
RESEARCH ARTICLE

Optimized phylogenetic clustering of HIV-1

sequence data for public health applications

Connor Chato1, Yi Feng2, Yuhua Ruan2, Hui XingID
2, Joshua Herbeck3, Marcia Kalish4, Art

F. Y. PoonID
1*

1 Department of Pathology and Laboratory Medicine, Western University, London, Canada, 2 Division of

Virology and Immunology, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center

for Disease Control and Prevention (China-CDC), Beijing, China, 3 Department of Global Health, University of

Washington, Seattle, Washington, United States of America, 4 Department of Medicine, Vanderbilt University,

Nashville, Tennessee, United States of America

* apoon42@uwo.ca

Abstract

Clusters of genetically similar infections suggest rapid transmission and may indicate priori-

ties for public health action or reveal underlying epidemiological processes. However, clus-

ters often require user-defined thresholds and are sensitive to non-epidemiological factors,

such as non-random sampling. Consequently the ideal threshold for public health applica-

tions varies substantially across settings. Here, we show a method which selects optimal

thresholds for phylogenetic (subset tree) clustering based on population. We evaluated this

method on HIV-1 pol datasets (n = 14, 221 sequences) from four sites in USA (Tennessee,

Washington), Canada (Northern Alberta) and China (Beijing). Clusters were defined by tips

descending from an ancestral node (with a minimum bootstrap support of 95%) through a

series of branches, each with a length below a given threshold. Next, we used pplacer to

graft new cases to the fixed tree by maximum likelihood. We evaluated the effect of varying

branch-length thresholds on cluster growth as a count outcome by fitting two Poisson

regression models: a null model that predicts growth from cluster size, and an alternative

model that includes mean collection date as an additional covariate. The alternative model

was favoured by AIC across most thresholds, with optimal (greatest difference in AIC)

thresholds ranging 0.007–0.013 across sites. The range of optimal thresholds was more

variable when re-sampling 80% of the data by location (IQR 0.008 − 0.016, n = 100 repli-

cates). Our results use prospective phylogenetic cluster growth and suggest that there is

more variation in effective thresholds for public health than those typically used in clustering

studies.

Author summary

A genetic cluster of virus infections is a group of DNA or RNA sequences that are much

more similar to each other than they are to other infections from the same population of

hosts. These clusters can reveal where virus transmission has been occurring the most rap-

idly, which can provide useful information for a public health response. Genetic clusters
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are often built by reconstructing a phylogeny—a tree-based model of how the sequences

are related by common ancestors—and locating distinct parts of the tree with short

branches. However, there are no objective, general-purpose criteria for deciding which

parts of a tree constitute clusters, and there are an unlimited number of ways to partition

a tree into clusters. In this study, we develop a computational method to determine the

best clustering criteria based on our ability to predict where the next infections will occur.

We apply this method to anonymized HIV-1 sequence data sets from Canada, the United

States, and China, to characterize the sensitivity of clustering criteria to different risk pop-

ulations and sampling contexts. Our results indicate that the clustering criteria typically

used for phylogenetic studies of HIV-1 are not optimal for public health applications.

Introduction

Identifying clusters of infections with shared characteristics that imply a common origin is a

fundamental goal for epidemiological research and surveillance. This can be used to inform

regional lockdown protocols and identify subpopulations for prioritized allocation of public

health resources [1, 2]. Conventionally, clusters are identified by infections that are sampled

within a relatively short time frame (temporal clustering), in association with a defined space

(spatial clustering), or both. However, molecular sequence data have been used increasingly to

cluster infections by their genetic similarity, which can provide a complementary or surrogate

measure of their spatial or temporal proximity. There are now many examples of genetic clus-

tering applied to RNA viruses, including Ebola virus [3, 4], human immunodeficiency virus

type 1 (HIV-1) [5–7], hepatitis C virus [8], and coronaviruses associated with Middle Eastern

respiratory syndrome (MERS-CoV) [9] and the 2003 outbreak of severe acute respiratory syn-

drome (SARS-CoV) [10]. The rapid evolution of many RNA viruses favours the use of genetic

clustering because mutational differences can accumulate between infections in a matter of

weeks or months [11, 12]. When transmission occurs on a similar time scale, a molecular phy-

logeny reconstructed from infections of an RNA virus will be shaped in part by its transmis-

sion history [13]. In this context, a phylogeny is a tree-based model of how infections are

descended from their common ancestors.

HIV-1 has been particularly targeted for applications of genetic clustering. This is driven

not only by HIV-1’s rapid evolution and global impact, but also by the availability of large

sequence databases in many clinical settings from routine screening for drug resistance muta-

tions. For instance, continual updates to sequence databases make it feasible to monitor the

emergence and growth of genetic clusters over time [5, 14, 15]. Clustering methods have been

used retrospectively to characterize populations associated with elevated rates of HIV-1 infec-

tion [7, 16–19], to identify potentially linked co-infections of HIV and hepatitis C virus [8, 20],

superinfection by multiple HIV-1 subtypes [21] and transmitted drug resistance [22]. Cluster-

ing has also been proposed to support HIV-specific prevention methods such as pre-exposure

prophylaxis (PrEP), which require a precise understanding of high-risk populations to opti-

mize the distribution of public health resources [23, 24]. Finally, the lack of an effective vaccine

demands a continuous assessment of priority populations for testing and antiretroviral treat-

ment [25].

Over the last decade, there has been a growing diversity of genetic clustering methods,

many of which were specifically designed and validated on HIV-1 sequence data [6, 26–31].

These methods can be broadly categorized by whether or not they require the reconstruction

of a molecular phylogeny [32]. For example, Cluster Picker [26] is currently among the most
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widely-used genetic clustering methods for HIV-1 based on numbers of citations in the litera-

ture. Cluster Picker defines each cluster as a subtree in the phylogeny. A subtree is a portion of

the phylogenetic tree that consists of an ancestral node and all of its descendants; in evolution-

ary terminology, a subtree is a monophyletic group. Cluster Picker searches for subtrees where

(1) the total length of branches between any pair of tips in the subtree (d) is always below a

threshold dmax, and (2) the bootstrap support associated with the ancestral node exceeds a

threshold bmin. A bootstrap support value (b) is a measure of reproducibility—how often we

expect to reconstruct a node ancestral to exactly the same set of tip labels from a hypothetical

new data set of equivalent dimensions to the original data [33]. In practice, dmax and bmin are

typically set to values in the range of 0.01 to 0.05 expected nucleotide substitutions per site and

90% to 95%, respectively [19, 26, 34, 35].

Clustering methods that do not reconstruct a phylogeny are also in widespread use for

HIV-1 [15, 36–38]. For example, HIV-TRACE [6] employs a genetic distance [39] that reduces

two sequences to a number quantifying the extent of their evolutionary divergence. Clusters

are assembled from pairs of sequences whose distances fall below some predefined threshold.

The advantages of distance-based clustering is that pairwise distances are rapid to compute

and yield immutable quantities; these distances do not change with the addition of sequences

to the database. In contrast, reconstructing a phylogeny with additional sequence data can

change the branch lengths and bootstrap support values associated with previously-defined

clusters [35]. Consequently, the use of clustering for continuous monitoring of an HIV-1

sequence database (i.e., to track the growth of clusters) has tended to focus on distance cluster-

ing methods [15, 38]. Tracking cluster growth can provide more informative indicators for

public health decisions. For instance, large clusters tend to emphasize historical outbreaks that

are no longer active [38, 40].

Nevertheless, phylogenetic clustering remains more prevalent in the infectious disease liter-

ature [41]. Clusters generated from pairwise distances tend to have a high density of connec-

tions (edges) between cases, resulting in swarms of connections that are difficult to interpret,

an instance of the ‘hairball’ problem that plagues applications of networks to social and biolog-

ical systems [42, 43]. In contrast, phylogenetic clusters are generally more interpretable as trees

that are shaped in part by the underlying transmission history. Both genetic distance and phy-

logenetic clustering methods require users to select one or more threshold parameters. Clus-

tering results can vary substantially with different methods and clustering thresholds [44].

There are no universal guidelines for configuring a phylogenetic clustering method for appli-

cations in public health and molecular epidemiology. In the absence of generic data-driven

methods to select optimal thresholds, many users have resorted to default settings and/or

emerging conventions in the literature [41, 44]. However, appropriate thresholds can vary sub-

stantially among databases and populations, due to differences in prevalence of infection,

extent of sampling, and heterogeneity in rates of transmission and diagnosis [32, 45, 46].

Relaxing clustering thresholds tend to yield larger clusters [18, 36, 37]. Several studies [30,

32, 34, 47] have noted that larger clusters tend to have more information for predicting the

location of the next cases. However, this favours relaxing the clustering thresholds until all

sequences merge to a single giant cluster, and the appearance of the next cases in that cluster is

a trivial outcome [48]. An analogous information-bias tradeoff has been studied extensively in

spatial statistics, where it is known as the modifiable area unit problem [49, 50]. Thus, we have

adapted a strategy that was proposed to study the distribution of mortality rates for varying

levels of administrative districts in Tokyo [51] (e.g., ward, town, village). This method com-

pares the AICs of two Poisson regression models for varying numbers of clusters. Although

AICs for one model cannot be directly compared for different clusterings (since the data are
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being changed), the clustering that maximizes the difference in AICs between models (ΔAIC)

minimizes information loss with the addition of model parameters [52, 53].

In previous work [48], we developed a statistical framework based on ΔAIC to select the

optimal threshold for distance-based clustering. This optimum is based on one’s ability to pre-

dict the distribution of the next cases of infection among existing clusters. Here, we extend this

framework to enable users to calibrate phylogenetic clustering methods to a specific popula-

tion database. This is not a trivial task because we must accommodate the effect of new data on

the shape of the phylogenetic tree, such that new cases may retroactively change previous clus-

ters. We adapt a maximum likelihood method (pplacer [54]) to graft new sequences onto a

pre-existing phylogeny. Next, we fit predictive models of cluster growth based on the place-

ment of new cases on the tree. To optimize the phylogenetic clustering method to a given data

set, we evaluate these models for a range of branch-length and bootstrap support thresholds.

We assess the performance of our method on HIV-1 sequence data sets from two regions of

the United States (Tennessee [55] and Washington state [56]), the northern region of Alberta

in Canada [57], and Beijing, China [58].

Methods

Data collection

This study was performed on alignments of anonymized HIV-1 pol sequences, where each

sequence uniquely represented a host individual. Aligned sequence data were obtained from

different locations: Kings County, Washington, USA (n = 6815) [56]; Middle Tennessee, USA

(n = 2779) [55]; Beijing, China (n = 3964) [58]; and northern Alberta, Canada (n = 1054) [57].

The first three data sets were acquired with special permission from the Seattle/King County

Public Health Agency [56, 59], the Vanderbilt Comprehensive Care Clinic [14] and the Chi-

nese Center for Disease Control and Prevention, respectively. The fourth data set is publicly

available in Genbank (accession numbers KU189996—KU191050) [57] and we used a custom

R script to extract collection dates and HIV-1 subtype classifications from sequence headers.

Data sets were filtered to remove any sequences with over 5% ambiguous sites and sequences

that were over 15% incomplete. We also manually examined and trimmed the sequence align-

ments for the Washington and Tennessee data sets due to a relatively high proportion of gaps

and ambiguous base calls, removing a total of 52 and 163 nt from the overall alignment

lengths, respectively. To make the results of our analysis as consistent as possible for the

respective data contributors, we refrained from further modifications to the alignments.

All sequences were associated with years of sample collection as metadata. For each data

set, sequences were partitioned by date of sample collection, with sequences in the most recent

year comprising the ‘incident’ subset, and the remaining sequences assigned to the ‘back-

ground’ subset. In addition, year of HIV diagnosis was available for all sequences in the Wash-

ington data set, and for a subset of sequences in the Tennessee data set (Table 1). For these

cases, we repeated our analysis on partitions of the sequence data by year of diagnosis. The

composition of the final sequence data sets are summarized in Table 1.

Phylogenetic analysis

Maximum likelihood phylogenies were constructed for each set of background sequences

using IQ-TREE version 1.6.12 [61] with a generalized time-reversible (GTR) model of evolu-

tion, gamma-distributed rate variation among sites, and 1,000 parametric bootstraps. In addi-

tion, 100 random sub-samples were drawn without replacement from background sequences,

each containing 80% of the full sample population. FastTree2 version 2.1.10 [62] was then

used to construct a separate tree for each sub-sample, using default run parameters and 100
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bootstraps. All trees were midpoint-rooted using the phytools [63] package in R. Polytomies

were resolved arbitrarily using the multi2di function in the R package ape [64]—this was only

necessary for sub-samples drawn from the Washington data set. Patristic distances (tip-to-tip

branch lengths) were calculated using the R package ape function cophenetic.phylo and the

pairwise distances were calculated using a Tamura-Nei [39] distance calculator (TN93, https://

github.com/veg/tn93).

To update these phylogenies with incident sequences, we used the software package pplacer
version 1.1 [54] to graft the sequences onto a tree by maximum likelihood. In many cases, the

placement of a sequence varied among bootstrap replicates. The confidence levels among alter-

native placement queries (‘pqueries’) was quantified by likelihood weights. Each pquery is

associated with a terminal branch between the incident sequence and the ancestral node A
where it bisects the tree, as well as a ‘pendant’ branch between A and its descendant in the orig-

inal tree (Fig 1). We used the sing subcommand in the guppy program within pplacer to gener-

ate trees with the different pqueries [65], ensuring that graft locations were only proposed on

branches that existed in the original tree.

Cluster definition

Taking a phylogenetic tree of background sequences as input, we implemented the following

set of rules in R to assign incident sequences to a set of clusters in the tree:

1. A cluster is a subset of branches and nodes within a binary tree rooted on ancestral node A
and containing at least one terminal node.

2. By default, a single terminal node constitutes a cluster of one.

3. Each terminal node in a cluster must descend from the root node of the cluster through a

path of branches whose lengths each fall below dmax.

4. The ancestral node A must have a bootstrap confidence equal to or exceeding some thresh-

old bmin.

5. Any node N and its associated parent branch may only belong to the largest possible cluster

containing N.

By these rules, a cluster can be as small as a single sequence, but can also be represented by

either monophyletic or paraphyletic groups. The latter allows relatively divergent sequences to

be separated from an otherwise closely related group, leaving the latter intact. Clusters with the

same number of sequences can also vary by how many branches and internal nodes are

Table 1. Summary of sequence data characteristics. Length is the median length of nucleotide (nt) sequences. HXB2 coords = reference nucleotide coordinates in the

HXB2 genome (Genbank accession K03455). Year type: sequences are annotated with year of sample collection, and in some cases date of HIV diagnosis. N = Total sample

size, including both old and new sequences. Incid = number of sequences in ‘incident’ subset (most recent year). Subtype classifications were derived from the original

data sources, when available, or generated de novo with SCUEAL [60].

Location Length (nt) HXB2 coords Year type N Incid Date range Subtypes

Washington, USA 985 2,256–3,240 diagnosis 6,583 253 1982–2019 B (89%), C (4%), A1 (1%), other (10%)

collection 6,583 253 1999–2019

Alberta, Canada 1,017 2,253–3,269 collection 1,051 155 2007–2013 B (77%), C (20%), A1 (3%)

Tennessee, USA 1,296 2,253–3,548 collection 2,741 162 2001–2015 B (93%), C (2%), other (5%)

diagnosis 2,338 129 1977–2011

Beijing, China 1,004 2,273–3,276 collection 3,916 1,196 2005–2015 01AE (50%), 07BC (25%), B (19%), other (6%)

https://doi.org/10.1371/journal.pcbi.1010745.t001

PLOS COMPUTATIONAL BIOLOGY Optimized phylogenetic clustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010745 November 30, 2022 5 / 24

https://github.com/veg/tn93
https://github.com/veg/tn93
https://doi.org/10.1371/journal.pcbi.1010745.t001
https://doi.org/10.1371/journal.pcbi.1010745


included because of unresolved nodes (polytomies), although we do not utilize these quantities

in our methods. We only count terminal nodes to compute the size of a cluster.

We generated clusters at 41 different branch length thresholds, ranging from dmax = 0 to

0.04 in steps of 0.001. Clusters were also generated under relaxed (bmin = 0) and strict (bmin =

0.95) bootstrap thresholds. Since our results were relatively insensitive to varying bmin, we lim-

ited our analyses to these two settings. For the purpose of clustering, the root node of the tree

was assigned a bootstrap support of 0, such that the entire tree could only become subsumed

into a single giant cluster at the lowest threshold bmin = 0.

For comparison, we implemented a similar set of clustering criteria in the program Cluster

Picker [26], which is widely used for the phylogenetic clustering analysis of HIV-1 sequences.

This required two modifications to the above rules. First, a cluster selected by Cluster Picker

must be a monophyletic group (containing all descendants) rooted on an ancestral node with

a bootstrap support greater than or equal to a threshold bmin. Second, all patristic distances in

the cluster cannot exceed the threshold dmax. We evaluated Cluster Picker at a broader range

of distance thresholds, from dmax = 0 to 0.08 in steps of 0.002, and with bmin = 0.95. To distin-

guish our method from Cluster Picker, we will herein refer to the former as ‘paraphyletic

clustering’.

Simulation

We used pplacer to simulate the growth of clusters by the addition of incident sequences onto

a fixed tree. This grafting creates new internal nodes and terminal branches and nodes. Next,

we re-ran our paraphyletic clustering algorithm on the updated tree. To prevent any case

where two clusters merge into one, only terminal or pendant branches descending from a

newly created internal node were evaluated for clustering. It is possible for a single sequence to

generate multiple proposed locations with varying confidence levels because pplacer employs

bootstrap resampling. To avoid ambiguous placements, the internal node created by grafting a

Fig 1. Examples of clustering definition and growth criteria. Subtree (A) represents a paraphyletic cluster (C1) of

two background (old) sequences, O1 and O3, excluding a third sequence O2 that is too distance from the root node of

C1. Consequently, O2 becomes its own cluster of one, C2. Subtree (B) illustrates a monophyletic cluster where all

background sequences meet this criterion. Subtrees (C-E) depict the addition of a new (incident) sequence N to an

existing cluster. In (C), the new sequence is added with 100% confidence to a cluster of one background sequence, O2.

Conversely, the placement of N in subtrees (D) and (E) is highly uncertain (with bootstrap supports 40% and 60%). For

(D), N becomes incorporated into the same cluster irrespective of its placement, so the bootstrap values are irrelevant.

In contrast, neither placement of N in subtree (E) meets the clustering criteria due to the resulting branch lengths—as a

result, N becomes a new cluster of one, C3.

https://doi.org/10.1371/journal.pcbi.1010745.g001
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new sequence must have a bootstrap support that exceeds the threshold bmin. If multiple place-

ments with low support exist within the same cluster, we sum the support values to determine

whether to assign the sequence to the cluster. We provide several examples of cluster growth

in Fig 1 to clarify these definitions.

We also use pplacer to measure growth for the monophyletic clustering method in Cluster

Picker. Unlike our paraphyletic clustering method, the addition of new tips in Cluster Picker

has the potential to separate an existing cluster by introducing a new terminal branch with a

length that exceeds dmax. To prevent this kind of retroactive disruption to the composition of

existing clusters, we only considered placements that would not result in a new distance over

dmax for growth.

Predictive performance analysis

Following our previous work [48], we used the predictive value of a Poisson regression model

to optimize clustering parameters. In other words, we modelled the addition of incident cases

to clusters of background sequences as a count outcome, with a cluster-specific rate λi deter-

mined by the original composition of the i-th cluster. We propose that this approach is the

most consistent with the implicit objectives of public health applications of clustering. We

evaluated two Poisson models incorporating different sets of predictor variables. In the first

model, cluster growth is predicted solely by the total number of background sequences in the

cluster, also known as cluster size. This assumes that every individual background sequence

has the same probability of being the closest relative to the next incident sequence. Thus, larger

clusters tend to accumulate more new cases simply because they are large.

A second, more complex model incorporates an additional term corresponding to the

mean ‘age’ or recency of sequences in the cluster relative to the current time. Age may be cal-

culated from either dates of sample collection or diagnosis. Written more generally, we let g(c)
represent the expected growth of cluster c:

gðcÞ ¼ expðbþ a1x1 þ a2x2 þ . . .Þ ð1Þ

where xi represents the i-th predictor variable, such as cluster size. Thus, this linear model can

be modified to accommodate any number of predictor variables. The unit of observation for

this model is a cluster of background sequences. For any model, we used the glm function in R

to estimate the coefficients αi and intercept β.

We used the Akaike information criterion (AIC) [66] to compare the fit of alternative mod-

els on the same data. AIC increases both with model prediction error as well as the number of

model parameters. To restate our central postulate, the optimal clustering threshold(s) define a

partition of the data into clusters that maximizes the difference between the AIC of the null

model, g0(c) = exp(β + α1x1), which uses only cluster size (x1); and the AIC of an alternative

model g1(c) = exp(β+ α1x1+ α2x2) that incorporates both cluster size and mean cluster age (x2).

We measure this difference by ΔAIC = AIC(g1) − AIC(g0) and determine which combination

of clustering thresholds dmax and bmin minimizes this quantity, i.e., attains the most negative

value. At these optimized thresholds, the selection of a more informed model is the least

ambiguous. We expect ΔAIC to approach zero at the most relaxed thresholds, where all back-

ground sequences are placed into a single giant cluster [48], such that it is not possible to dif-

ferentiate between model outcomes. Conversely, at the strictest thresholds every background

sequence is assigned to its own cluster of one. The predictive value of any characteristic such

as age is diminished by extremely small sample size of each cluster, so we also expect ΔAIC to

approach zero in this scenario.
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In addition to the AIC-based approach, we used the R package pROC [67] to generate

receiver operator characteristic (ROC) curves for varying cluster size and age thresholds. An

ROC curve plots the true positive rate (TPR, sensitivity) and true negative rate (TNR, specific-

ity) of a binary classifier when varying a single tuning parameter. Since our model predicts

count-valued outcomes, we dichotomize the results to predict whether a cluster will grow by

one or more cases g(c)>0 or not g(c) = 0. For example, a true positive corresponds to a cluster

that was both predicted and observed to accumulate one or more cases. Furthermore, we cal-

culated the area under the curve (AUC) to provide a more conventional measure of model per-

formance, where an AUC of 1 indicates perfect prediction.

These phylogenetic clustering, simulation and model-fitting methods are released as an R

package at https://github.com/PoonLab/tn under the GNU General Public License (GPL) ver-

sion 3.

Validation of clusters

To evaluate whether subtree clusters extracted under our optimized criteria actually represent

epidemiologically-related infections, i.e., whether the incident sequences are being correctly

grafted onto known clusters, we used FAVITES (version 1.2.10) [68] to simulate an epidemic

in a network and to sample a transmission tree and simulate sequence evolution. We used the

same configuration as a previous study of using phylogenetic clustering to prioritize HIV pre-

vention measures [69]. In brief, FAVITES was configured to generate a random network

under the Barabási-Albert [70] preferential attachment model, in which highly connected

nodes tend to accumulate more connections. Next, an epidemic was seeded with 3,110 infec-

tions in a population of 26,746 individuals, and propagated for 10 simulation-years through

the network using the program GEMFsim [71] under the HIV-1 transmission model described

by Granich and colleagues [72]. This model was parameterized so that HIV-1 transmission

occurred predominantly from untreated individuals at an early stage of infection [69]. Infected

individuals are sampled upon initiating ART. To simulate a virus phylogeny from the resulting

transmission tree, virus population dynamics within each host individual was simulated under

a logistic coalescent model. Finally, HIV-1 sequence evolution was simulated along the virus

phylogeny under a generalized time-reversible model of nucleotide substitution that was previ-

ously parameterized to actual HIV-1 pol sequences [69]. These sequences were labelled by

sampling times in simulation time units, which we converted to standard dates.

To validate our clustering method, we used FastTree to reconstruct a maximum likelihood

tree from the sequence alignment generated by FAVITES, and used the resulting tree and log

files as inputs for our method. Sequences collected in the final year of the simulation were clas-

sified as incident cases. In addition, we downsampled the number of sequences to a maximum

of 500 per year, so that the sample sizes were more similar to the actual HIV-1 data sets we

evaluated in this study. We used pplacer to graft incident sequences to the tree, extracted clus-

ters under varying distance thresholds and bootstrap thresholds of 0% and 95%. Next, we gen-

erated the ΔAIC profiles to locate the optimal clustering thresholds based on the distribution

of incident sequences among clusters. Finally, we compared the distribution of incident

sequences among phylogenetic clusters of known sequences to the true transmission history

produced by FAVITES, using the R package igraph to analyze the latter as a directed graph.

Results

Phylogenetic analysis

We reconstructed maximum likelihood phylogenies for alignments of HIV-1 pol sequences

from each of four different sites (Washington and Tennessee, USA; Alberta, Canada; and
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Beijing, China). These alignments excluded all new (incident) sequences that were collected in

the most recent year for each site. Fig 2 summarizes the distribution of branch lengths in the

resulting trees. Although some of the data sets comprised multiple HIV-1 subtypes, this has a

negligible effect on the internal branch length distributions because only a relatively small

number of branches separate subtypes. Overall the distributions of internal and terminal

branch lengths were broadly similar among locations. Internal branch lengths tended to be

substantially shorter than terminal branch lengths (Fig 2), which is typical for HIV-1 among-

host phylogenies. In addition, branches created by grafting new (incident) sequences onto the

existing trees were significantly longer than terminal branches in the original trees (Wilcoxon

test, P< 10−10; Fig 2). This trend may be driven by constraints imposed on the original tree

when placing new sequences by maximum likelihood [54].

The overall mean patristic distances were 0.102 (Washington), 0.115 (Alberta), 0.086 (Ten-

nessee) and 0.159 (Beijing); the mean Tamura-Nei (TN93) distances ranged from 0.066 to

0.089, and were highly correlated with the patristic distances (Pearson’s r2 = 0.995). Differences

in mean patristic distances among locations were driven in part by the presence of multiple

major HIV-1 subtypes in the Alberta and Beijing phylogenies as distinct groups. For instance,

the mean patristic distances within subtypes in the Beijing data set were 0.0630 (CRF01_AE),

0.0564 (CRF15) and 0.0564 (B). For Alberta, the mean patristic distances within subtypes were

0.067 (A1), 0.078 (B) and 0.074 (C). No cases of super-infection were reported in studies asso-

ciated with these data sets, e.g., [55, 56, 58, 73].

Predicting cluster growth

For each phylogeny of background sequences (excluding the most recent year), we extracted

clusters under varying branch lengths (dmax from 0 to 0.04 in increments of 0.001 expected

nucleotide substitutions per site) and bootstrap support (0% and 95%) thresholds. We mea-

sured cluster growth by the placement of new HIV-1 sequences (from the most recent year)

onto the respective tree by maximum likelihood. As implied by the distribution of new termi-

nal branch lengths (Fig 2), relaxing the branch length threshold (dmax) resulted in higher rates

of cluster growth. At the highest dmax evaluated in this study (0.04), 81% (Washington), 94%

Fig 2. Distributions of branch lengths in HIV-1 pol phylogenies. Each density summarizes the distribution of branch lengths (measured in units of

expected nucleotide substitutions per site) for different locations and types of branches, as indicated in the upper right corner of each plot. We used

Gaussian kernel densities with default bandwidths adjusted by factors 1.5, 0.75 and 0.75, respectively. Densities are labeled on the right with the

corresponding number of branches. Internal and terminal branches are derived from the phylogeny reconstructed from background sequences. New

terminal branches refer to additional branches to incident (new) sequences as placed onto the phylogeny by maximum likelihood (pplacer).

https://doi.org/10.1371/journal.pcbi.1010745.g002
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(Alberta), 77% (Tennessee) and 98% (Beijing) of all new sequences were grafted into existing

clusters (S1 Fig). However, this high threshold also tended to collapse the background

sequences into a single giant cluster, including sequences from different HIV-1 subtypes.

Thus, at dmax exceeding 0.04, phylogenetic clusters are no more epidemiologically informative

than the classification of the sequences into HIV-1 subtypes [74].

We modelled cluster growth as a Poisson-distributed outcome. Specifically, we evaluated

different log-linked models using (1) the numbers of sequences per cluster, i.e., cluster size, or;

(2) both cluster size and the mean times associated with sequences in clusters as predictor vari-

ables. We use the simplest case (cluster size only) as our null model. Times were based on

either dates of sample collection or HIV diagnosis for the respective individuals. For instance,

we expect a cluster comprising more recent infections to be more likely to gain new sequences.

Fitting these models to a given data set provided two values of the Akaike information crite-

rion (AIC), which measures the fit of the model penalized by the number of parameters. At a

given set of thresholds defining clusters, the difference in AIC between these models quantifies

the information gain by the addition of mean cluster times. At the most relaxed threshold, all

sequences belong to a single cluster, and the addition of predictor variables has no effect on

model fit. Conversely, at the strictest thresholds every background sequence is a cluster of one,

such that the distribution of new sequences is essentially random with respect to individual

characteristics. Thus, the impact of predictor variables on model information is contingent on

how we partition the sample population.

The optimal clustering thresholds should resolve the bias-variance tradeoff between overfit-

ting small clusters and underfitting large clusters. Put another way, the optimal thresholds

minimize the information loss associated with the addition of one or more predictor variables,

relative to the null model [48]. We quantify this information gain by computing the difference

in AIC (ΔAIC) between the two models. Fig 3 illustrates the profiles of ΔAIC for the different

data sets with respect to varying branch length (distance) thresholds with a fixed 95% boot-

strap support threshold. In all four cases, ΔAIC was the most negative at intermediate distance

thresholds, which varied slightly among locations: 0.007 (Alberta), 0.008 (Beijing), 0.012 (Ten-

nessee), and 0.013 (Washington). We note that these optimal distance thresholds tend to be

shorter than the thresholds often used in the literature (e.g., 0.045) after adjusting for the use of

branch lengths (this study) versus tip-to-tip distances (e.g., Cluster Picker). The proportion of

new sequences mapped to clusters at these optimal dmax thresholds were: 34.6% (Alberta),

40.2% (Beijing), 35.4% (Tennessee), and 39.1% (Washington; S1 Fig).

For a secondary measure of performance, the area under the curve (AUC) was obtained for

receiver-operator characteristic (ROC) curves associated with the two Poisson regression

models. In this case, cluster growth (using the paraphyletic method with bmin = 0.95) was

reduced to a binary outcome. Put another way, we evaluated our ability to predict which clus-

ters would grow by the addition of one or more new cases. At their respective optimal values

of dmax, we obtained AUC values of 0.87 (Washington), 0.62 (Alberta), 0.76 (Tennessee) and

0.67 (Beijing) for the Poisson model using both cluster size and recency as predictor variables.

These AUC values tended to be higher than the values obtained under the null model using

only cluster size (S2 Fig). The exception was the Alberta data set, where similar AUC values

were obtained from either model. In fact, the null model yielded significantly higher AUC val-

ues (paired Wilcoxon signed rank test, P = 0.01), and the AUCs were almost identical at the

ΔAIC-selected dmax (0.629 null against 0.617 alternative). In contrast to our results for ΔAIC

(Fig 3), the AUC profiles did not consistently select for an optimal dmax threshold, i.e., a global

maximum. These results imply that AUC is not a reliable statistic for calibrating phylogenetic

clustering methods on the basis of prospective cluster growth.
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Sensitivity analysis

To evaluate the sensitivity of these results to sample size and random variation, we sampled

80% of the background sequences at random without replacement to generate 100 replicates,

and repeated our analysis for each sample. The distributions of the resulting optimal distance

thresholds are summarized in Fig 3 and S3 Fig. The median optimal distance threshold for

sub-samples of the Washington data was substantially greater (0.018) than the optimum for

the full tree (0.013). This implied that the models required a more relaxed distance threshold

to capture similar patterns of cluster growth with reduced sample sizes. However, subsetting

Fig 3. Difference in AIC between Poisson-linked models of cluster growth. Clusters and growth are defined at 41 different maximum distance

thresholds from 0 to 0.04 with a minimum bootstrap support requirement of 95% for ancestral nodes. The AIC of a null model where size predicts

growth is subtracted from the AIC of a proposed model where size and mean time predict growth. The darker colour in each plot corresponds to these

AIC results for a maxmimum likelihood tree built from the full set of old sequences, while the lighter colour represents the mean AIC difference

obtained by this threshold for 100 approximate likelihood trees built on 80% subsamples of the old sequences without replacement. The shaded area

represents 1 standard deviation from the mean AIC difference for subsamples at this threshold. Date of sequence collection was used to measure time

for all data sets.

https://doi.org/10.1371/journal.pcbi.1010745.g003
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the other data sets did not substantially change the optimal distance thresholds. Sub-sampling

the Beijing data set resulted in an unusually broad ΔAIC profile, relative to the full data profile,

and the distribution of optima among samples included a distinct ‘shoulder’ around a distance

threshold of 0.02 (S3 Fig). Examining the cumulative plots of new sequences in clusters with

increasing dmax (S1 Fig), we note that the optimal thresholds tended to coincide with the

‘elbow’ of the respective curves except for Beijing. This implies that the broader distribution of

ΔAIC values associated with this data set may be driven by the atypically high number of inci-

dent sequences. In addition, we progressively right-censored the data sets with respect to years

of sample collection, such that we evaluated the distribution of incident sequences from earlier

years among clusters for a reduced set of background sequences. For the Washington and Ten-

nessee data sets, this right-censoring caused the optimal distance thresholds to drift over time

(S4 Fig). Depending on the window of collection dates used to determine clusters, the optimal

thresholds ranged from 0.008 to 0.021 for Tennessee and from 0.009 to 0.017 for Washington.

This variation is comparable to what we observed from random sub-sampling of the data sets

(S3 Fig).

Effect of bootstrap support

For all data sets, we generated alternative sets of AIC loss results with the minimum bootstrap

threshold (bmin) reduced to 0. The original threshold of bmin = 95% prevented many mid-sized

clusters from forming. Specifically, 49% to 74% of internal nodes in each complete tree failed

this threshold. This requirement also had a dramatic effect on the growth of singleton and

small clusters, as 88%—93% of the new sequence placements had b< 95%, often resulting in

clusters growing only through multiple placements. Overall, relaxing bmin tended to reduce the

loss of information, as reflected by lower values of ΔAIC (Fig 4). This outcome was the most

apparent in the Washington data set, which had the largest proportion of internal nodes above

bmin = 95%. Relaxing bmin also tended to induce a shift in the optimal dmax as defined by mini-

mizing ΔAIC, although this appeared to be a stochastic outcome. In contrast, relaxing bmin for

the Beijing data set resulted in higher values of ΔAIC in the neighbourhood of the optimal

dmax threshold. Again we attribute this difference to the atypically high number of incident

cases for this data set. In sum, our results imply that relaxing the threshold bmin tends to confer

a prediction advantage by incorporating a greater number of clusters into the analysis, even

though many of those clusters would not be consistently reproducible with new data.

Diagnosis versus collection dates

For the Washington and Tennessee data sets, we generated an additional set of ΔAIC profiles

cluster ages computed from the available dates of HIV diagnosis instead of sample collection

dates. Given that dates of HIV diagnosis tend to be closer to the actual dates of infection, we

expect these metadata to be more useful for predicting the distribution of new cases. Indeed,

using the diagnosis dates resulted in substantially lower ΔAIC values in either data set, irre-

spective of bootstrap thresholding (Fig 4). The optimal dmax as determined by ΔAIC was

invariant to using either set of dates for the Washington data set. On the other hand, we

obtained slightly different optima for Tennessee, most likely because diagnostic dates were

only available for a subset of incident cases in this data set (80%, Table 1).

Monophyletic clustering

Finally, we generated another set of ΔAIC profiles using clusters that were constrained to be

monophyletic, i.e., comprising all descendants of the internal node. This second clustering

method is more similar to the phylogenetic clustering methods used in the molecular
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epidemiology literature. For example, Cluster Picker [18] defines clusters as monophyletic

clades with a default bootstrap requirement of� 95% and a maximum patristic distance

between all sequences within the subtree. S5 Fig displays the ΔAIC profiles for all four data sets

across 41 different patristic distance thresholds and bmin = 0.95. One notable feature of these

profiles is that the ΔAIC values do not consistently converge to zero at a distance threshold of

zero. The ΔAIC profiles for the Alberta and Tennessee data sets were visibly less responsive to

variation in distance thresholds, making it difficult to estimate optimal thresholds.

Table 2 summarizes several clustering statistics for paraphyletic and monophyletic cluster-

ing, obtained at their respective optimal dmax thresholds. As noted in the preceding section,

Fig 4. Effect of bootstrap thresholds on ΔAIC profiles. The AIC difference between two Poisson-linked models of cluster growth for all four full data

sets, with clusters and growth defined at 41 different maximum distance thresholds from 0 to 0.04. The AIC of a null model where size predicts growth

is subtracted from the AIC of a proposed model where size and time predict growth. For the data sets where either sequence collection date or

associated patient diagnostic date could define time, both AIC difference results are shown by separate colours. Solid lines represent AIC differences

obtained using an additional bootstrap threshold of 0.95 to define clusters and growth, while dashed lines were obtained without this requirement.

https://doi.org/10.1371/journal.pcbi.1010745.g004
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removing the bootstrap threshold substantially increases the number of acceptable clusters,

while the ΔAIC optima consistently shifted to slightly lower values of dmax. In addition, relax-

ing bmin tends to increase the total number of incident sequences that are connected to clus-

ters. For the Beijing data set, however, the number of incident sequences is reduced by setting

bmin = 0; we attribute this to the exclusion of incident cases in paraphyletic clusters by the stric-

ter dmax threshold selected by ΔAIC. Under monophyletic clustering, the distribution of cluster

sizes was more constrained, as it becomes increasingly likely that larger portions of the tree

incorporate one or more branch lengths that causes the maximum in-cluster patristic distance

to exceed the threshold.

Validation on simulated epidemics

To determine whether clusters that were prioritized under a ΔAIC-optimized method reflected

accurately the actual distribution of incident cases, we simulated an epidemic on a network

using FAVITES [68] under an HIV-1 transmission model [72] that was calibrated to the het-

erogeneous, localized HIV-1 epidemic in British Columbia, Canada [69]. This configuration

simulated the spread of HIV-1 over ten years in a population of 26,746 individuals who were

connected by a preferential attachment contact network [70], starting from 3,110 infections at

time 0. The transmission model assumes that infected individuals progress from acute to

chronic stages of infection and become sampled upon initiating ART, which resulted in 7,748

HIV-1 pol-like sequences. Infections sampled in the last year of simulation (n = 478) were clas-

sified as incident sequences. Next, we reconstructed a phylogeny from the non-incident

sequences using FastTree, and then applied our method to evaluate the growth of phylogenetic

clusters by grafting incident sequences onto this tree. We obtained similar ΔAIC profiles for

bootstrap thresholds of 0% and 95% with optimal distance thresholds of dmax = 0.019 and

0.018, respectively. As expected, there were substantially more numerous, smaller subtree clus-

ters obtained with a bootstrap threshold of bmin = 95% (n = 4, 217 clusters, mean 1.7 known

sequences per cluster) than with bmin = 0% (n = 771 clusters, mean 9.4 known sequences per

cluster) at their respective dmax values.

Table 2. Cluster statistics under paraphyletic and monophyletic clustering. ‘No bootstrap’ corresponds to paraphyetic clustering with bmin = 0; otherwise this threshold

defaults to 95%. Optimal dmax is the pairwise distance threshold selected by minimizing ΔAIC, in units of expected number of nucleotide substitutions. ‘Number of clusters’

only counts clusters with two or more background sequences, i.e., this number does not include singletons. Total growth is the number of incident (new) sequences con-

nected to clusters of background sequences. Growing clusters is the number of clusters to which incident sequences attach.

Location Optimal Number of Mean Largest Total Growing

dmax clusters > 1 cluster size cluster size growth clusters

Washington, USA 0.013 74 1.39 1657 68 30

No bootstrap 0.008 378 2.04 1560 73 36

Monophyletic 0.016 639 1.20 16 92 96

Alberta, Canada 0.007 104 1.35 58 34 27

No bootstrap 0.006 228 1.75 28 45 28

Monophyletic 0.002 26 1.04 4 52 64

Tennessee, USA 0.012 1 1.35 358 41 28

No bootstrap 0.008 621 1.91 78 41 35

Monophyletic 0.020 360 1.29 11 63 53

Beijing, China 0.008 135 1.82 533 373 119

No bootstrap 0.006 409 2.49 381 305 127

Monophyletic 0.032 490 2.13 46 613 275

https://doi.org/10.1371/journal.pcbi.1010745.t002

PLOS COMPUTATIONAL BIOLOGY Optimized phylogenetic clustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010745 November 30, 2022 14 / 24

https://doi.org/10.1371/journal.pcbi.1010745.t002
https://doi.org/10.1371/journal.pcbi.1010745


We retrieved the transmission events associated with the 478 incident sequences from the

transmission network edge list generated by FAVITES, and then compared the locations of

incident sequences among phylogenetic clusters against these ‘ground truth’ outputs (Fig 5). If

the actual source of an incident sequence had been sampled, it was almost always a member of

the predicted phylogenetic cluster; i.e., 196 (99.5%) of 197 for bmin = 0 and 123 (88.5%) of 139

for bmin = 95%. On the other hand, if the actual source had not been sampled, then the shortest

Fig 5. Concordance between predicted growth in phylogenetic clusters and the actual (simulated) transmission

network. The top and bottom barplots summarize phylogenetic clusters obtained under bootstrap thresholds of 0%

and 95%, respectively. Bars correspond to the number of incident cases mapped to phylogenetic clusters, coloured by

three distance thresholds: dmax = 0.01, the ΔAIC optimum, and dmax = 0.03. Distance in transmission network is the

shortest path in the transmission network between the incident case and any member of the predicted cluster. A

distance of zero means the actual source individual is in the cluster, and distances greater than zero indicate the actual

source was not sampled. Unsampled indicates that none of the sampled infections in the transmission history of an

incident case were members of the phylogenetic cluster. Discordant indicates that the actual source individual was

sampled but does not appear in the predicted cluster.

https://doi.org/10.1371/journal.pcbi.1010745.g005
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distance in the transmission network from the incident sequence to any member of the pre-

dicted cluster averaged 2.88 edges for bmin = 0, and 2.46 edges for bmin = 95% (at their respec-

tive optimal dmax values). These average shortest distances tended to increase with dmax, at the

cost of sharply increasing numbers of incident sequences without any sampled ancestors in the

cluster (labelled ‘Unsampled’ in Fig 5). For example, there were 102 and 53 cases—for boot-

strap thresholds of 0% and 95% and the respective optimal distance thresholds—where there

was no overlap between sampled infections in the transmission history of an incident

sequence, and the phylogenetic cluster to which we grafted that sequence. This outcome is

partly a side-effect of seeding the epidemic simulation from a large number of infections

(n = 3, 110), which induces an equivalent number of connected components in the transmis-

sion network. Since we build a single phylogeny relating all sampled sequences, relaxing the

dmax threshold increases the chance that a subtree cluster will span multiple connected compo-

nents. Since there is an unknown number of transmission events separating seed infections,

we cannot quantify the distance from the incident sequence to the closest sampled infection in

these cases.

Discussion

Retrospective studies of phylogenetic clusters of HIV-1 sequences are common [18, 56, 75].

Clusters are used as a proxy for variation in transmission rates that may be statistically associ-

ated with different risk factors, such as injection drug use. In this context, defining clusters is

relatively straightforward. Tracking clusters prospectively over time, however, raises signifi-

cant issues for phylogenetic clustering because a cluster can be broken into a set of smaller

clusters by the addition of new cases. Distance clustering methods do not suffer from this

problem because pairwise distances are invariant to the addition of new data [15, 38]. This dis-

tinction is similar to the difference between single-linkage and complete-linkage clustering

[35]. To circumvent this limitation of phylogenetic clustering, we have modified the conven-

tional definition (e.g., Cluster Picker [26], Tree Cluster [29]) by incorporating the concept of

grafting new sequences onto a tree [54]. This allows clusters to exclude long branch lengths,

making it more similar to parameteric methods for phylogenetic clustering that have recently

been proposed [27, 28]. An interesting challenge with this redefinition of phylogenetic clusters,

however, is that relatively long terminal branch lengths can disqualify tips from ever becoming

assigned to clusters. Variation in terminal branch lengths can be driven by differences in sam-

pling/diagnosis rates among groups [45, 46]. In addition, the discordance between rates of

HIV-1 evolution within and among hosts [73] can contribute to terminal branch lengths in the

virus phylogeny.

In addition to clustering, phylogenetic reconstruction has also been used to approximate

the transmission of an infection from one person to another. Although reconstructing trans-

mission events at the level of individuals can confer more accurate estimates of epidemiologi-

cal parameters [76], it also raises significant ethical implications due to the criminalization of

HIV-1 transmission [77]. Our use of phylogenetic clustering does not resolve individual trans-

mission events. Instead, the purpose of clustering genetically similar infections is to prospec-

tively identify variation in transmission rates at a population level. Determining which

populations are exposed to the greatest risk of onward transmission of HIV-1 in a timely man-

ner can provide valuable information for how to allocate public health resources for outreach

and prevention [5].

PLOS COMPUTATIONAL BIOLOGY Optimized phylogenetic clustering

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010745 November 30, 2022 16 / 24

https://doi.org/10.1371/journal.pcbi.1010745


Comparison to previous work

In our results, ΔAIC consistently approached zero at the extremes of the distance threshold

(dmax), indicating that the addition of sample collection or diagnosis dates had no impact on

our ability to predict the next cases under these extreme clustering settings. The intermediate

dmax values that minimized the ΔAIC varied among data sets and random subsamples of the

same data with replacement. There was also variation when different collection date ranges

were used (S4 Fig), suggesting that an optimal threshold may change over time for a given data

set. This effect can be exacerbated by having a relatively small number of sequences, such as

the Alberta data set in this study, or substantial variation in sample sizes per year, such as the

Beijing data set. We have previously observed a similar effect for pairwise distance-based clus-

ters [48], a clustering method that has more conventionally been used for the surveillance of

molecular HIV-1 clusters [5, 37]. This observation was limited to the Washington and Tennes-

see data sets as the Beijing data set’s sampling rate changed dramatically over time and the

North Alberta data set was sampled over a relatively short time frame of 6 years. In other

words, our method is sensitive to the consistency of sampling efforts over time. Selected

thresholds generally fell within the range of dmax settings used frequently in the literature—

adjusting for node-to-tip versus tip-to-tip measures, this range roughly spans 0.0075 to 0.0225.

For example, the original study associated with the Washington data set [56] had employed

monophyletic clustering (Cluster Picker) with bmin = 0.95 and dmax = 0.0075. In contrast, our

analysis favoured a more relaxed threshold for monophyletic clusters in this data set (dmax =

0.016; Table 2). However, ΔAIC was also relatively invariant to changes in dmax under these

conditions (S5 Fig).

In contrast, the effect of bmin on phylogenetic clustering has not received as much attention

as dmax, possibly due to the popularity of (non-phylogenetic) distance-based clustering meth-

ods such as HIV-TRACE [6]. Novitsky and colleagues [78] recently reported that reducing the

bootstrap threshold resulted in smaller and more numerous clusters. However, they evaluated

a smaller range of bootstrap thresholds (bmin = 0.7 − 1.0) and employed no distance criterion

for their analysis of HIV-1 subtype C sequences from a diverse number of locations, including

South Africa, Botswana and India. In our analysis, we found that ΔAIC was minimized when

phylogenetic clusters were generated under no bootstrap requirement, i.e., bmin = 0, which

tended to yield greater numbers of small clusters with no substantial impact on selecting dmax

(Table 2). For comparison, the study originally associated with the northern Alberta data set

[57] defined clusters as monophyletic clades with bmin = 0.95. Additionally, they applied a dis-

tance criterion to a time-scaled tree, such that lengths were measured in units of time, i.e., dmax

= 5–10 years. This was an interesting choice, because our analysis of monophyletic clustering

on their data resulted in ΔAIC close to zero across a range of dmax measured as a genetic dis-

tance (expected number of substitutions per site; S5 Fig).

Rose and colleagues [34] recently also explored the selection of clustering thresholds for

phylogenetic methods in application to HIV-1. Specifically, they evaluated the ability of Cluster

Picker [26] to place known HIV-1 transmission pairs (i.e., epidemiologically linked heterosex-

ual couples in the Rakai Cohort Community Study) into clusters under varying distance

thresholds. They determined that dmax between 0.04 and 0.053 were the most effective for dis-

tinguishing between epidemiologically linked and unlinked pairs in their study population.

We note that their application of clustering is markedly different from our study, which

focuses on the distribution of incident cases at a population level. Hence, we make no attempt

to infer direct transmission between individuals, which has significant ethical and legal impli-

cations [79], and our results are unlikely to be useful for that application. Studies that focus on

direct transmission require fundamentally different sampling strategies as a cluster may
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represent indirect transmission through an unsampled intermediary [45, 76]. For similar rea-

sons, any confirmed epidemiological linkages are unlikely to be useful as validation data in this

framework, as the clustering is being used to quantify overall population-level differences in

transmission rate, not individual-level transmission relationships.

Limitations and future directions

There are several directions for further work. First, we have limited our optimization method

to clusters extracted from a single maximum likelihood (ML) reconstruction of the phylogeny.

Phylogenies can be highly uncertain, especially when substantial time has elapsed between the

sampled infections and their common ancestors, or if sequences are limited to relatively short

regions of the virus genomes. Thus, additional maximum likelihood trees built from the same

data may yield different results. While simply repeating this workflow can provide a more sta-

ble median estimate of optimal parameters, Bayesian methods that sample multiple phyloge-

nies from the posterior distribution defined by the confluence of the model, data and prior

information are favoured for many applications of virus evolution. Since Bayesian sampling is

generally limited to trees relating on the order of a hundred sequences [80], this approach is

seldom used in the context of phylogenetic clustering. For example, HIV-1 population data-

bases can comprise tens of thousands of sequences [40, 58, 81]. Some studies have overcome

this limitation by applying Bayesian sampling to smaller subtrees extracted from the ML tree,

but this can lead to biased estimates of transmission rates [82]. Nevertheless, it merits further

investigation to assess the feasibility of computing ΔAIC profiles for a random sample of trees

from the posterior distribution. Another approach would be to re-run the analysis for a num-

ber of replicate ML trees that were reconstructed under varying initial conditions, e.g., random

starting trees, which would make the averaged optimization results more robust to the

unavoidable uncertainty in reconstructing trees.

In addition, we presently do not incorporate information about sample collection dates

when reconstructing the phylogeny for cluster optimization. Since rates of evolution are often

fairly consistent over time (i.e., a molecular clock), these dates can be used to refine the relative

positions of ancestral nodes in the tree [83], which should in turn yield a more accurate tree.

Again, this information is seldom used in phylogenetic clustering studies [41]. Finally, we have

limited our analysis to Poisson regression models where the variation in the number of new

infections among clusters is constrained to be equal to the mean. The underlying assumption

is that the rate that a new case is connected to a known case is constant, with variation in rates

associated with one or more attributes of known cases e.g., date of diagnosis. For instance,

unexplained rate variation may cause variation in the numbers of new cases per known case to

exceed the mean (i.e., overdispersion). A potential means to accommodate overdispersion

would be to substitute the negative binomial regression model for the Poisson model when cal-

culating ΔAIC profiles. Our preliminary results indicate that using negative binomial regres-

sion has only a slight effect on the ΔAIC profile (S6 Fig). We also found that fitting the

negative binomial model was more numerically unstable for larger data sets.

Our study has focused on the benefit of knowing the times since sample collection or diag-

nosis on our ability to predict the location of the next infections. Although other risk factors

such as injection drug use or commercial sex work are often associated with cluster formation

[21, 56, 75] and growth [15, 37, 38], sampling times are the most consistently available meta-

data for HIV-1 sequences. Since the Poisson regression model can hypothetically accommo-

date any number of predictor variables, we expect that incorporating additional metadata will

drive a further decrease in ΔAIC and may shift the location of the optimal dmax. Although

ΔAIC may offer a framework for variable selection in the context of cluster optimization [48],
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the statistical justification for this is unclear and remains an area for further work. For exam-

ple, we cannot directly compare AIC values obtained from different models at different clus-

tering thresholds, because the underlying data have changed. Therefore, variable selection may

not be as simple as determining which model minimizes the ΔAIC across thresholds. However,

our results support the use of the AIC loss metric and prospective growth modeling to adjust

phylogenetic clustering studies for the genetic composition of each study population.

Supporting information

S1 Fig. Cluster growth under varying thresholds. The number of new cases that join any

cluster (ie. the total cluster growth) plotted against the branch length threshold used to define

clusters. The optimal threshold determined in Fig 4 for each data set is marked in red.

(TIF)

S2 Fig. Area under the curve (AUC) profiles. The AUC results for receiver operator charac-

teristic (ROC) curves for the prediction of whether or not a cluster would acquire new cases

based on recency (collection date) plotted against the distance threshold used to define cluster-

ing. The same result was also calculated without a bootstrap requirement for clustering

(dashed) and with diagnostic dates used to measure recency (green). The optimal threshold

determined in Fig 4 for each data set is marked in red.

(TIF)

S3 Fig. Distribution of optimal thresholds across subsamples. The distribution of maximum

branch length thresholds which resulted in the largest difference in AIC between Poisson-

linked models of cluster growth for 100 approximate likelihood trees built on 80% subsamples

of the old sequences without replacement. Clusters and growth are defined at 41 different max-

imum distance thresholds from 0 to 0.04 with a minimum bootstrap support requirement of

95% for ancestral nodes. The AIC of a null model where size predicts growth is subtracted

from the AIC of a proposed model where size and mean time predict growth.

(TIF)

S4 Fig. Sensitivity of ΔAIC profiles to time-censored data. Difference in AIC (ΔAIC)

between Poisson-linked models of cluster growth for four separate data sets (Tennessee, USA;

Washington, USA; Alberta, Canada; Beijing, China). Clusters and growth are defined at 41 dif-

ferent maximum distance thresholds from 0 to 0.04. The AIC of a null model where size pre-

dicts growth is subtracted from the AIC of a proposed model where size and mean time

(diagnostic date for USA Data, collection dates for others) predict growth. The top row of

plots used the complete data sets and each following row excludes an additional year of sample

collection. ΔAIC profiles for the complete data are displayed as a dashed line on each subse-

quent plot for reference. The minimum value in each plot is marked with a vertical line.

(TIF)

S5 Fig. ΔAIC profiles for monophyletic clustering. Each line represents the difference in

AIC between Poisson-linked models of cluster growth for different data sets (see inset legend).

Clusters and growth are defined at 41 different maximum patristic distance thresholds within

monophyletic clades from 0 to 0.04 with a minimum bootstrap support requirement of 95%

for ancestral nodes. The AIC of a null model where size predicts growth is subtracted from the

AIC of a proposed model where size and mean time predict growth.

(TIF)

S6 Fig. Comparison of Poisson and negative binomial models. Difference in AIC between

null and alternative models using Poisson (black) and negative binomial (red) regressions on
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cluster growth for the middle Tennessee data set. We used the glm.nb function in the R pack-

age MASS [84] to fit negative binomial regression models. Clusters and growth are defined at

40 different maximum patristic distance thresholds within monophyletic clades from 0.001 to

0.04 with a minimum bootstrap support requirement of 95% for ancestral nodes. The AIC of a

null model where size predicts growth is subtracted from the AIC of a proposed model where

size and mean time predict growth.

(TIF)
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