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Abstract

Yellow fever virus (YFV) is the agent of the most severe mosquito-borne disease in the trop-

ics. Recently, Brazil suffered major YFV outbreaks with a high fatality rate affecting areas

where the virus has not been reported for decades, consisting of urban areas where a large

number of unvaccinated people live. We developed a machine learning framework combin-

ing three different algorithms (XGBoost, random forest and regularized logistic regression)

to analyze YFV genomic sequences. This method was applied to 56 YFV sequences from

human infections and 27 from non-human primate (NHPs) infections to investigate the pres-

ence of genetic signatures possibly related to disease severity (in human related

sequences) and differences in PCR cycle threshold (Ct) values (in NHP related sequences).

Our analyses reveal four non-synonymous single nucleotide variations (SNVs) on

sequences from human infections, in proteins NS3 (E614D), NS4a (I69V), NS5 (R727G,

V643A) and six non-synonymous SNVs on NHP sequences, in proteins E (L385F), NS1

(A171V), NS3 (I184V) and NS5 (N11S, I374V, E641D). We performed comparative protein

structural analysis on these SNVs, describing possible impacts on protein function. Despite

the fact that the dataset is limited in size and that this study does not consider virus-host

interactions, our work highlights the use of machine learning as a versatile and fast initial

approach to genomic data exploration.

Introduction

Yellow fever (YF) is an acute viral hemorrhagic disease endemic in tropical areas of Africa and

Latin America. The causative agent, yellow fever virus (YFV), represents the prototypical
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member of the genus Flavivirus (family Flaviviridae), consisting of a single-stranded, positive-

sense RNA virus, with a genome about 11,000 kb and a single open-reading frame of 10,233

nucleotides [1, 2]. Disease varies from nonspecific febrile illness to a fatal hemorrhagic fever.

Symptoms usually appear after an incubation period of three to six days following the bite of

an infected mosquito, with a period of infection lasting several days [2–4]. The World Health

Organization (WHO) reports case fatality rates in the order of 15 to 50% [5]. Vaccination

remains the most effective YF prevention method, providing lifetime immunity in up to 99%

of vaccinated people [6]. Nevertheless, the burden of YF is estimated to be between 84,000 to

170,000 severe cases and 29,000 to 60,000 deaths annually [7, 8], while an estimated 35 million

people remain unvaccinated in areas at risk in Brazil only [9].

YFV spreads in two different cycles: sylvatic and urban. The sylvatic transmission cycle

occurs in forested areas, where the virus is endemically transmitted between several non-

human primate (NHP) species. The urban transmission cycle occurs when the virus is intro-

duced into human populations with high density and urban-dwelling mosquitoes (mainly

Aedes aegypti) [3]. Urban cycles of YFV transmission have been eradicated in Brazil since 1942

due to vaccination and vector control campaigns [10–13].

In the last decade in Brazil, however, human and NHP epizootic YF cases have been noti-

fied at places beyond the limits of regions previously considered (sylvatic) endemic for the

virus [14–17]. The severe impact of these recent outbreaks can be measured, in part, by its

fatality rate at around 34%, higher than the general rate estimated by Monath and colleagues

[4], motivating the inquiry as to what could be the possible factors contributing to such a high

fatality rate, and if YFV genetic signatures could be among those factors.

Additionally, important findings in recent epidemics [11, 18] show a significant difference

in the distribution of NHP Ct values, in which Callithrix spp. exhibit generally higher Ct values

than other NHP species, do not develop fatal YFV infections similar to those reported in

humans and can persist for longer, thus increasing the infectious period. The latter can be an

essential factor in igniting an urban cycle of transmission, mainly due to the genus’ proximity

to densely urbanized areas.

On this respect, genomic and epidemiological monitoring have become an integral part of

the national (Brazil) and international response to emerging and ongoing epidemics of viral

infectious diseases, allowing the availability of a large amount of genomic data [19–23].

In genomic and epidemiological monitoring analysis, machine learning (ML) approaches

are usually applied [24, 25], as described in works that analyze the effectiveness of large scale

genome-wide association studies (GWAS), due to their capability to computationally model

the relationship between combinations of single nucleotide variants, other genetic variations

and environmental factors with observed outcomes [26–28].

We curated two different datasets of YFV genomes, one from human cases and the other

from NHP cases. After data curation, the human dataset contained 56 YFV sequences, with 40

sequences related to infections leading to severe outcomes or death, and 16 sequences related

to cases with no severe outcome. We also gathered an NHP (Callithrix spp.) dataset, that after

curation contained 27 sequences, of which 21 were related to low Ct values (< 20) and 6 were

related to high Ct values (> = 20).

We applied three different ML models to each dataset, to guarantee robustness of the ML

analysis [29]. We then analyzed the models using SHAP (SHapley Additive explanation) [30–

32] to highlight genetic signatures. The possible biological impacts of these signatures were

investigated and discussed by means of in-silico protein structural analysis coupled with litera-

ture review.
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Results

Non-human primates Ct value statistical analysis

Fig 1 shows the distribution of cycle threshold (Ct) values from Callithrix spp. sequences, with

two distinct clusters roughly around 12 and 30, with a median value of 26.1. The result of Har-

tigan’s dip test of unimodality [33] rejected the null hypothesis of a unimodal distribution for

Ct values (p< .001), which indicate the existence of two groups of Callithrix spp. Ct values.

Machine learning models’ performance

Fig 2 shows the confusion matrices for the machine learning models applied. For the human

dataset, the XGBoost classification model correctly classified 16 serious/death and 5 not seri-

ous/not death cases, out of a total of 28 instances, achieving an accuracy of 75% on the test set,

with F-1 scores of 0.59 and 0.82 for classes 0 (not severe/not death) and 1 (severe/death),

respectively. The random forest model correctly classified 16 serious/death and 7 not serious/

not death cases, out of a total of 28 instances, achieving an accuracy of 82% on the test set, with

Fig 1. Ct values associated with Callithrix spp. sequences. The median value is shown by a dashed line. Hartigan’s dip test of unimodality indicates bimodal

distribution (p< .001).

https://doi.org/10.1371/journal.pone.0278982.g001
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F-1 scores of 0.74 and 0.86 for classes 0 and 1 respectively. The modified logistic regression

model performance was the same as that of random forest.

For the Callithrix spp. dataset, the three models achieved an accuracy of 100% on the test

set, correctly predicting 5 low Ct cases and 1 high Ct case, out of 6 instances in the test set,

with F-1 scores of 1.00 and 1.00 for classes 0 (low Ct) and 1 (high Ct) respectively.

YFV genetic signatures

The machine learning methods identified the non-synonymous SNVs shown in Table 1. The

table displays each protein where the SNV was found, with nucleotide position on YFV

genome, position relative to the protein’s sequence, amino acid position relative to the trans-

lated protein, reference genome amino acid and corresponding codon, analyzed sequences

amino acid variation and corresponding codon and SNV position inside codon (1st, 2nd or

3rd).

The results obtained by the analysis of human YFV sequences highlighted 4 SNV positions

that result in the amino acid change, and the results obtained by the analysis of Callithrix spp.

shows 6 SNV positions that resulted in the amino acid change.

Fig 2. Confusion matrices. Each box contains one confusion matrix, which measures the performance of different machine learning algorithms over different

datasets. For each matrix, the rows represent instances in the actual class, while the columns represent instances in the predicted class. Instances found along

the diagonal were correctly classified, while those outside the diagonal were misclassified (false positives and false negatives). Top three matrices correspond to

human test dataset and the bottom three matrices correspond to Callithrix spp. test dataset, for XGBoost, random forest and regularized logistic regression

respectively.

https://doi.org/10.1371/journal.pone.0278982.g002
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Protein structural analysis

We performed protein structural analysis for all SNVs indicated in Table 1. The templates,

their resolution, the quality of models provided from Swiss-Model [34] and the changes in

binding affinity and stability predicted by mCSM-NA [35] are summarized in Table 2.

Fig 3 shows the structural representation of proteins E, NS1, NS3 and NS5, with corre-

sponding SNVs.

E (envelope) protein. LEU385 (NHP dataset) is far from the intra-chain binding site and

the antibody recognition site (Fig 3A). LEU385 is in the Domain III (DIII) which has an

immunoglobulin C domain (IgC-like) presenting a seven-stranded fold and is supposed to

contain the receptor-binding site. DIII suffers a rotation and goes closer to the fusion loop

(FL), bringing the C-terminal part of DIII (residue 392) close to FL. LEU385 is 20.3 angstroms

far from GLU392.

NS1 protein. The SNV A171V (NHP dataset) is in close contact with a region called wing
flexible loop (highlighted in orange in Fig 3B) and it is also a probable glycosylation site [36].

NS3 protein. Although there is a crystallographic structure (PDB id: 1yks) of the helicase

domain [37] and another containing part of NS3 complexed with NS2B (PDB id 6urv) [38]

deposited in the PDB, the referred SNV occurs in the unresolved stretch. The I184V (NHP

dataset) is in the linker region (shown in orange in Fig 3C, left). It connects protease and heli-

case domains and corresponds to sequence KEEGKEELQEIP that encompasses residues

between 174 and 185. The SNV E614D (human dataset) occurs in the helicase domain and is

located in the RNA binding cleft, shown in red on Fig 3C, right.

NS4a protein. Since it has multiple transmembrane hydrophobic segments, structural

analysis of NS4a has been unsuccessful and, so far, there is no structure deposited in the PDB.

It is still one of the least characterized proteins from YFV. It was not possible to obtain a good

structural model since the best template found had a coverage of only 37% and a sequence

identity of 25.53%.

NS5 protein. There is a recent YFV NS5 structure deposited on PDB (PDB id 6qsn) [39].

The analyzed SNVs (shown in green in Fig 3D) are N11S, the only SNV in the MTase domain;

I374V and E641D, both located in the palm subdomain. These three SNVs were found on the

NHP dataset. Additionally, SNV V643A, located in the palm, and R727G, in the thumb subdo-

main, were found in the human dataset. As depicted in Fig 3D, they (green) are located far

from the Zn and sulfate ions and the ligand (S-adenosyl-L-homocysteine) (grey). They are not

Table 1. YFV genetic signatures.

Human dataset

Protein nn position nn position on protein aa position on protein aa reference codon reference aa variation codon variation SNV codon position (1, 2, 3)

NS3 6412 1842 614 E gaa D D gac gat 3

NS4a 6644 205 69 I atc V gtc 1

NS5 9815 2179 727 R agg G ggg 1

NS5 9564 1928 643 V gtt A gct 2

NHP dataset

Protein nn position nn position on protein aa position on protein aa reference codon reference aa variation codon variation SNV codon position (1, 2, 3)

NS5 8756 1120 374 I atc V gtc 1

NS5 9559 1923 641 E gaa D D gac gat 3

NS3 5120 550 184 I atc V gtc 1

E 2126 1153 385 L ctc F ttc 1

NS5 7647 11 4 N aat S agt 2

NS1 2964 512 171 A gca V gta 2

https://doi.org/10.1371/journal.pone.0278982.t001
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close to any important / conserved mentioned residue (yellow) that interact with the nucleic

acid. SNV I374V is also present in ZIKV, DENV and WNV. Position E641D varies across

other viruses (K, N, R). Position V643A is also not conserved being an insertion, K or N. Posi-

tion R727G is S, E or T in other flaviviruses.

Discussion

Emerging and reemerging viruses present a highly complex challenge for the Brazilian public

health system. Among them, arboviruses transmitted by mosquitoes are agents capable of

causing serious diseases, such as hemorrhagic fevers, encephalitis and meningitis. For these

reasons, real-time genomic surveillance is extremely important to guide prevention and con-

trol measures, as it allows reconstruction of the origins of epidemics and the estimation of

transmission rates at different times and geographic regions, subject to environmental and

human factors. In addition, genomic surveillance makes it possible to identify emerging, re-

emerging, circulating and co-circulating variants, through viral genetic diversity quantifica-

tion, making it possible to estimate the likelihood of new outbreaks and/or possible escapes

from existing vaccines and treatments. As a result, relevant information is acquired for the

design of public health policies, in addition to contributing to the development of vaccines,

new drugs and improved serological and molecular diagnostic methods [40, 41].

In this context, Brazil has become a global reference in real-time genomic surveillance,

achieving fundamental results in early detection and monitoring of outbreaks. However, the

Table 2. Protein structural analysis results.

Callithrix spp. Dataset Human dataset

Protein E NS1 NS3 NS5 NS3 NS4a NS5

SNV L385F A171V I184V N11S I374V E641D E614D I69V R727G V643A

Template

(PDB ID)

Template

(6WI5) (?)

Zika

virus

NS1

(5K6K)

(27)

Dengue

virus NS3

(5YV8:A)

(31)

Yellow

fever

virus NS5

(6QSN)

(32)

Yellow fever

virus NS5

(6QSN) (32)

Yellow fever

virus NS5

(6QSN) (32)

Yellow fever

virus NS3

(1YKS) (29)

No

structure

deposited

in the PDB

Yellow fever

virus NS5

(6QSN) (32)

Yellow fever

virus NS5

(6QSN) (32)

Resolution 1.83 Å 1.89 Å 2.5 Å 3.00 Å 3.00 Å 3.00 Å 1.80 Å - 3.00 Å 3.00 Å
Coverage (%) 100% 99% -

Sequence

identity

47.58% 50.57% -

Localization at

protein

Domain III Wing

flexible

loop

Linker

region

MTase

domain

Palm

subdomain

Palm

subdomain

Helicase

domain

- Thumb

subdomain

Palm

subdomain

Global Model

Quality

Estimation

(GMQE)

0.79 0.76 -

(Qualitiy

mean)

QMEAN

-2.5 -2.22 -

Predicted

change in

binding

affinity

Target

distant

from

binding

sites

ΔΔG = 0.003

Kcal/mol

(Increased

affinity)

ΔΔG = 0.025

Kcal/mol

(Increased

affinity)

- ΔΔG = -1.545

Kcal/mol

(Reduced

affinity)

ΔΔG = -0.001

Kcal/mol

(Reduced

affinity)

Predicted

change in

stability

-1.908 Kcal/mol

(Destabilising)

-0.254 Kcal/mol

(Destabilising)

- -0.751 Kcal/mol

(Destabilising)

-1.884 Kcal/mol

(Destabilising)

https://doi.org/10.1371/journal.pone.0278982.t002
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large amount of data produced using next-generation sequencing platforms demands sophisti-

cated analytical approaches, capable of dealing with complex and large datasets, aiming at the

extraction of as much information as possible. In this sense, Machine Learning algorithms

have been successfully used in Bioinformatics, motivating their application in the search for

genetic signatures in arboviruses, associated with phenotypic or epidemiological characteris-

tics in recent outbreaks in Brazil.

In this study, we demonstrate the potential of applying ML approaches on real-time geno-

mic surveillance, to quickly identify genetic loci which may be of public health interest. Further

studies and analytical strategies in line with the present work can help improve real-time epi-

demiological surveillance in Brazil and the Americas, resulting in better public health policy

outcomes.

We find signals in multiple genetic loci and present a structural-based review on the poten-

tial impact of changes at those loci.

However, the limited number of sequences analyzed demands caution when presenting the

results. A large number of high-quality sequences is ideal for the application of ML analysis,

especially when dealing with viruses, whose high mutation rates tend to insert many variations

on its genomes. Furthermore, our analysis didn’t consider virus-host interactions, such as host

genome or immune system and pre-existing health conditions. In this regard, efficient host

data collection, such as Electronic Health Records (EHR), are of paramount importance for a

thorough investigation of clinical outcomes.

Fig 3. YFV proteins analysis. (A) Envelope protein—(A, left) PDB id 6wi5—tretamer of E protein LEU385 presented

in spheres. (A, right) PDB id 6ivz—in green, one chain of protein E and in yellow, the light and heavy chains of

monoclonal antibody 5A. Note that the L385F SNV is distant from both the binding between protein E chains and the

antibody recognition site. (B) NS1 protein. Comparative model built with Swiss-Model and PDB id 5k6k. In orange,

we depict the wing flexible loop and in spheres, SNV ALA171. (C) NS3 protein. (C, left) Comparative model built with

Swiss-Model and PDB id 5yvu. In orange, we depict the interdomain linker region and in spheres, SNV ILE184. (C,

right) GLU614 from PDB id 1yks showing that the SNV E614D is close to the cleft where the DNA binds the NS3

protein. (D) NS5 protein. In green, SNVs. In yellow, important conserved residues across ZIKV, DENV and WNV. In

cyan, active site. In grey, ligand S-adenosyl-L-homocysteine. Sulfate and Zn ı́ons are also represented in spheres.

https://doi.org/10.1371/journal.pone.0278982.g003
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The envelope (E) protein is related to virus attachment and fusion [42]. NHP dataset analy-

sis shows SNV L395F on Domain III, a region containing an IgC-like domain and supposed to

contain a receptor-binding site crucial for virion maturation [43]. It is possible that this SNV

could have an impact on the plasticity of this domain and affect the virus’ receptor-binding

site and it would be interesting to investigate this behaviour through simulations of molecular

dynamics in future work.

NS1 protein is a crucial non-structural protein [36]. We found a non-synonymous SNV

(A171V) on NHP dataset, located near a highly flexible region on the protein, called the wing
flexible loop, which is a probable glycosylation site (GS) [44]. NS1 is also a key protein secreted

by infected cells, which has the potential to interact with the adaptive immune system

responses [36]. In dengue infections, NS1 is known to modulate capillary leakage in severe dis-

ease and may thus have a role to play in the severity of YFV infection [45, p.].

NS3 protein, which is composed of protease and helicase domains, has functions related to

viral polyprotein processing and cleavage, viral genome replication and RNA capping [42].

SNV I184V, found on NHP dataset, is in a region with probable limited functional constraints

[46]. SNV E614D, found on the human dataset, occurs in the NS3 helicase domain and is

located in the RNA binding cleft. ASP and GLU are both negatively charged amino acids, but

ASP has a shorter side chain which can cause it to lose access to the ligand. We used

mCSM-NA [35] to evaluate the impact of the SNV on stability and affinity with RNA, showing

a small destabilizing effect on the interaction with RNA (-0.646 Kcal/mol), which could have

an impact on its function, fundamental to viral genome replication. Unfortunately, there are

no structures in complex with RNA available. Models built with protein-RNA docking tech-

niques could help elucidate if there is a significant impact of this SNV on RNA interaction.

We found one SNV on the NS4a protein (I69V, human dataset). However, a lack of current

knowledge on YFV NS4a impeded us from further exploring the possible role of I69V in

human hosts. Based on the protein’s proposed functions [47–49], this SNV could, in principle,

affect viral replication, but such hypothesis would have to be tested by non-computational

means.

As an outlier, NS5 had the highest number of identified variations—I374V, E641D, N11S,

R727G, V643A - from both human and NHP YFV sequences. NS5 protein is a fundamental

enzyme for viral replication because it contains an N-terminal methyltransferase domain

(MTase) and a C-terminal RNA dependent RNA polymerase domain (RdRp) [50]. MTase

domain has important functions involved in protecting viral RNA from degradation and

innate immunity response. RdRp is essential for viral RNA replication, because its activities

cannot be performed by host polymerases, and is a promising target for antiviral drug develop-

ment [51]. Furthermore, dengue virus NS5 has been associated with immune response evasion

[52, p. 2]. With the structural analyses, we found that none of the SNVs found has been

reported to be in positions with apparent connections to protein function or structure. How-

ever, R727G on the human dataset, on the thumb subdomain of RdRp domain, shows a change

in predicted affinity for RNA upon SNV occurrence. This reduction in affinity could impact

polymerase function and viral replication efficiency.

Conclusions

In conclusion, even though the method proposed was applied on data that was already avail-

able from other sources, our study demonstrate that it is efficient and easy to replicate, making

it suitable for real-time genomic surveillance, in which genetic data is analized as it is gener-

ated. This approach may help detect and inform on possible connections between ongoing

genetic changes and public health in a timely manner.
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Materials and methods

Ethics approval and consent to participate

This project was reviewed and approved by the Comissão Nacional de Ética em Pesquisa

(CONEP) [National Research Ethics Committee] from the Brazilian Ministry of Health

(BrMoH), as part of the arboviral genomic surveillance efforts within the terms of Resolution

510/2016 of CONEP, by the Pan American Health Organization Ethics Review Committee

(PAHOERC) (Ref. No. PAHO-2016-08-0029), and by the Oswaldo Cruz Foundation Ethics

Committee (CAAE: 90249218.6.1001.5248).

Datasets

We retrieved YFV complete or near complete genome sequences from the recent Brazilian

outbreaks, available on public databases [19–23], with associated epidemiological and clinical

data containing relevant information regarding clinical severity and outcome for human infec-

tions samples, as well as PCR cycle threshold value (Ct) for both human and NHP samples.

The alignment was made using MAFFT online [53] and was manually verified and corrected

using AliView (https://ormbunkar.se/aliview/). Sequences with coverage lower than 90% were

removed from the study. For ML analysis, human infection sequences were divided between

not severe/not death and severe/death. Callithrix ssp. infection sequences were divided by low

Ct (<20) and high Ct (� 20). After curation, the human dataset contained 56 YFV sequences,

with 40 sequences related to severe/death cases, and 16 sequences related to not severe/not

death cases. The NHP (Callithrix spp.) dataset, after curation, contained 27 sequences, of

which 21 were related to low Ct values (< 20) and 6 were related to high Ct values (> = 20).

Machine learning model adjustment

We applied three different ML models for each of two analyzed datasets, XGBoost [54, 55],

random forest [56] and regularized logistic regression [57]. We adjusted the XGBoost model

parameters in a “grid-search cross-validation” scheme with five folds. Random forest adjust-

ment used “out of bag” data as validation. Regularized logistic regression parameters were

adjusted on a 10-fold cross-validation scheme, using their averages in the final model. Part of

the dataset (test set) was held out of model adjustment and validation, being used afterwards to

test model’s performance (as presented earlier).

Model interpretation

Feature importance was computed using SHAP (SHapley Additive exPlanation) [30–32]. We

followed the author’s suggestion (https://github.com/slundberg/shap/issues/397) on dealing

with categorical data when using SHAP.

Protein structural analysis

We searched on Protein Data Bank (PDB) [58] for experimentally resolved structures. For

those proteins that did not have structures, we looked for templates for comparative modeling

with at least 30% identity. The comparative models were built with the Swiss-Model server

[59]. We used mCSM [35] method to predict the impact of SNVs on protein stability and

interactions.
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Formal analysis: Álvaro Salgado, Raquel C. de Melo-Minardi.

Funding acquisition: Vasco Azevedo, Luiz Carlos J. Alcantara.

Investigation: Álvaro Salgado, Raquel C. de Melo-Minardi.
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46. Luo D., Xu T., Hunke C., Grüber G., Vasudevan S. G., and Lescar J., “Crystal Structure of the NS3 Pro-

tease-Helicase from Dengue Virus,” Journal of Virology, vol. 82, no. 1, pp. 173–183, Jan. 2008, https://

doi.org/10.1128/JVI.01788-07 PMID: 17942558

47. Zou J. et al., “Characterization of Dengue Virus NS4A and NS4B Protein Interaction,” Journal of Virol-

ogy, vol. 89, no. 7, pp. 3455–3470, Apr. 2015, https://doi.org/10.1128/JVI.03453-14 PMID: 25568208

48. Miller S., Kastner S., Krijnse-Locker J., Bühler S., and Bartenschlager R., “The non-structural protein

4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated

manner,” J. Biol. Chem., vol. 282, no. 12, pp. 8873–8882, Mar. 2007, https://doi.org/10.1074/jbc.

M609919200 PMID: 17276984

49. Lin M.-H., Hsu H.-J., Bartenschlager R., and Fischer W. B., “Membrane undulation induced by NS4A of

Dengue virus: a molecular dynamics simulation study,” Journal of Biomolecular Structure and Dynam-

ics, vol. 32, no. 10, pp. 1552–1562, Oct. 2014, https://doi.org/10.1080/07391102.2013.826599 PMID:

23964591

50. El Sahili A. and Lescar J., “Dengue Virus Non-Structural Protein 5,” Viruses, vol. 9, no. 4, Apr. 2017,

https://doi.org/10.3390/v9040091 PMID: 28441781

51. Zhu W., Chen C. Z., Gorshkov K., Xu M., Lo D. C., and Zheng W., “RNA-Dependent RNA Polymerase

as a Target for COVID-19 Drug Discovery,” SLAS DISCOVERY: Advancing the Science of Drug Dis-

covery, p. 247255522094212, Jul. 2020, https://doi.org/10.1177/2472555220942123 PMID: 32660307

52. Ashour J., Laurent-Rolle M., Shi P.-Y., and Garcı́a-Sastre A., “NS5 of Dengue Virus Mediates STAT2

Binding and Degradation,” J Virol, vol. 83, no. 11, pp. 5408–5418, Jun. 2009, https://doi.org/10.1128/

JVI.02188-08 PMID: 19279106

53. Katoh K., Rozewicki J., and Yamada K. D., “MAFFT online service: multiple sequence alignment, inter-

active sequence choice and visualization,” Briefings in Bioinformatics, vol. 20, no. 4, pp. 1160–1166,

Jul. 2019, https://doi.org/10.1093/bib/bbx108 PMID: 28968734

54. Friedman J. H., “Greedy Function Approximation: A Gradient Boosting Machine,” The Annals of Statis-

tics, vol. 29, no. 5, pp. 1189–1232, 2001.

PLOS ONE Machine learning applied to YFV genomic investigation

PLOS ONE | https://doi.org/10.1371/journal.pone.0278982 December 12, 2022 12 / 13

https://doi.org/10.1093/nar/gkx236
https://doi.org/10.1093/nar/gkx236
http://www.ncbi.nlm.nih.gov/pubmed/28383703
https://doi.org/10.1038/nsmb.3268
http://www.ncbi.nlm.nih.gov/pubmed/27455458
https://doi.org/10.1128/JVI.79.16.10268%26%23x2013%3B10277.2005
https://doi.org/10.1016/j.bbagen.2020.129521
http://www.ncbi.nlm.nih.gov/pubmed/31931019
https://doi.org/10.1016/j.antiviral.2019.104536
https://doi.org/10.1016/j.antiviral.2019.104536
http://www.ncbi.nlm.nih.gov/pubmed/31202975
https://doi.org/10.1186/s13073-016-0356-2
https://doi.org/10.1186/s13073-016-0356-2
http://www.ncbi.nlm.nih.gov/pubmed/27683027
https://doi.org/10.1038/nature22401
http://www.ncbi.nlm.nih.gov/pubmed/28538727
https://doi.org/10.1021/acs.chemrev.7b00719
http://www.ncbi.nlm.nih.gov/pubmed/29652486
https://doi.org/10.1016/j.celrep.2018.12.065
https://doi.org/10.1016/j.celrep.2018.12.065
http://www.ncbi.nlm.nih.gov/pubmed/30625326
https://doi.org/10.1016/j.bbagen.2019.05.012
http://www.ncbi.nlm.nih.gov/pubmed/31121217
https://doi.org/10.1371/journal.ppat.1005738
https://doi.org/10.1371/journal.ppat.1005738
http://www.ncbi.nlm.nih.gov/pubmed/27416066
https://doi.org/10.1128/JVI.01788-07
https://doi.org/10.1128/JVI.01788-07
http://www.ncbi.nlm.nih.gov/pubmed/17942558
https://doi.org/10.1128/JVI.03453-14
http://www.ncbi.nlm.nih.gov/pubmed/25568208
https://doi.org/10.1074/jbc.M609919200
https://doi.org/10.1074/jbc.M609919200
http://www.ncbi.nlm.nih.gov/pubmed/17276984
https://doi.org/10.1080/07391102.2013.826599
http://www.ncbi.nlm.nih.gov/pubmed/23964591
https://doi.org/10.3390/v9040091
http://www.ncbi.nlm.nih.gov/pubmed/28441781
https://doi.org/10.1177/2472555220942123
http://www.ncbi.nlm.nih.gov/pubmed/32660307
https://doi.org/10.1128/JVI.02188-08
https://doi.org/10.1128/JVI.02188-08
http://www.ncbi.nlm.nih.gov/pubmed/19279106
https://doi.org/10.1093/bib/bbx108
http://www.ncbi.nlm.nih.gov/pubmed/28968734
https://doi.org/10.1371/journal.pone.0278982


55. Schapire R. E., “The Boosting Approach to Machine Learning: An Overview,” in Nonlinear Estimation

and Classification, vol. 171, Denison D. D., Hansen M. H., Holmes C. C., Mallick B., and Yu B., Eds.

New York, NY: Springer New York, 2003, pp. 149–171. https://doi.org/10.1007/978-0-387-21579-2_9

56. Breiman L., “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

57. Morais-Rodrigues F. et al., “Analysis of the microarray gene expression for breast cancer progression

after the application modified logistic regression,” Gene, vol. 726, p. 144168, Feb. 2020, https://doi.org/

10.1016/j.gene.2019.144168 PMID: 31759986

58. Goodsell D. S. et al., “RCSB Protein Data Bank: Enabling biomedical research and drug discovery,”

Protein Sci., vol. 29, no. 1, pp. 52–65, 2020, https://doi.org/10.1002/pro.3730 PMID: 31531901

59. Schwede T., Kopp J., Guex N., and Peitsch M. C., “SWISS-MODEL: an automated protein homology-

modeling server,” Nucleic Acids Res, vol. 31, no. 13, pp. 3381–3385, Jul. 2003, https://doi.org/10.1093/

nar/gkg520 PMID: 12824332

PLOS ONE Machine learning applied to YFV genomic investigation

PLOS ONE | https://doi.org/10.1371/journal.pone.0278982 December 12, 2022 13 / 13

https://doi.org/10.1007/978-0-387-21579-2%5F9
https://doi.org/10.1016/j.gene.2019.144168
https://doi.org/10.1016/j.gene.2019.144168
http://www.ncbi.nlm.nih.gov/pubmed/31759986
https://doi.org/10.1002/pro.3730
http://www.ncbi.nlm.nih.gov/pubmed/31531901
https://doi.org/10.1093/nar/gkg520
https://doi.org/10.1093/nar/gkg520
http://www.ncbi.nlm.nih.gov/pubmed/12824332
https://doi.org/10.1371/journal.pone.0278982

