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Abstract

Streptococcus pyogenes is a globally prominent human-specific pathogen responsible for

an enormous burden of human illnesses, including >600 million pharyngeal and >100 million

skin infections each year. Despite intensive efforts that focus on invasive indications, much

remains unknown about this bacterium in its natural state during colonization of the naso-

pharynx and skin. Using acute experimental infection models in HLA-transgenic mice, we

evaluated how the hyaluronic acid (HA) capsule contributes to S. pyogenes MGAS8232

infection within these limited biological niches. Herein, we demonstrate that HA capsule

expression promotes bacterial burden in murine nasal turbinates and skin lesions by resist-

ing neutrophil-mediated killing. HA capsule production is encoded by the hasABC operon

and compared to wildtype S. pyogenes infections, mice infected with a ΔhasA mutant exhib-

ited over a 1000-fold CFU reduction at 48-hours post-nasal challenge, and a 10,000-fold

CFU reduction from skin lesions 72-hours post-skin challenge. HA capsule expression con-

tributed substantially to skin lesion size development following subdermal inoculations. In

the absence of capsule expression, S. pyogenes revealed drastically impeded growth in

whole human blood and increased susceptibility to killing by isolated neutrophils ex vivo,

highlighting its important role in resisting phagocytosis. Furthermore, we establish that neu-

trophil depletion in mice recovered the reduced burden by the ΔhasA mutant in both the

nasopharynx and skin. Together, this work confirms that the HA capsule is a key virulence

determinant during acute infections by S. pyogenes and demonstrates that its predominant

function is to protect S. pyogenes against neutrophil-mediated killing.

Author summary

Streptococcus pyogenes is a globally disseminated and human-adapted bacterial pathogen

that has evolved an arsenal of evasion strategies to overcome and escape host immune

clearing mechanisms. Many strains of S. pyogenes are covered by a polysaccharide capsule
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composed of hyaluronic acid (HA) that is widely recognized to promote severe infections.

In this study, we demonstrate using the encapsulated S. pyogenesMGAS8232 strain that

the HA capsule is a key virulence factor that facilitates non-invasive infections of the naso-

pharynx and skin. Although bacterial adhesion and entry into host cells was impeded by

HA capsule expression, we show that the key function for both nasal and skin infections is

to protect S. pyogenes from neutrophil-mediated killing. Depletion of neutrophils recov-

ered the low bacterial burden by unencapsulated S. pyogenes at both sites of infection. Our

findings outline an important interaction between the HA capsule and neutrophils in the

establishment of acute upper respiratory and skin infections by S. pyogenes.

Introduction

Streptococcus pyogenes (the group A Streptococcus) is a globally prominent, human-adapted

bacterial pathogen responsible for an enormous burden of disease [1]. While S. pyogenes exists

primarily as an asymptomatic commensal in up to 12% of school-aged children [2], more than

600 million cases of pharyngitis and 100 million cases of skin infections are recorded each

year, and at least 18.1 million people worldwide currently suffer from serious post-infection

sequelae resulting in over 500,000 annual deaths [1].

Many strains of S. pyogenes produce a high molecular weight hyaluronic acid (HA) polysac-

charide capsule that presents distinct mucoid colony morphology when grown on solid media.

The HA capsule is composed of repeating disaccharide units of glucuronic acid and N-acetyl-

glucosamine (GlcNAc) and is structurally identical to HA found within the human extracellu-

lar matrix (ECM), and therefore, is immunologically inert [3]. Capsule production is encoded

by the hasABC genetic locus involved in HA biosynthesis [4–6]. The first gene in the operon,

hasA, encodes hyaluronate synthase [7,8]; the second gene, hasB, encodes UDP-glucose

6-dehydrogenase [9]; and the third gene, hasC, encodes UDP-glucose pyrophosphorylase [10].

Although proteins encoded by hasB and hasC are enzymatically active, they are not individu-

ally essential for HA capsule synthesis [11,12]. Interestingly, expression of the hasA gene is the

only fundamental gene required for the production of the HA polymer from UDP-glucuronic

acid and UDP-GlcNAc sugar precursors [7]. The amount of capsule produced can vary widely

among individual strains, regulated by growth conditions and in response to changes in the

host environment. Maximal HA capsule production occurs during early and mid-exponential

phase in vitro, followed by capsule shedding during stationary phase [5]. These observations

are further supported in vivo as introduction of S. pyogenes into the pharynx of non-human

primates or into the mouse peritoneum induces high levels of HA capsule gene transcription

within 1–2 hours of inoculation [13], suggesting that capsule expression has an important

function during initial stages of colonization.

Early pioneering studies using encapsulated M18 and M24 serotypes revealed that transpo-

son mutants lacking the HA capsule had ~100-fold increases in the LD50 using invasive intra-

peritoneal infections in CD1 mice [14–16], and further discovered that capsule expression was

strongly selected for during pharyngeal colonization of BALB/c mice [15]. Following intratra-

cheal inoculation of the mouse-adapted B514 S. pyogenes strain, the HA capsule promoted

chronic throat colonization, pneumonia, and secondary systemic infections in C57BL/10SnJ

mice [17]. Furthermore, encapsulation was shown to enhance persistent colonization of S. pyo-
genes in the pharynx of baboons as unencapsulated mutants were cleared more quickly [18].

Together, encapsulation appears to offer S. pyogenes a powerful survival advantage for coloni-

zation and dissemination.
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Prior studies have shown that the HA capsule binds to the cell surface ligand CD44 to medi-

ate adherence to epithelium [19,20], which can induce host cell signaling events that disrupts

tight junctions to promote invasion [21]. Furthermore, the HA capsule can also specifically

bind to lymphatic vessel endothelial receptor-1 (LYVE-1) expressed in lymph node sinuses

and lymphatic vessles to promote dissemination to draining lymph nodes via the lymphatic

system using a mouse thigh muscle infection model [22]. However, reduced binding efficien-

cies by encapsulated strains have also been observed [19,23]. Removal of the capsule by genetic

inactivation of the has operon can also promote robust invasion of cultured epithelial cells,

although once internalized, S. pyogenes is rapidly killed [24]. By producing a molecule ubiqui-

tously expressed by its host, molecular mimicry enables S. pyogenes to avoid detection by host

immune surveillance and increases resistance to phagocytic-mediated killing. In several exper-

iments, unencapsulated mutants display significant susceptibility to complement-dependent

phagocytic killing by human blood compared to their encapsulated parental strains [16,25,26].

Although nearly all S. pyogenes strains encode the has operon, the capsule is not universally

present in all isolates. For example, M4 and M22 serotypes, and some M89 serotypes, do not con-

tain the hasABC operon and thus cannot express HA capsule [27,28], suggesting that capsule

expression is not essential for pathogenicity across all serotypes. Furthermore, studies in human

carriers and other primate models have also identified mutations that reduced or eliminated cap-

sule production in long-term carriage isolates [29,30]. Therefore, differential regulation of the HA

capsule may consequently offer an important survival adaptation in specific host environments.

Thus, while it is recognized that encapsulation may be advantageous for bacterial virulence, mech-

anisms whereby it promotes acute S. pyogenes infections in vivomerit further investigation [31].

In this work, we aimed to further evaluate the role of the HA capsule in two non-invasive murine

infection models using a precise genetic deletion of the hasA gene. Herein, we demonstrate using

the encapsulated S. pyogenesMGAS8232 strain that the HA capsule is a key virulence factor for

non-invasive nasopharyngeal and skin infections. Though removal of the capsule permitted bacte-

rial invasion into host cells, we demonstrate that the key function for both in vivo nasal and skin

infections is to protect S. pyogenes from neutrophil-mediated killing.

Results

The S. pyogenes HA capsule promotes nasopharyngeal infection and

enhances a cytokine response that supports the recruitment of neutrophils

In order to evaluate the influence of the HA capsule during experimental infections, we used

the pG+host5 integration plasmid [32] (Table 1) to generate a markerless 1,212-bp in-frame

deletion of hasA in the M18 serotype rheumatic fever isolate S. pyogenesMGAS8232 [33]

(Table 1). M18 serotypes are well known for being highly encapsulated, a phenotype that has

been traced to the mutations within the RocA regulatory protein [34]. The isogenic nature of

the hasAmutant was determined by PCR and DNA sequencing with primers that flanked the

deleted hasA region (S1 Table) and whole genome sequencing analysis. The correct ΔhasA
deletion was confirmed, but compared to the wildtype MGAS8232 strain, two non-synony-

mous single nucleotide polymorphisms (SNPs) within pstI gene encoding the cytosolic protein

enzyme I in the phosphoenolpyruvate phosphotransferase system (PTS) were also identified

and resulted in two amino acid substitutions (Leu194Phe and Ser306Phe) (S2 Table). Thus, we

generated a complementation strain using the pDCerm plasmid [35] (S1 Table) by expressing

the hasA gene and its native hasA promoter in the ΔhasAmutant background (MGAS8232

ΔhasA + hasA). As predicted, MGAS8232 ΔhasA lost the large mucoid colony phenotype on

sheep blood agar compared to wildtype MGAS8232, and capsule production was restored in

the hasA-complemented strain (Fig 1A).
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The human-specific tropism of S. pyogenes represents a major challenge when conducting

experimental infection models. We previously demonstrated that the use of transgenic mice

that express human MHC class II molecules (herein referred to as B6HLA mice) greatly

enhances S. pyogenes nasopharyngeal infection due to the selective specificity of superantigens

for human MHC class II molecules [36]. Using this infection model, we examined the influ-

ence of HA capsule expression on bacterial burden during acute nasopharyngeal infection

through nasal inoculation (~1×108 CFUs) of B6HLA mice using the three MGAS8232 strains.

The ΔhasAmutant resulted in a >1000-fold reduction in bacterial CFUs from the nasal

mucosa at 48 hours compared to infection by wildtype S. pyogenesMGAS8232 (Fig 1B). We

confirmed that capsule expression was specifically required for the nasopharyngeal infection

phenotype as the complemented strain with restored capsule expression phenocopied the wild-

type infection (Fig 1B). Consistent with the non-invasive nature of the model [36], mean bac-

terial dissemination of wildtype S. pyogenes remained below the limit of detection in the lungs,

liver, spleen, heart, and kidneys (S1 Fig). We conclude that HA capsule expression improves

experimental S. pyogenes nasopharyngeal infection in B6HLA mice, and removal of the capsule

does not increase bacterial dissemination of S. pyogenesMGAS8232.

To further assess the nasopharyngeal environment during wildtype S. pyogenes and ΔhasA
infections, we conducted a multiplex cytokine and chemokine array using infected nasal turbi-

nate homogenates [37]. Quantitative data is shown in supplemental figures (S2 Fig) and sum-

marized as a heatmap showing normalized cytokine responses for any cytokine with an

average concentration above 20 pg ml-1 within a treatment group (Fig 1C). Uninfected mice

demonstrated no apparent inflammatory signature from the complete nasal turbinate (cNT)

homogenates whereas robust cytokine responses were evident in wildtype-infected mice and

included: Th1-type cytokines (IL-1α and IL-1β); Th17-type cytokines (IL-6 and IL-17); che-

mokines (KC, IP-10, MCP-1, MIP-1α, MIP-1β, MIG, MIP-2, LIF and LIX); and growth factors

(G-CSF) (Figs 1C and S2). In contrast, ΔhasA-infected cNTs presented a reduced inflamma-

tory signature and revealed similar cytokine expression profiles as uninfected mice. Particu-

larly, reductions were detected with pro-inflammatory cytokines, such as IL-1β, IL-6, and IL-

17, and those involved in monocyte and neutrophil recruitment, including KC, IP-10, MCP-1,

Table 1. Bacterial strains and plasmids used in this study.

Strain/plasmid Description Source

Streptococcus pyogenes
MGAS8232 M18 serotype isolated from a patient with acute rheumatic fever (GenBank

accession: NC_003485.1)

[33]

MGAS8232 ΔhasA hasA deletion mutant derived from MGAS8232 This study

MGAS8232 ΔhasA +

hasA
MGAS8232 ΔhasA containing complementation plasmid pDCerm expressing

the hasA gene

This study

Escherichia coli
XL1-Blue General cloning strain Stratagene

Plasmids

pG+host5 Temperature-sensitive Gram-positive/E. coli shuttle vector; Ermr [32]

pG+host5::ΔhasA pG+host5 with hasA flanking regions inserted This study

pDCerm Ermr derivative of streptococcus-E. coli shuttle vector pDC123 (erm of

Tn916ΔE) replacing cat
[35]

pDCerm::hasA pDCerm expressing hasA gene for plasmid-based complementation This study

Ermr—erythromycin resistance

cat—chloramphenicol acetyltransferase gene

https://doi.org/10.1371/journal.ppat.1011013.t001
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Fig 1. Hyaluronic acid expression by Streptococcus pyogenes promotes nasal infection in B6HLA mice. (A) S.
pyogenes constructs streaked onto TSA + 5% sheep blood agar plates. The plate figure are representative images of the

wild-type MGAS8232, ΔhasAmutant and the hasA complemented strain. (B) B6HLA mice were administered ~1×108

CFUs of S. pyogenesMGAS8232 wildtype, ΔhasA, or ΔhasA +hasA strains intranasally and sacrificed 48 h later. Data

points represent CFUs from cNTs of individual B6HLA mice. Horizontal bars represent the geometric mean.

Significance was determined by Kruskal Wallis one-way ANOVA with Dunn’s multiple comparisons test (����,

P< 0.0001; ��, P< 0.01). The horizontal dotted line indicates the theoretical limit of detection. (C) Heat-map of

cytokine responses in cNTs of B6HLA mice during S. pyogenes infection. Data shown represent normalized median

cytokine responses from cNTs (n� 3 per group). (D) Immunohistochemistry of infected cNTs at 24 h post-infection

with wildtype S. pyogenesMGAS8232 and the ΔhasAmutant. Sections were stained with α-S. pyogenes (red), αB220

(blue), αCD3 (green), and αLy6G (white) antibodies. Panels are a close-up view from the boxed section. Arrows

indicate regions with internalized S. pyogenes.

https://doi.org/10.1371/journal.ppat.1011013.g001
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MIP-1β, MIG, and G-CSF (Figs 1C and S2). Restoring capsule expression in the ΔhasA
mutant background induced a moderately inflamed environment, trending for greater con-

centrations of KC, MIP-1α, MIG, MIP-2, and G-CSF compared to ΔhasAmutant infections.

Interestingly, IL-2, IL-12 (p40), IL-15, and IL-9 concentrations were higher in cNTs challenged

with ΔhasAmutant compared to wildtype or ΔhasA + hasA strains; however, concentrations

for these cytokines did not drastically differ from uninfected murine cNTs (S2 Fig). There

were also numerous cytokines that did not have average concentrations above 20 pg ml-1 in

any treatment groups, were not different between treatment groups, or did not conform to any

obvious trends (S2 Fig). These cytokine trends suggest that at 48 hours post-nasal inoculation

with S. pyogenes, HA capsule expression is associated with higher concentrations of cytokines

and chemokines that support inflammation and monocyte and neutrophil function.

To gain further insight into the interaction between S. pyogenes and host immune cells dur-

ing nasopharyngeal infection, wildtype MGAS8232 and ΔhasA-infected cNTs were harvested

and cryopreserved for immunohistochemistry. Due to the possibility that ΔhasAmutant could

be completely cleared by 48 hours post-infection (Fig 1B), infected cNTs were collected at 24

hours post-infection and sections were stained with α-S. pyogenes (red), α-B220 (blue), α-CD3

(green), and α-Ly6G (white) fluorescent antibodies where indicated. Sections revealed that S.
pyogenes was present with robust α-Ly6G neutrophil signals in both wildtype and ΔhasA-

infected cNTs (Fig 1D). By 24 hours, neutrophils infiltrated to the central areas where S. pyo-
genes resided, whether the HA capsule was expressed or not (Fig 1D). Although few differ-

ences in immune cell percentages have been detected within the cNTs of wildtype-infected

B6HLA mice by 48 hours [36], infected nasal passages have demonstrated increased trends for

neutrophil populations (GR1+) during wildtype S. pyogenesMGAS8232 infection [36], entirely

consistent with these immunofluorescence experiments. Notably, S. pyogenes ΔhasA, but not

wildtype, was detected within the epithelial cell layer in some areas (Fig 1D, denoted by arrows

in the right panel). Together, these observations are consistent with a model whereby neutro-

phils are recruited to murine cNTs by 24 hours post-nasal infection with either wildtype

MGAS8232 or ΔhasA strains; however, by 48 hours ΔhasAmutants are rapidly cleared and

cannot remodel the nasopharynx to express favourable inflammatory responses.

The hyaluronic acid capsule blocks S. pyogenes invasion of pharyngeal cells

and protects against killing by neutrophils in vitro
If S. pyogenes successfully escapes mucocilliary clearance, it proceeds to target and adhere to

the underlying epithelial surface. Multiple studies have described the HA capsule as an impor-

tant adhesin [19,20], and we next sought to evaluate and compare adherence capabilities of

wildtype S. pyogenesMGAS8232 with its unencapsulated mutant. Collagen type IV and fibro-

nectin make up a significant portion of the nasopharyngeal ECM, and therefore, bacterial

binding to these structures may contribute to streptococcal infection [38–41]. Collagen type

IV is the primary component of the ECM basement membrane that underlays epithelial cells,

and fibronectin, while only a minor component, is frequently secreted to mediate adhesion

and migration of host cells [42,43]. Bacterial binding was assessed by inoculating S. pyogenes
onto wells pre-coated with either collage type IV or fibronectin. A decline in both fibronectin

binding and collagen type IV binding was observed for the ΔhasAmutant (Fig 2A and 2B)

demonstrating that under in vitro growth conditions, S. pyogenesHA capsule can likely adhere

to the ECM through interactions with both collagen type IV and fibronectin.

Bacterial adherence was also evaluated using the pharyngeal cell line Detroit-562 (D562)

due to its similarity of surface molecules with non-transformed pharyngeal cells [43], and its

ability to induce streptococcal superantigens and DNAses that are otherwise weakly expressed
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by S. pyogenes [44,45]. There was a slight but statistically significant increase in the amount of

S. pyogenes that adhered to D562 cells when HA capsule expression was absent (Fig 2C).

Despite the ability to bind collagen type IV and fibronectin, these results conflict with reports

indicating the HA capsule contributes substantially to bacterial adhesion properties, and sug-

gests that the HA capsule may function in part to mask adhesins on the bacterial cell wall and

obstruct adherence, at least with S. pyogenesMGAS8232 [15,20]. Next, we aimed to character-

ize the capacity of these constructs for epithelial cell internalization. We found a dramatic

~1000-fold increase in ΔhasAmutants recovered from lysed D562 cells following gentamycin

treatment (Fig 2D). Given this dramatic phenotype, we also evaluated the capsule comple-

mented strain (ΔhasA + hasA), which completely lost the invasion phenotype (Fig 2D). These

data demonstrate that HA capsule expression by S. pyogenesMGAS8232 inhibits adhesion and

represses internalization into pharyngeal epithelial cells.

Following attachment to epithelial cell surfaces, a critical mechanism during early coloniza-

tion stages is to evade host immune responses. S. pyogenesMGAS8232 resistance to

Fig 2. The S. pyogenes HA capsule inhibits host cell invasion but promotes survival from neutrophil-mediated killing. Binding of S.
pyogenes to wells pre-coated with 1 μg of human ECM components (A) fibronectin and (B) collagen type IV. (C) Adhesion of S.
pyogenes to D562 pharyngeal epithelial cells. Confluent cell monolayers were cultured with S. pyogenes (MOI of 100) for 2 h at 37˚C

+ 5% CO2. Cells were washed with PBS and lysed with Triton X-100 for enumerating remaining adherent bacteria. (D) Internalization of

S. pyogenes into D562 cells. Confluent D562 cells were cultured with S. pyogenes (MOI of 100) for 2 h at 37˚C + 5% CO2 followed by 1 h

in media supplemented with 100 μg mL-1 of gentamycin. Bars represent mean CFUs ± SEM and each dot represents a biological

replicate. Statistical differences were evaluated by unpaired t-test (A–C) (��, P< 0.01; ����, P< 0.0001) or (D) one-way ANOVA (�,

P< 0.05; ����, P< 0.0001). (E) Whole human blood survival assay. Heparinized blood from human donors were inoculated with ~103

CFUs of S. pyogenesMGAS8232 at 37˚C with rotation for 3 h. Data points represent geometric mean CFUs ± SD at each timepoint

(n� 3). Statistical significance was determined using one-way ANOVA with Friedman test (���, P< 0.001). (F) Neutrophil survival

assay. Neutrophils were isolated from human blood by density centrifugation and inoculated with opsonized S. pyogenes at a MOI of 10.

Surviving bacteria were enumerated after 60 mins at 37˚C with rotation and calculated as the difference between survival in the no

neutrophil control and in the presence of neutrophils. Each data point represents S. pyogenes CFUs from an individual donor. Data

shown are the means of percent survival ± SD. Statistical analyses were performed using one-way ANOVA with Kruskal-Wallis test (�,

P< 0.05).

https://doi.org/10.1371/journal.ppat.1011013.g002
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bacteriolysis was investigated to determine if the HA capsule improves immune evasion. Com-

pared with wildtype S. pyogenesMGAS8232, growth and survival in whole human blood was

markedly attenuated (~3 logs) in the absence of capsule expression (Fig 2E). Upon earlier his-

tological assessment of infected nasal turbinates, neutrophils had accumulated in regions sur-

rounding both wildtype S. pyogenes and ΔhasA at 24 hours post-infection, yet the ΔhasA strain

had significantly less bacterial burden by 48 hours (Fig 1B and 1C). Furthermore, a significant

decline in cytokines and chemokines involved in recruiting, modulating, and activating neu-

trophils were detected by 48 hours with ΔhasA infection (Figs 1C and S2). Therefore, we next

sought to examine if the HA capsule resists neutrophil activity specifically. Unencapsulated

bacteria were more susceptible to neutrophil-mediated killing demonstrated by a significant

decline in ΔhasAmutants that survived in the presence of freshly isolated human neutrophils

(Fig 2F). Indeed, the reduced bacterial survival in each condition was rescued with comple-

mentation of capsule expression in the MGAS8232 ΔhasA + hasA strain (Fig 2E and 2F).

These results confirm an important role for the capsule in promoting resistance to killing by

neutrophils, and thus, may provide a protective role against innate immune responses during

early stages of acute infection.

Depletion of neutrophils restores S. pyogenes ΔhasA bacterial load during

nasopharyngeal infection

Preventing opsonophagocytic bacterial clearance is one of the main proposed mechanisms for

the HA capsule and has been repeatedly investigated using various in vitro bacterial survival

assays [16,25,26]. Since neutrophil influx is a major feature of our experimental nasopharyn-

geal model and during natural infections [46], we aimed to explore the importance of neutro-

phils during nasopharyngeal infection and determine whether preventing phagocyte-mediated

killing is a key molecular process by which HA capsule functions in this model. For this pur-

pose, mice were depleted of neutrophils by administering the αLy6G monoclonal antibody

(Fig 3A), which effectively depletes neutrophils from the peripheral blood of mice [47], with

rat IgG2a used as an isotype control. To confirm the neutrophil depletions, we assessed innate

immune cell populations from both the nasal passages and blood at 48 hours in wildtype

MGAS8232 infected mice. This protocol successfully eliminated virtually all Ly6G+ cells from

both sites (Fig 3B) and did not alter macrophage, monocyte or dendritic cell populations in

the nasal passage (Fig 3C), however, a small but statistical increase in monocyte population

was observed in the blood (Fig 3D). We next examined the effect of depleting neutrophils on

nasal challenges with wildtype MGAS8232 or ΔhasA strains at both 24- and 48-hours post-

infection. Although there were trends for reductions in CFUs, there were no statistical differ-

ences in the amount of wildtype S. pyogenes recovered from neutrophil depleted mice com-

pared to control mice at either 24- or 48-hours post-infection (24 h, p = 0.5802; 48 h,

p = 0.2803), indicating that wildtype S. pyogenesMGAS8232 infection is not impacted by neu-

trophil depletion in this model (Fig 3E). As expected, isotype treated mice showed a reduction

for the ΔhasAmutant at both 24- (p< 0.05) and 48-hours (p< 0.0001) compared to wildtype-

infected control mice (Fig 3E). While there was no difference in ΔhasAmutant recovery

between control and neutrophil depleted mice at 24 hours post-infection (p = 0.9808), ΔhasA
mutant burden substantially increased (~3 logs) at 48 hours post-infection in neutrophil

depleted mice compared to control mice (p< 0.05). By 48 hours post-infection, no statistical

differences were observed between the amount of ΔhasAmutants recovered from neutrophil

depleted mice and control mice receiving wildtype S. pyogenes (p = 0.0989). Overall, these find-

ings suggest neutrophil-mediated clearance mechanisms contribute substantially to the lower

burden of unencapsulated S. pyogenes in the nasopharynx.
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Bacterial burden and lesion pathology during skin infection are enhanced

by S. pyogenes hyaluronic acid capsule expression

Pharyngeal colonization by S. pyogenes is believed to be the major reservoir for this pathogen

in developed countries, yet skin infections (impetigo) tend to be more prevalent in resource-

poor settings [48]. Since nasopharyngeal infection by S. pyogenesMGAS8232 was notably

compromised by the loss of the HA capsule, we next performed a novel skin infection model

to further assess whether capsule expression could promote experimental skin infection. To

Fig 3. Early clearance of the HA capsule-deficient mutant from murine nasal turbinates is due to enhanced susceptibility to neutrophil-mediated killing.

(A) Schematic outline for in vivo depletion of neutrophils with injections of 250 μg (500 μg total) of αLy6G or isotype control rat IgG2a 24 h prior to and 24 h

post-intranasal challenge with 108 CFUs of S. pyogenes wildtype or ΔhasAmutant strains. (B) Representative flow cytometric analyses of nasal and blood innate

immune cells from the neutrophil depletion experiments at 48 h. Flow plots show live cells that were negative for CD4, CD45R and CD19, and gates were set on

Ly6G+ and F4/80- cells for neutrophils, and Ly6G- and F4/80+ for macrophage populations. Percentage of innate immune cell populations from either nasal cell

extracts (C) or blood (D) for the indicated treatment groups as percentage of live cells. Data points represent individual mice and the bars represent the mean.

Significance was determined by Mann-Whitney test (�, P< 0.05) (E) Neutrophil effects on S. pyogenes survival in the nasopharynx. Data points represent CFUs

from cNTs of individual mice 24 and 48 h post-infection. Horizontal bars represent the geometric mean. The horizontal dotted line indicates limit of detection.

Significance was determined by two-way ANOVA with Tukey’s multiple comparisons (�, P< 0.05; ��, P< 0.01; ����, P< 0.0001). Fig 3A was created using

Biorender.com.

https://doi.org/10.1371/journal.ppat.1011013.g003
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address this, B6HLA mice were intradermally injected in each hind flank with 2.5×107 CFUs of

wildtype, ΔhasA, or ΔhasA + hasA strains. There was a ~10% decline in the weights of mice

infected with wildtype S. pyogenes, a striking contrast to mice infected with the ΔhasA strain

that gained weight over the 72 hour infection period (Fig 4A). The ΔhasAmutant strain

revealed a clear reduction in virulence through considerably smaller lesions and less inflamed

tissue over the infection period compared to wildtype-infected mice (Fig 4B and 4D). Signifi-

cantly less bacterial CFUs were also recovered from each ΔhasA-infected lesion compared to

wildtype-infected lesions (Fig 4C). Though weight loss and lesion sizes were only partially

restored in ΔhasA + hasA-infected mice, bacterial CFUs recovered were fully complemented

and did not differ from wildtype-infected mice (Fig 4B–4D). The moderate restoration of

weight loss and lesion sizes in ΔhasA + hasA-infected mice may be due to the incomplete com-

plementation of the hasA gene expressed in trans using the pDCerm plasmid, as erythromycin

was not used topically to maintain plasmid expression and replication over the 72 hour infec-

tion period. This is supported by the observation of some capsule deficient reversion colonies

on plated skin homogenates. Overall, these data demonstrate that the expression of the HA

capsule in S. pyogenes supports virulence during acute skin infections in B6HLA mice.

Fig 4. Hyaluronic acid capsule expression by Streptococcus pyogenes promotes skin infection in B6HLA mice. B6HLA mice were administered ~5 × 107 CFUs

of wildtype S. pyogenesMGAS8232, or the hasAmutant, or the ΔhasA + hasA complemented strain by intradermal injections in each hind flank. (A) Weights

of B6HLA mice at 24, 48, and 72 h following skin challenge. Data is represented as a percentage of day 0 weight. Data points represent the weight means ± SEM

(n� 5). (B) Skin lesion areas of mice at 24, 48, and 72 h after skin challenge. Data points represent individual lesion areas (2 per mouse), and the bars represent

the mean. Significance was determined by two-way ANOVA with Geisser’s Greenhouse correction and Dunnett’s multiple comparisons test (�, P< 0.05, ��,

P< 0.01, ���, P< 0.001;) for panels A and B. (C) Data points represent CFUs from individual infected skin lesions from mice at 72 h. Horizontal bars

represent the geometric mean. Significance was determined by one-way ANOVA with Kruskal-Wallis test (����, P< 0.0001; ��, P< 0.01). The horizontal

dotted line indicates the theoretical limit of detection. (D) Representative skin lesion images from B6HLA mice 72 h following skin challenge.

https://doi.org/10.1371/journal.ppat.1011013.g004
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Depletion of neutrophils recovers S. pyogenes ΔhasA bacterial load during

skin challenge

To examine whether a lack of neutrophils would similarly enhance infection by unencapsu-

lated S. pyogenes in the skin, B6HLA mice were depleted of neutrophils as described above and

challenged with subdermal infections with 2.5×107 CFUs wildtype or ΔhasA S. pyogenes
MGAS8232. Irrespective of depletion status, mice infected with the ΔhasAmutant revealed sig-

nificantly less weight loss and considerably smaller lesions compared to wildtype-infected

mice over the infection period (Fig 5A, 5B and 5D). Neutrophil depletion did not impact

weight loss, lesion sizes, or the amount of wildtype S. pyogenes CFUs retrieved from each

infected lesion (Fig 5A–5D). As expected, control mice receiving the isotype antibody showed

a significant reduction of ΔhasAmutants recovered within lesions at 72 hours (p< 0.0001)

compared to wildtype-infected control mice (Fig 5C). In contrast, neutrophil depleted mice

displayed a sharp increase in ΔhasA CFUs recovered from each lesion compared to control

mice that received infections with the ΔhasAmutant (p< 0.001), despite presenting similar

lesion sizes (Fig 5C and 5D). Overall, these data support that S. pyogenesHA capsule expres-

sion is important for resisting bacterial killing by neutrophils during experimental skin

infection.

Fig 5. The hyaluronic acid capsule is important for resisting neutrophil-mediated killing in the skin. B6HLA mice were administered ~5 × 107 CFUs of

wildtype S. pyogenesMGAS8232 or the ΔhasA or ΔhasA + hasA complemented strain intradermally in each hind flank. Mice received αLy6G or rat IgG2a

isotype control antibodies intraperitoneally 24 h preceding and 24 h after skin infections. (A) Weights of B6HLA mice at 24, 48, and 72 h following S. pyogenes
skin challenge. Data is represented as a percentage of day 0 weight. Data points represent the weight means ± SEM (n� 3). (B) Skin lesion areas of mice

following at 24, 48, and 72 h after skin challenge. Data points represent individual lesion areas (2 per mouse), and the bars represent the mean. (C) Data points

represent CFUs from individual infected skin lesions from mice at 72 h. Horizontal bars represent the geometric mean. The horizontal dotted line indicates

limit of detection. Significance was determined by two-way ANOVA with Geisser’s Greenhouse correction and Dunnett’s multiple comparisons test (�,

P< 0.05, ��, P< 0.01, ���, P< 0.001;) for panels A and B, or one-way ANOVA with Kruskal Wallis (���, P< 0.001; ����, P< 0.0001) for panel C. (D)

Representative skin lesion images from B6HLA mice 72 h following skin challenge.

https://doi.org/10.1371/journal.ppat.1011013.g005
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Discussion

S. pyogenes is a human-specific bacterial pathogen and we previously demonstrated that mice

that express human MHC-II molecules (B6HLA mice) were dramatically more susceptible to

experimental nasopharyngeal infection, denoting MHC-II as an important host factor for the

adaptation of S. pyogenes to the human host [36]. It was further demonstrated that host sensi-

tivity to superantigen-mediated T cell activation induces an excessive inflammatory signature

within the nasopharyngeal environment that promoted the infection [49] and additionally, IL-

1β-mediated inflammation mediated by the SpeB protease can similarly promote S. pyogenes
colonization of the nasopharynx [47]. Consequently, S. pyogenesmust remodel its external

environment and balance superantigen- and SpeB-mediated inflammation while tempering

host immune clearance mechanisms at various stages of infection, each of which may be influ-

enced by strain-specific differences and tissue-specific cues that can affect the outcome of

infection. Herein, we leveraged the B6HLA mouse model to investigate the role of the HA cap-

sule of S. pyogenesMGAS8232 during acute infections and provide evidence that the S. pyo-
genes capsule functions in vivo to inhibit neutrophil-mediated clearance in both experimental

nasopharyngeal and skin infections.

The findings presented here illustrate an important role of the HA capsule during the path-

ogenesis of acute upper respiratory and skin infections by S. pyogenes; however, this may

appear inconsistent with some previous investigations for other encapsulated bacterial patho-

gens. For example, reduced or eliminated capsule production appears to have advantages for

the invasive potential or persistence at mucosal surfaces across multiple bacterial species,

including Streptococcus agalactiae (Group B Streptococcus) [50], Streptococcus pneumoniae
[51], Neisseria meningitidis [52,53], and Haemophilus influenzae [54]. S. pneumoniae, for

example, varies capsule expression from its initial abundance to prevent mucus-mediated

clearance [55], yet it is subsequently downregulated to expose underlying adherence molecules

[56] and to promote biofilm formation [57,58]. Although the ΔhasAmutant did have

enhanced invasion of epithelial cells (Figs 1D and 2D), we did not detect an increase in the

dissemination to other organs in vivo (S1 Fig). A caveat to this conclusion however is that if

the capsule deficient (ΔhasA) mutant did gain access to the circulatory system, this strain

would likely be rapidly eliminated. Furthermore, our findings also contradict some previous

reports where acapsular S. pyogenes infected the pharynx as effectively as the parental strain in

a baboon model of pharyngeal infection [18], and that frameshift inactivating mutations in the

hasA or hasB genes that deplete capsule production contributed to persistence during asymp-

tomatic carriage [18,29]. The use of different strains and different infections models have likely

contributed to these disparate findings, and since not all S. pyogenes strains encode the has
operon [59], it is clear that the HA capsule is not an essential virulence factor for all S. pyogenes
isolates. Nevertheless, our work is entirely consistent with other prior work demonstrating an

important selective advantage of the HA capsule for survival within the nasopharynx

[15,17,18,24].

During infection of the nasopharynx, the epithelium and mucus layer form the frontline

barrier against invading pathogens where adherence to epithelial cells or exposed ECM may be

exploited to prevent mucosal-mediated removal. In this study, we report that unencapsulated

S. pyogenes display reduced binding to collagen type IV and fibronectin ECM components

(Fig 2A and 2B), yet pharyngeal epithelial cell adhesion and internalization were significantly

greater compared to the encapsulated wildtype strain (Fig 2C and 2D). Although this may

appear to be paradoxical, prior studies have shown that once internalized within epithelial

cells, S. pyogenes is rapidly killed [24]. Thus, entry into cells is unlikely a virulence mechanism,

but rather a failure of S. pyogenes to avoid ingestion by host cells. Therefore, encapsulation
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helps resist internalization and enhances the capacity to invade tissues by an extracellular

route to promote S. pyogenes infection. Future work is needed to clarify adherence properties

of encapsulated and unencapsulated S. pyogenes, however, an impairment in adherence

appears to be less important throughout the overall course of infection compared to the cap-

sule’s potent protective effect from ingestion and killing by host phagocytes.

Upon infection with S. pyogenes, the immune system launches a complex innate response

that largely depends on the recruitment and activity of neutrophils, macrophages, and den-

dritic cells [60–64]. Although we attempted to also deplete macrophage populations using clo-

dronate containing liposomes from the nasal passages using established protocols for systemic

macrophage depletion [65], including direct nasal administration of clodronate, these proto-

cols were not successful. Nevertheless, as resident and inflammatory macrophage populations

were intact following the neutrophil depletions (Fig 3C and 3D), and the hasAmutant could

proficiently infect these neutrophil-depleted mice, this suggests that protection against phago-

cytosis by macrophages is not a key mechanism by which the HA capsule functions during

experimental nasopharyngeal infection. In contrast, we have demonstrated the the HA capsule

is a key structure that promotes resistance to neutrophil mediated killing. Neutrophils are the

most abundant leukocyte involved in innate host responses, acting as both professional detec-

tors that release inflammatory alarms to invading bacteria as well as direct killers via phagocy-

tosis, degranulation, and the formation of neutrophil extracellular traps (NETs). While

neutrophil influx during severe infections is protective against S. pyogenes [63], we show that

depleting neutrophils did not affect wildtype S. pyogenesMGAS8232 acute infections. These

results are in contrast to findings where neutrophils are key for pathogenesis and that neutro-

phil ablation by αLy6G administration reduces S. pyogenes infection of the nasopharynx

[47,66]. However, conventional C57BL/6 mice were used in these studies with superantigen-

mediated inflammation absent. In the presence of a superantigen-driven inflammatory

response capable of promoting infection [36], our results indicate that neutrophils are not

essential for S. pyogenes to establish nasopharyngeal or skin infections. Instead, expression of

the HA capsule offered a clear survival advantage that promoted a strong resistance to bacterial

clearance by neutrophils. Since innate immune cells are thought to participate in host protec-

tion against S. pyogenes, more research is needed to define specific roles, to examine crosstalk,

and to address redundancy in responses between individual cell types.

Interestingly, both encapsulated and unencapsulated type 18 S. pyogenes are equally opso-

nized by C3 in either plasma or serum [25], suggesting that the HA capsule does not inhibit

complement activation or deposition of complement fragments on the bacterial cell wall. Since

opsonization does not necessarily lead to phagocytic ingestion, the HA capsule may serve as a

physical barrier that interferes with leukocyte access to opsonic complement proteins depos-

ited on the bacterial surface [25]. More recently, the HA capsule has been shown to promote

bacterial survival within NETs by resisting a major component and antimicrobial effector,

cathelicidin antimicrobial peptide LL-37 [67]. As different strains of S. pyogenes harbour varia-

tions in global virulence factor expression, and consequently express varying amounts of HA

capsule, it is likely that distinct strategies to prevent phagocytic ingestion and killing are

exploited among individual strains. For example, mutations that produce a truncated RocA

(regulator of Cov) protein have amplified expression of the has operon through transcriptional

activation of the repressor covR, and have been identified in S. pyogenes types emm18 and

emm3 [34,68]. Thus, no single strain of S. pyogenes should be considered representative of the

population as a whole and future studies using additional encapsulated strains are recom-

mended to draw general conclusions on the mechanisms utilized by the HA capsule. Although

various strains may vary greatly in their degree of encapsulation, the results presented here

provide evidence that HA capsule expression by S. pyogenesMGAS8232 promotes a strong
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resistance to killing by neutrophils during acute infection models. Defining strategies by which

neutrophils can counteract HA capsule resistance is warranted to combat this leading bacterial

pathogen.

Materials & methods

Ethics statement

Human venous blood was taken from healthy volunteer donors in accordance with human

subject protocol 110859. The full study protocol was approved by the London Health Sciences

Centre Research Ethics Board (University of Western Ontario, London, ON, Canada). Volun-

teers were recruited by a passive advertising campaign within the Department of Microbiology

and Immunology at the University of Western Ontario, and following an outline of the risks,

written consent was obtained from each volunteer before samples were taken. Following blood

collection, samples were fully anonymized and no information regarding the identity of the

donor, including sex and age, were retained.

All mouse experiments were conducted in accordance with the Canadian Council on Ani-

mal Care Guide to the Care and Use of Experimental Animals. The Animal Use Protocol

(AUP) number 2020–041 was approved by the Animal Use Subcommittee at the University of

Western Ontario (London, ON, Canada).

Bacterial strains, media, and growth conditions

Bacterial strains used in this study are listed in Table 1. The main bacterial model strain for

our work is S. pyogenesMGAS8232, an M18 serotype and pharyngeal isolate from a patient

with acute rheumatic fever [33]. S. pyogenes strains were grown statically in Todd Hewitt broth

(BD Biosciences; Franklin Lakes, NJ, USA) supplemented with 1% (w/v) yeast extract (BD Bio-

sciences) (THY) and 1 μg mL-1 erythromycin when appropriate. For solid media preparation,

1.5% agar and/or 1 μg mL-1 erythromycin were added to the media when applicable. Molecular

cloning experiments utilized the E. coli XL1-Blue strain cultured in Luria-Bertani (LB) broth

(Thermo Fisher Scientific, Waltham, MA, USA) aerobically at 37˚C, or Brain Heart Infusion

(BHI; BD Biosciences, Franklin Lakes, NJ, USA) media containing 1.5% (w/v) agar (Thermo

Fisher Scientific). Media was supplemented with 150 μg mL-1 erythromycin (Sigma-Aldrich

Canada, Oakville, ON, Canada) as necessary. A complete list of plasmids used in this study can

be found in Table 1.

Construction of recombinant S. pyogenes strains

References to genomic loci are based on the genome of S. pyogenesMGAS8232 [33]. In-frame

genetic deletion in the hasA gene was generated using the Gram-positive-E. coli shuttle vector,

pG+host5 [32] (Table 1). Using appropriate PCR amplification primers listed in S1 Table, the

upstream and downstream regions flanking the hasA gene were amplified from the

MGAS8232 genome. Allelic replacement of the wildtype hasA gene with the deletion mutant

ΔhasA via homologous recombination was conducted as described previously [36]. For com-

plementation of the hasA genetic deletion, DNA fragments containing the hasA open reading

frame and its native promoter were amplified from the S. pyogenesMGAS8232 genome using

complementation primers listed in S1 Table, and cloned into the XhoI and SpeI restriction

sites of the plasmid pDCerm [35]. This construct (pDCerm::hasA) was electroporated into the

MGAS8232 ΔhasAmutant strain to produce the hasA complementation strain (ΔhasA
+ hasA).
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Genomic sequencing analysis

Genomic DNA preparations from S. pyogenesMGAS8232 wildtype and ΔhasA strains were

sent for paired end Illumina sequencing at the John P. Robarts Research Institute sequencing

facility (University of Western Ontario, London, Ontario). Illumina short-read sequence data

were used to generate de novo assemblies using SPAdes v3.15 [69], which were annotated

using Prokka v1.12 [70]. The assemblies for the isogenic MGAS8232 and MGAS8232 ΔhasA
have been deposited at NCBI (Biosamples SAMN27522080 and SAMN27522081 [Bioproject:

PRJNA825546]). Any sequence differences between the strains were determined using Snippy

v4.1 (https://github.com/tseemann/snippy). The publicly available S. pyogenesMGAS8232

sequence was used as a reference (Bioproject: PRJNA286). SNPs unique to the ΔhasAmutant

were reported (S2 Table).

Extracellular matrix binding assay

Corning Costar 9018 high-binding 96-well plates (Corning; Kennebuck, ME, USA) were

coated with 1 μg of collagen type IV (Sigma-Aldrich) or fibronectin (Calbiochem, EMD Milli-

pore Corporation; Temecula, CA, USA) dissolved in carbonate-bicarbonate buffer (0.2M

sodium carbonate anhydrous, 0.2M sodium bicarbonate, pH = 9.6) and left overnight at 4˚C.

The following day, the plates were washed three times using PBS with 0.05% (v/v) tween-20

and blocked for two hours with 5% (w/v) skim milk at room temperature and then washed as

described. Afterwards, 100 μl of bacteria containing 107 CFUs were added in triplicate to pre-

coated wells and left for 2.5 hours at 37˚C. Plates were washed and fixed with 10% neutral buff-

ered formalin (VWR International; Randor PA, USA) for 40 minutes and then washed again.

Wells were incubated with 50 μl of 0.5% (w/v) crystal violet (Sigma-Aldrich) in 80% (v/v) ster-

ile MilliQ water and 20% (v/v) methanol for 5 minutes at room temperature before being

washed five times. Stain was solubilized in 5% (v/v) acetic acid with mild agitation for 10 min-

utes. Colorimetric analysis was measured at OD590 using Synergy HTX Multi-Mode Micro-

plate Reader (Biotek).

Human cell culturing

The Detroit-562 (ATCC CCL-138) human pharyngeal cell line was grown and maintained at

37˚C in 5% CO2 in minimal essential medium (MEM) and passaged every 2–3 days. All tissue

culture basal media was supplemented with 10% (v/v) heat-inactivated fetal bovine serum

(FBS; Sigma-Aldrich, St. Louis, MO, USA), 100 IU penicillin (Gibco, Life Technologies Inc,

Carlsbad, CA, USA), and 100 μg mL-1 streptomycin (Gibco-BRL, Life Technologies, Grand

Island, N.Y.), all filtered through a 0.2 μm PES filter (Nalgene, Thermo Scientific, Waltham,

MA, USA).

Epithelial cell adhesion and invasion

Detroit-562 cells were grown to confluence on 12 or 24-well TC-treated plates (Falcon, Corn-

ing). On the day of infection, cells were washed with PBS and maintained in their respective

serum-free media for at least 1 h prior to infection. The average number of cells per well was

calculated and used to determine the number of bacteria required for a multiplicity of infec-

tion (MOI) of 100. During this time, overnight streptococcal cultures were subcultured into

pre-warmed media and grown to early exponential phase. Tissue culture plate wells were

washed three times with PBS and inoculated with 500 μl of the resuspended bacterial dose per

well and left for 2–3 hours at 37˚C in a 5% CO2 incubator to allow bacteria to adhere to the

cells. Background adherence levels were measured by inoculating bacteria onto uncoated
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wells. Following incubation, wells were washed three times with PBS to remove non-adherent

bacteria, and cell monolayers were lysed with 500 μl of 0.01% Triton X-100 for 5 minutes, fol-

lowed by disruption of the wells by scraping with a 1 mL pipette tip. Solubilized wells were

serially diluted 10-fold and plated onto TSA 5% sheep blood agar plates (BD Biosciences) to

enumerate bacteria present.

For invasion experiments, bacterial were inoculated onto cell monolayers for 2–3 hours at

37˚C with 5% CO2 and washed as above, followed by the addition of media containing 100 μg

mL-1 of gentamicin for 1 hour at 37˚C and 5% CO2 to kill extracellular bacteria. Wells were

then extensively washed to remove the gentamicin media. Cells were lysed, serially diluted,

and plated as described above to estimate the number of intracellular bacteria.

Whole blood survival assay

Lancefield bactericidal assays were performed as previously described [71] with some modifi-

cations. Briefly, a volume of 10 μl containing 1000 bacterial CFUs was added to 990 μl heparin-

ized whole human blood in 1.5 mL Eppendorf tubes and allowed to incubate at 37˚C with

rotation. After 30, 60, 90, 120, and 180 minutes, samples were serially diluted 10-fold and drop

plated in triplicate onto 5% TSA blood agar plates to enumerate the surviving bacteria in

whole blood at indicated time points.

Isolation of human polymorphonuclear neutrophils

Polymorphonuclear neutrophils (PMNs) were isolated using a Ficoll (GE-Healthcare) Histo-

paque (Sigma-Aldrich) density gradient centrifugation method. Briefly, heparinized blood

from human donors was diluted with an equal volume of PBS (Wisent Bioproducts Inc.) and

layered carefully onto a dual Ficoll-Histopaque gradient and centrifuged at 396 × g for 20 min-

utes without braking. The PMN layer was collected and washed with cold RPMI containing

0.05% human serum albumin (RPMI-HSA) and with addition of 1 mL ice-cold water to lyse

residual erythrocytes. PMNs were then collected in RPMI-HSA following centrifugation and

adjusted to 4 × 106 cells mL-1.

PMN survival assay

Overnight streptococcal cultures were grown to early exponential phase and diluted to 104

CFU mL-1 in RPMI containing 10% (v/v) normal serum for 30 minutes to assist with bacterial

opsonization. A volume of 0.225 mL opsonized bacteria were co-cultured with 0.025 mL of iso-

lated human PMNs at 4 × 106 cells mL-1 (1:10 bacterial CFUs to neutrophils) at 37˚C with vig-

orous shaking. Control samples had no PMNs added to control for bacterial growth. Viable

bacteria in each reaction mixture were measured after 60 mins by lysing cells with 750 μl of

0.025% Triton X100, followed by serial dilution and plating onto 5% TSA blood agar plates

overnight at 37˚C. Percent bacterial survival was calculated as average bacterial CFUs in the

presence of neutrophils divided by bacterial CFUs in no PMN control samples.

Mice

Mice were bred in a barrier facility at the University of Western Ontario and genotyped rou-

tinely for appropriate transgene expression. Human MHC class II transgenic (B6HLA) mice

[72] were bred from McCormick laboratory colonies specifically for this study and were on a

C57BL/6 (B6) background. During all breeding and experiments, mice were provided food

and water ad libitum and appropriate enrichment was provided in all cages.
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Nasopharyngeal infection model

Preparation of S. pyogenesMGAS8232 for nasal inoculation has been previously described

[36,37,49]. Briefly, bacteria were grown to early exponential phase (OD600 of 0.2–0.3), cells

were centrifuged, washed, and resuspended in Hank’s buffered saline solution (HBSS) at

*1 × 108 CFUs per 15 μL. Mice were given 2 mg ml-1 neomycin sulphate ad libitum in their

drinking water two days prior to infection to reduce the nasal microbiota. Mice were anesthe-

tized using FORANE (isoflurane, USP; Baxter Corporation; Mississauga, ON, Canada) and

7.5 μL of bacterial inoculum was administered into each nostril. Mice were sacrificed 24 or 48

hours post-infection and their complete nasal turbinates (cNTs), including the nasal-associ-

ated lymphoid tissue, nasal turbines, and maxillary sinuses, were extracted and homogenized

using a glass homogenizer [37]. Murine lungs, liver, spleen, kidneys, and heart were also

removed for bacterial enumeration where indicated. Organs were serially diluted in HBSS and

plated on TSA supplemented with 5% sheep’s blood for bacterial enumeration. Counts less

than 30 CFUs per 100 μL of tissue supernatant were considered below the theoretical limit of

detection.

Skin infection model

The fur on the lower backs of B6HLA mice between 8–12 weeks old was removed by shaving

and hair removal cream the day prior to infection. S. pyogenes was grown and prepared as

stated above and resuspended to 5 × 108 CFU per mL in HBSS. Mice were anesthetized and a

50 μL dose containing ~2.5 × 107 CFU was injected intradermally into each lower flank. On

each day following infection, mice were weighed and lesions at the injection sites were mea-

sured using calipers. At 72 hours post-infection, mice were sacrificed and the skin around each

injection site was harvested, homogenized, and plated on TSA with 5% sheep’s blood overnight

at 37˚C for bacterial enumeration. Bacterial burden was presented as CFUs from individual

lesions.

Immunofluorescent histology

At the previously identified endpoint, cNTs were collected as described [37] and tissues were

fixed in periodate-lysine-paraformaldehyde (PLP) and prepared for sectioning as previously

[73]. Following fixation, cNT were passed through sucrose gradients and frozen in OCT (Tis-

sueTek) media. Serial sections (7 μm) were cut using a cryostat. Prior to staining, all slide-

mounted tissue sections were blocked with PBS containing 1% BSA, 0.1% Tween-20, and 10%

rat serum. Sections were stained with the following antibodies: anti-Streptococcus pyogenes
Group A Carbohydrate (Abcam, ab9191), anti-B220 (Biolegend, RA3-6B2), anti-CD3 (Biole-

gend, 17A2), and anti-Ly6G (Biolegend, 1A8). After staining, sections were mounted with Pro-

Long Gold Antifade Reagent (Invitrogen). Tiled images of whole cNT sections were collected

using a DM5500B fluorescence microscope (Leica) at 10× and 20×.

Neutrophil depletion in vivo
The function of neutrophils during acute infections by S. pyogenes were examined in B6HLA

mice between 8–12 weeks old. Neutrophils were depleted in vivo by intraperitoneally injecting

mice with 250 μg mAb αLy6G clone 1A8 (BioXcell, NH, USA) 24 hours before and 24 hours

following nasopharyngeal and skin infections. Control mice received rat IgG2a clone 2A3

(BioXCell, NH, USA). Depletion of circulating neutrophils has been confirmed in previous

studies using flow cytometry of Ly6G+ expressing populations in blood [47,74,75]. Bacterial

burden in nasal turbinates was examined at both 24 and 48 hours following infection.
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Flow cytometry analyses

To assess the neutrophil depletion experiments, we phenotyped innate immune cells from

both the nasal tubinates and blood. Murine nasal turbinates were isolated as previously

described [37] and collected in R10 media. Nasal turbinates were treated with 0.3 mg ml-1 col-

lagenase D (Sigma-Aldrich) in R10 media at 37˚C for 30 minutes and then pushed through a

0.7-μm cell strainer. The single-cell suspension was then treated with ACK lysis buffer (Gibco)

and washed with PBS containing 2% FBS. Blood was collected from mice via cardiac puncture.

Following isolation, blood was treated with ACK lysis buffer (Gibco) and washed with PBS

containing 2% FBS. Following isolation, both blood and nasal cells were stained and analysed

as follows. Cell viability was first determined using Fixable Viability Dye eFluor506 (Thermo

Fisher) and then subsequently stained anti-CD4-PE-Cy5 (clone RM4-5, Thermo Fisher) anti-

CD45r(B220)-V450 (clone RA3-6B2, BD), anti-CD19-BV711 (clone 1D3, Thermo Fisher),

anti-F4/80-A647 (clone BM8, Biolegend), anti-Ly6G-A700 (clone RB6-8C5, Biolegend), anti-

Ly6C-PE (clone HK1.4, Biolegend), anti-CD11b-A488 (clone M1/70, Biolegend), and anti-

CD11c-APC-Cy7 (clone HL3, BD). Cells were fixed overnight with 1% paraformaldehyde

prior to analysis. Events were acquired using a LSR II (BD Biosciences), and data were ana-

lyzed using FlowJo v10.7.1 (TreeStar).

Cells were gated first on whether they were alive or dead, and the live population was subse-

quently gated for the singlet population. Single cells were checked for the expression of CD4,

CD45r, and CD19 and the triple negative population was gated for further analysis. Cells were

then assessed for expression of F4/80 and Ly6G. F4/80 positive and Ly6G negative cells were

classed as macrophages. Cells that were subsequently high for Ly6G but negative for F4/80

were assessed for CD11b and Ly6C expression and classed as neutrophils. F4/80 and Ly6G

double negative cells were gated and assessed for CD11b and Ly6C expression, with double

positive cells classed as monocytes. Ly6G and F4/80 double negative cells were also gated and

assessed for CD11c and Ly6C expression, with CD11c positive and Ly6C negative cells classed

as dendritic cells. Data is presented as the percentage of live cells.

Detection of cytokines and chemokines in vivo
Cytokine and chemokine concentrations were determined from cNT homogenates of B6HLA

mice infected with S. pyogenesMGAS8232. Uninfected murine cNT homogenates were mea-

sured as a background control. Mutiplex cytokine array (Mouse Cytokine/Chemokine Array

32-Plex) was performed by Eve Technologies (Calgary, AB, Canada) and data on heat maps is

presented as normalized median cytokine responses (Xnormalized = [(x—xmin)/(xmax−xmin)])

from cNT homogenates.

Statistical analysis

All statistical analysis was completed using GraphPad Prism 9.3.1. Significance was calculated

using the Student’s t test or one-way ANOVA with Dunnett’s or Tukey’s multiple comparisons

post hoc test where indicated. A P value less than 0.05 was determined to be statistically

significant.
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