.4 26 5 0 11 17

0.65 1 25 0 2 35

Great Lakes dataset

R- value New OTUs in sig. modules New significant OTUs Lost significant OTUs # of significant modules
Total significant 
features

0.2 139 0 64 1 25

0.4 64 3 14 29 33

0.65 12 13 6 24 74

Note: MSM was used as the categorical variable for differential abundance in the HIV analysis and the Great Lakes analysis tested for taxa that 
differed between lakes.
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4  |  DISCUSSION

SCNIC provides a method to measure correlations, find and visual-
ize modules of correlated features, and summarize modules by sum-
ming their counts for use in downstream statistical analysis as one 
method for dimensionality reduction. Using SCNIC with the SMD al-
gorithm for module detection aids in feature reduction in 16S rRNA 
sequencing data while ensuring a minimum strength of association 
within modules. As expected, our workflow identified modules in 
which OTUs tended to be phylogenetically related, especially at rela-
tively high values of R. Using SCNIC, we overall achieved increased 
statistical power from performing less comparisons, but use of low 
R- value thresholds had the potential to lead to loss of significance 
by binning loosely correlated features. In these analyses we used 

SparCC to calculate pairwise correlations in compositional data but 
Spearman and Pearson are also implemented for cases when the 
underlying data do not match those well suited for SparCC (e.g., if 
they are not sparse or with an inverse Simpson index above 13). In 
these analyses, we also used OTUs as features; however, other mi-
crobiome features can be used with SCNIC, such as ASVs, genera, 
or species defined with a taxonomic classifier, as well as other data 
types such as metabolome data. SCNIC has also been used in previ-
ously published work to perform feature reduction prior to random 
forest analysis with the microbiome and diverse other data types 
(Armstrong et al., 2021).

SCNIC complements existing methods because these either: 
(1) form correlation networks of microbes for visualization but do 
not have functionality for selecting and summarizing modules for 

F I G U R E  6  All significant features at R- value 0.4 found by ANCOM. Each of the borders in the y- axis represents the different modules, 
with the module number bolded. The Pre- SCNIC OTUs that were significant are highlighted in a yellow border. The heatmap in the lower 
triangle corresponds to the correlation found by SparCC coloured on a light red (low correlation) to dark red (high correlation) spectrum 
as defined in the colour bar on the right. The heatmap in the upper triangle represents the phylogenetic distance between organism pairs 
coloured on a yellow (small phylogenetic distance) to dark blue (high phylogenetic distance) spectrum as defined in the colour bar on the 
right.
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downstream statistical analysis (Faust & Raes, 2016), (2) can select 
and summarize modules for downstream statistical analysis but are 
designed for gene expression and not microbiome data (Langfelder 
& Horvath, 2008), only summarize features if they are phylogenet-
ically related (Frøslev et al., 2017), or suggest methods for finding 
modules of correlated microbes but do not provide a convenient 
implementation (Blondel et al., 2008). SCNIC is available both as a 
stand- alone application and as a QIIME 2 plugin for easy integration 
with existing microbiome workflows.

SCNIC implements both the LMM algorithm, which had been 
previously recommended for selecting modules of correlated mi-
crobes (Baldassano & Bassett, 2016; Jackson et al., 2018), and a 
novel SMD algorithm. The advantage of the SMD algorithm is that 
all pairs of features in the module have an R- value greater than the 
user- provided minimum threshold. Using real and simulated data, we 
showed that SMD produced smaller modules that generally repre-
sent sub- graphs of the larger LMM modules. Since the use of lower 
R- value thresholds similarly produced larger modules including more 
weakly correlated modules, we speculate that use of LMM might re-
sult in a similar trend of identifying more OTUs within significant 
modules, but with the disadvantage of individually significant OTUs 
being lost because they are combined with loosely correlated mi-
crobes that are not related to the outcome being tested.

We illustrate here that varying the R- value threshold input by the 
user has a great impact on the results. However, we have avoided 
giving specific R- value threshold recommendations here, because 
optimal R- values may vary across datasets and data types. Using 
higher R- values thresholds was more likely to identify highly phy-
logenetically related microbes that likely share overlapping func-
tionality, and in principle could also identify diverse organisms with 
overlapping niches or highly complementary metabolic functions. 
Using a lower R- value threshold bins a broader community of more 
loosely correlated features with the risk of bringing together fea-
tures which should not be grouped and loosing significance of OTUs 
–  as was illustrated in the Great Lakes dataset analysis conducted 
here. By summarizing correlated features, SCNIC can mitigate over-
correction in multiple test adjustments by reducing the number of 
taxa and false discovery rate for downstream analysis. However, 
further work with both real and simulated datasets is required to 
determine the degree to which network characteristics that are in-
herent in different microbiome datasets may influence the optimal 
methods for both selecting and summarizing modules in order to en-
hance statistical power.

The results of our HIV dataset analysis confirm original find-
ings, as well as those of another study (Armstrong et al., 2018), 
but included many new significantly associated taxa. SCNIC also 
assists in interpretation of microbiome data by identifying cor-
relations among these taxa. Our results recapitulated those of the 
original publication of these data and previous HIV microbiome 
studies that all found enrichment of Prevotella with MSM status 
(Armstrong et al., 2018; Dillon et al., 2014; Lozupone et al., 2013; 
Noguera- Julian et al., 2016). However, our analyses provide addi-
tional insight by identifying correlations between differentiating 

taxa. For instance, in module- 0, which was more abundant in MSM 
samples, OTUs assigned taxonomically to the Prevotella genus are 
correlated with two OTUs identified as Eubacterium biforme (which 
has recently been renamed Holdemanella biformis (De Maesschalck 
et al., 2014)). Prevotella copri has previously been associated with 
increased inflammation (Dillon et al., 2014) while in vitro stimula-
tions of human immune cells have found that P. copri did not induce 
particularly high levels of inflammation but E. biforme did (Lozupone 
et al., 2013). This strong correlation between P. copri and E. biforme 
in MSM could explain the increased inflammation seen in individu-
als with higher levels of P. copri, with E. biforme being the true driver. 
Indeed, MSM status has previously been associated with increased 
inflammation (Gianella et al., 2012; Palmer et al., 2014). With the 
use of SCNIC, this correlation highlighted a route of mechanistic un-
derstanding which could be functionally followed up on in further 
experimental studies.

SCNIC detected multiple significant modules, of which none 
of the OTUs within were significant when analysed separately. 
Module- 20, which was associated with MSM status, is the fourth 
most significant feature at R- value of 0.2, and is made up of 
Acidaminococcus, Megasphaera, and Mitsuokella species. These are 
all from the Veillonellaceae family which is likely the explanation for 
their correlation. Members of the Veillonellaceae family have been 
linked with inflammation (Bajaj et al., 2012).

By increasing statistical power and providing context for the re-
lationships between significant taxa, SCNIC modules open new op-
portunities for analysis. When a module is associated with a variable 
of interest, the correlations within the module may imply functional 
relationships. These can be further investigated with in vitro and in 
vivo experiments. Studies which aim to test hypotheses generated 
from correlative analysis will commonly use a single significantly as-
sociated microbes. This often does not adequately represent in vivo 
systems because microbes in isolation often do not affect a disease 
state or their environment. SCNIC can enhance these confirmatory 
studies by identifying groups of microbes that may grow better than 
individual microbes and may better elicit relevant phenotypes than 
when grown separately.

AUTHOR CONTRIBUTIONS
M.S. coded the initial implementation of SCNIC and made major 
contributions to its conceptualization and design. K.T. improved the 
SCNIC implementation and performed the HIV case study. J.S. per-
formed the comparisons of SMD to LMM with real and simulated 
data. C.L. conceptualized SCNIC and guided its implementation and 
design. K.T., M.S., J.S. and C.L. all wrote the manuscript together.

ACKNOWLEDG EMENTS
We would like to thank Elmar Pruesse for input on the design of 
SCNIC. We thank Jennifer Fouquier, Abigail Armstrong and Casey 
Martin for beta testing SCNIC. We thank Jennifer Fouquier for 
reading and commenting on the manuscript. Funding for KT came 
from the University of Colorado School of Medicine Research Track. 
Funding for MS came from NIH NLM 4T15 LM009451- 10. Funding 



    |  323SHAFFER et al.

for JS came from the National Science Foundation funding of the 
Interdisciplinary Quantitative Biology program and the William J. 
Freytag Fellowship.

CONFLIC T OF INTERE S T
The authors declare no conflcts of interest.

DATA AVAIL ABILIT Y S TATEMENT
The Noguera- Julian et al. data set is available from NCBI SRA acces-
sion number SRP068240. The lakes dataset is available from QIITA 
accession number 1041; [dataset] IrsiCaixa Foundation. human gut 
metagenome, Human feces metagenome 16s rDNA sequencing. 
2015/12. In: BioProject [Internet]. Bethesda, MD: National Library 
of Medicine (US), National Center for Biotechnology Information; 
2011- . Available from: http://www.ncbi.nlm.nih.gov/biopr oject/ 
PRJNA 307231. NCBI:BioProject: PRJNA307231;;[dataset] Karl J 
Rockne; 2016; Great lakes Microbiome; QIITA; https://qiita.ucsd.
edu/study/ descr iptio n/1041

ORCID
Kumar Thurimella  https://orcid.org/0000-0002-0819-4378 

R E FE R E N C E S
Armstrong, A. J. S., Quinn, K., Fouquier, J., Li, S. X., Schneider, J. M., 

Nusbacher, N. M., Doenges, K. A., Fiorillo, S., Marden, T. J., Higgins, 
J., Reisdorph, N., Campbell, T. B., Palmer, B. E., & Lozupone, C. A. 
(2021). Systems analysis of gut microbiome influence on metabolic 
disease in HIV- positive and high- risk populations. mSystems, 6(3), 
e01178–20.

Armstrong, A. J. S., Shaffer, M., Nusbacher, N. M., Griesmer, C., Fiorillo, 
S., Schneider, J. M., Preston Neff, C., Li, S. X., Fontenot, A. P., 
Campbell, T., Palmer, B. E., & Lozupone, C. A. (2018). An exploration 
of Prevotella- rich microbiomes in HIV and men who have sex with 
men. Microbiome, 6(1), 198.

Bajaj, J. S., Ridlon, J. M., Hylemon, P. B., Thacker, L. R., Heuman, D. M., 
Smith, S., Sikaroodi, M., & Gillevet, P. M. (2012). Linkage of gut 
microbiome with cognition in hepatic encephalopathy. American 
journal of physiology- gastrointestinal and liver. Physiology, 302(1), 
G168– G175.

Baldassano, S. N., & Bassett, D. S. (2016). Topological distortion and 
reorganized modular structure of gut microbial co- occurrence 
networks in inflammatory bowel disease. Scientific Reports, 6, 
26087.

Ban, Y., An, L., & Jiang, H. (2015). Investigating microbial co- occurrence 
patterns based on metagenomic compositional data. Bioinformatics, 
31(20), 3322– 3329.

Barabási, A.- L., & Albert, R. (1999). Emergence of scaling in random net-
works. Science, 286(5439), 509– 512.

Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using net-
work analysis to explore co- occurrence patterns in soil microbial 
communities. The ISME Journal, 6(2), 343– 351.

Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the 
false discovery rate in multiple testing with independent statistics. 
Journal of Educational and Behavioral Statistics, 25(1), 60– 83.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast 
unfolding of communities in large networks. Journal of Statistical 
Mechanics: Theory and Experiment, 2008(10), P10008.

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., al- 
Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, 

F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., 
Brown, C. T., Callahan, B. J., Caraballo- Rodríguez, A. M., Chase, 
J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable 
and extensible microbiome data science using QIIME 2. Nature 
Biotechnology, 37(8), 852– 857.

Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland Forest 
communities of southern Wisconsin. Ecological Monographs, 27(4), 
325– 349.

Broido, A. D., & Clauset, A. (2019). Scale- free networks are rare. Nature 
Communications, 10(1), 1017.

Burkepile, D. E., Parker, J. D., Woodson, C. B., Mills, H. J., Kubanek, J., 
Sobecky, P. A., & Hay, M. E. (2006). Chemically mediated competi-
tion between microbes and animals: Microbes as consumers in food 
webs. Ecology, 87(11), 2821– 2831.

Bushnell, B., Rood, J., & Singer, E. (2017). BBMerge –  Accurate paired 
shotgun read merging via overlap. PLoS One, 12(10), e0185056.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., 
& Holmes, S. P. (2016). DADA2: High- resolution sample inference 
from Illumina amplicon data. Nature Methods, 13(7), 581– 583.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. 
D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, 
J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. 
E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … 
Knight, R. (2010). QIIME allows analysis of high- throughput com-
munity sequencing data. Nature Methods, 7(5), 335– 336.

Castillo, J. D., Vivanco, J. M., & Manter, D. K. (2017). Bacterial microbi-
ome and nematode occurrence in different potato agricultural soils. 
Microbial Ecology, 74(4), 888– 900.

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., 
Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., & de Hoon, M. 
J. L. (2009). Biopython: Freely available python tools for computa-
tional molecular biology and bioinformatics. Bioinformatics, 25(11), 
1422– 1423.

Corno, G., Villiger, J., & Pernthaler, J. (2013). Coaggregation in a microbial 
predator– prey system affects competition and trophic transfer ef-
ficiency. Ecology, 94(4), 870– 881.

De Maesschalck, C., et al. (2014). Faecalicoccus acidiformans gen. Nov., 
sp. nov., isolated from the chicken caecum, and reclassification of 
streptococcus pleomorphus (Barnes et al. 1977), Eubacterium bi-
forme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 
1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella bi-
formis gen. Nov., comb. nov. and Faecalitalea cylindroides gen. Nov., 
comb. nov., respectively, within the family Erysipelotrichaceae. 
International Journal of Systematic and Evolutionary Microbiology, 
64(Pt_11), 3877– 3884.

Dillon, S. M., Lee, E. J., Kotter, C. V., Austin, G. L., Dong, Z., Hecht, D. K., 
Gianella, S., Siewe, B., Smith, D. M., Landay, A. L., Robertson, C. E., 
Frank, D. N., & Wilson, C. C. (2014). An altered intestinal mucosal 
microbiome in HIV- 1 infection is associated with mucosal and sys-
temic immune activation and endotoxemia. Mucosal Immunology, 
7(4), 983– 994.

Dugas, L. R., Bernabé, B. P., Priyadarshini, M., Fei, N., Park, S. J., Brown, 
L., Plange- Rhule, J., Nelson, D., Toh, E. C., Gao, X., Dong, Q., Sun, 
J., Kliethermes, S., Gottel, N., Luke, A., Gilbert, J. A., & Layden, B. 
T. (2018). Decreased microbial co- occurrence network stability 
and SCFA receptor level correlates with obesity in African- origin 
women. Scientific Reports, 8(1), 17135.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster 
than BLAST. Bioinformatics, 26(19), 2460– 2461.

Faust, K., & Raes, J. (2016). CoNet app: Inference of biological associa-
tion networks using Cytoscape. F1000Research, 5, 1519.

Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, 
J., & Huttenhower, C. (2012). Microbial co- occurrence relation-
ships in the human microbiome. PLoS Computational Biology, 8(7), 
e1002606.

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA307231
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA307231
https://qiita.ucsd.edu/study/description/1041
https://qiita.ucsd.edu/study/description/1041
https://orcid.org/0000-0002-0819-4378
https://orcid.org/0000-0002-0819-4378


324  |    SHAFFER et al.

Fernandes, A. D., Reid, J. N. S., Macklaim, J. M., McMurrough, T. A., 
Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of high- 
throughput sequencing datasets: Characterizing RNA- seq, 16S 
rRNA gene sequencing and selective growth experiments by com-
positional data analysis. Microbiome, 2(1), 15.

Friedman, J., & Alm, E. J. (2012). Inferring correlation networks from ge-
nomic survey data. PLoS Computational Biology, 8(9), e1002687.

Frøslev, T. G., Kjøller, R., Bruun, H. H., Ejrnæs, R., Brunbjerg, A. K., 
Pietroni, C., & Hansen, A. J. (2017). Algorithm for post- clustering 
curation of DNA amplicon data yields reliable biodiversity esti-
mates. Nature Communications, 8(1), 1188.

Gianella, S., Strain, M. C., Rought, S. E., Vargas, M. V., Little, S. J., Richman, 
D. D., Spina, C. A., & Smith, D. M. (2012). Associations between vi-
rologic and immunologic dynamics in blood and in the male genital 
tract. Journal of Virology, 86(3), 1307– 1315.

Gloor, G. B., Macklaim, J. M., Pawlowsky- Glahn, V., & Egozcue, J. J. 
(2017). Microbiome datasets are compositional: And this is not op-
tional. Frontiers in Microbiology, 8, 2224.

Gonzalez, A., Navas- Molina, J. A., Kosciolek, T., McDonald, D., Vázquez- 
Baeza, Y., Ackermann, G., DeReus, J., Janssen, S., Swafford, A. D., 
Orchanian, S. B., Sanders, J. G., Shorenstein, J., Holste, H., Petrus, 
S., Robbins- Pianka, A., Brislawn, C. J., Wang, M., Rideout, J. R., 
Bolyen, E., … Knight, R. (2018). Qiita: Rapid, web- enabled microbi-
ome meta- analysis. Nature Methods, 15(10), 796– 798.

Grüning, B., et al. (2018). Bioconda: Sustainable and comprehensive 
software distribution for the life sciences. Nature Methods, 15(7), 
475– 476.

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, 
G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methé, B., 
DeSantis, T. Z., The Human Microbiome Consortium, Petrosino, J. 
F., Knight, R., & Birren, B. W. (2011). Chimeric 16S rRNA sequence 
formation and detection in sanger and 454- pyrosequenced PCR 
amplicons. Genome Research, 21(3), 494– 504.

Himsolt, M. 1997 GML: A portable graph file format. Technical report, 
Universitat Passau.

Huse, S. M., Welch, D. M., Morrison, H. G., & Sogin, M. L. (2010). Ironing 
out the wrinkles in the rare biosphere through improved OTU clus-
tering. Environmental Microbiology, 12(7), 1889– 1898.

Jackson, M. A., Bonder, M. J., Kuncheva, Z., Zierer, J., Fu, J., Kurilshikov, 
A., Wijmenga, C., Zhernakova, A., Bell, J. T., Spector, T. D., & Steves, 
C. J. (2018). Detection of stable community structures within gut 
microbiota co- occurrence networks from different human popula-
tions. PeerJ, 6, e4303.

Janssen, S., McDonald, D., Gonzalez, A., Navas- Molina, J. A., Jiang, L., Xu, 
Z. Z., Winker, K., Kado, D. M., Orwoll, E., Manary, M., Mirarab, S., 
& Knight, R. (2018). Phylogenetic placement of exact amplicon se-
quences improves associations with clinical information. mSystems, 
3(3), e00021–18.

Kuczynski, J., Liu, Z., Lozupone, C., McDonald, D., Fierer, N., & Knight, R. 
(2010). Microbial community resemblance methods differ in their 
ability to detect biologically relevant patterns. Nature Methods, 
7(10), 813– 819.

Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted 
correlation network analysis. BMC Bioinformatics, 9, 559.

LaSarre, B., McCully, A. L., Lennon, J. T., & McKinlay, J. B. (2017). 
Microbial mutualism dynamics governed by dose- dependent toxic-
ity of cross- fed nutrients. The ISME Journal, 11(2), 337– 348.

Lozupone, C., Faust, K., Raes, J., Faith, J. J., Frank, D. N., Zaneveld, J., 
Gordon, J. I., & Knight, R. (2012). Identifying genomic and meta-
bolic features that can underlie early successional and opportu-
nistic lifestyles of human gut symbionts. Genome Research, 22(10), 
1974– 1984.

Lozupone, C. A., Li, M., Campbell, T. B., Flores, S. C., Linderman, D., 
Gebert, M. J., Knight, R., Fontenot, A. P., & Palmer, B. E. (2013). 
Alterations in the gut microbiota associated with HIV- 1 infection. 
Cell Host & Microbe, 14(3), 329– 339.

Mandal, S., et al. (2015). Analysis of composition of microbiomes: A novel 
method for studying microbial composition. Microbial Ecology in 
Health and Disease, 26, 27663.

McDonald, D., Clemente, J. C., Kuczynski, J., Rideout, J. R., Stombaugh, 
J., Wendel, D., Wilke, A., Huse, S., Hufnagle, J., Meyer, F., Knight, R., 
& Caporaso, J. G. (2012). The biological observation matrix (BIOM) 
format or: How I learned to stop worrying and love the ome- ome. 
Gigascience, 1(1), 7.

Mirarab, S., Nguyen, N., & Warnow, T. (2012). SEPP: SATé- enabled phy-
logenetic placement. Pacific Symposium on Biocomputing, 2012, 
247– 258.

Noguera- Julian, M., Rocafort, M., Guillén, Y., Rivera, J., Casadellà, 
M., Nowak, P., Hildebrand, F., Zeller, G., Parera, M., Bellido, R., 
Rodríguez, C., Carrillo, J., Mothe, B., Coll, J., Bravo, I., Estany, C., 
Herrero, C., Saz, J., Sirera, G., … Paredes, R. (2016). Gut microbi-
ota linked to sexual preference and HIV infection. eBioMedicine, 5, 
135– 146.

Palmer, C. D., Tomassilli, J., Sirignano, M., Romero- Tejeda, M., Arnold, K. 
B., Che, D., Lauffenburger, D. A., Jost, S., Allen, T., Mayer, K. H., & 
Altfeld, M. (2014). Enhanced immune activation linked to endotox-
emia in HIV- 1 seronegative MSM. AIDS, 28(14), 2162– 2166.

Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential 
abundance analysis for microbial marker- gene surveys. Nature 
Methods, 10(12), 1200– 1202.

Pearson, K. (1909). Determination of the coefficient of correlation. 
Science, 30(757), 23– 25.

Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: 
A versatile open source tool for metagenomics. PeerJ, 4, e2584.

Rosenberg, A., & Hirschberg, J. (2007). V- measure: A conditional 
entropy- based external cluster evaluation measure. Association for 
Computational Linguistics.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., 
Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A soft-
ware environment for integrated models of biomolecular interac-
tion networks. Genome Research, 13(11), 2498– 2504.

Spearman, C. (1904). Measurement of association, part II. Correction 
of ‘systematic deviations’. The American Journal of Psychology, 15, 
88– 101.

Talevich, E., Invergo, B. M., Cock, P. J., & Chapman, B. A. (2012). Bio. 
Phylo: A unified toolkit for processing, analyzing and visualizing 
phylogenetic trees in biopython. BMC Bioinformatics, 13(1), 209.

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., 
Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., 
Navas- Molina, J. A., Janssen, S., Kopylova, E., Vázquez- Baeza, Y., 
González, A., Morton, J. T., Mirarab, S., Zech Xu, Z., Jiang, L., … 
Zhao, H. (2017). A communal catalogue reveals Earth's multiscale 
microbial diversity. Nature, 551(7681), 457– 463.

Tong, M., McHardy, I., Ruegger, P., Goudarzi, M., Kashyap, P. C., 
Haritunians, T., Li, X., Graeber, T. G., Schwager, E., Huttenhower, C., 
Fornace, A. J., Jr., Sonnenburg, J. L., McGovern, D. P. B., Borneman, 
J., & Braun, J. (2014). Reprograming of gut microbiome energy me-
tabolism by the FUT2 Crohn's disease risk polymorphism. The ISME 
Journal, 8(11), 2193– 2206.

Tsilimigras, M. C. B., & Fodor, A. A. (2016). Compositional data analysis 
of the microbiome: Fundamentals, tools, and challenges. Annals of 
Epidemiology, 26(5), 330– 335.

Watts, S. C., Ritchie, S. C., Inouye, M., & Holt, K. E. (2019). FastSpar: 
Rapid and scalable correlation estimation for compositional data. 
Bioinformatics, 35(6), 1064– 1066.

Weiss, S., van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, 
Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, 
J. A., Fuhrman, J. A., Raes, J., Sun, F., Zhou, J., & Knight, R. (2016). 
Correlation detection strategies in microbial data sets vary widely 
in sensitivity and precision. The ISME Journal, 10(7), 1669– 1681.

Widder, S., Besemer, K., Singer, G. A., Ceola, S., Bertuzzo, E., Quince, 
C., Sloan, W. T., Rinaldo, A., & Battin, T. J. (2014). Fluvial 



    |  325SHAFFER et al.

network organization imprints on microbial co- occurrence net-
works. Proceedings of the National Academy of Sciences of the United 
States of America, 111(35), 12799– 12804.

Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis test-
ing. Academic Press.

Yin, J., Han, H., Li, Y., Liu, Z., Zhao, Y., Fang, R., Huang, X., Zheng, J., 
Ren, W., Wu, F., Liu, G., Wu, X., Wang, K., Sun, L., Li, C., Li, T., & 
Yin, Y. (2017). Lysine restriction affects feed intake and amino acid 
metabolism via gut microbiome in piglets. Cellular Physiology and 
Biochemistry, 44(5), 1749– 1761.

Younge, N., Yang, Q., & Seed, P. C. (2017). Enteral high fat- polyunsaturated 
fatty acid blend alters the pathogen composition of the intestinal 
microbiome in premature infants with an Enterostomy. The Journal 
of Pediatrics, 181, 93– 101.e6.

Zaneveld, J. R., Lozupone, C., Gordon, J. I., & Knight, R. (2010). Ribosomal 
RNA diversity predicts genome diversity in gut bacteria and their 
relatives. Nucleic Acids Research, 38(12), 3869– 3879.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Shaffer, M., Thurimella, K., Sterrett, J. 
D., & Lozupone, C. A. (2023). SCNIC: Sparse correlation 
network investigation for compositional data. Molecular 
Ecology Resources, 23, 312–325. https://doi.org/10.1111/1755-
0998.13704

https://doi.org/10.1111/1755-0998.13704
https://doi.org/10.1111/1755-0998.13704

	SCNIC: Sparse correlation network investigation for compositional data
	Abstract
	1|BACKGROUND
	2|MATERIALS AND METHODS
	2.1|The SCNIC method
	2.2|Evaluating the SMD algorithm using simulated data
	2.3|Demonstrating the use of SCNIC
	2.4|HIV dataset
	2.4.1|Great Lakes dataset
	2.4.2|Comparison of SMD to LMM using the Great Lakes dataset

	2.5|Evaluating effects of applying SCNIC to discern microbes that differ between groups in the HIV and Great Lakes datasets
	2.6|Time and memory usage by SCNIC

	3|RESULTS
	3.1|Comparison of LMM to SMD on real and simulated data
	3.2|R-value thresholds influence module size and phylogenetic relatedness of OTUs binned into a module
	3.3|Use of SCNIC influences the detection of OTUs that differ between MSM and non-MSM
	3.4|Use of SCNIC results in the detection of lake associated taxa
	3.5|Time and memory resources used by SCNIC

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


