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Abstract

Eating disorders (anorexia nervosa, bulimia nervosa, and binge-eating disorder) are a 

heterogeneous class of complex illnesses marked by weight and appetite dysregulation coupled 

with distinctive behavioral and psychological features. Our understanding of their genetics 

and neurobiology is evolving thanks to global cooperation on genome-wide association studies 

(GWAS), neuroimaging, and animal models. Until now, however, these approaches have advanced 

the field in parallel, with inadequate crosstalk. This review covers overlapping advances in these 
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key domains and encourages greater integration of hypotheses and findings to create a more 

unified science of eating disorders. We highlight ongoing and future work designed to identify 

implicated biological pathways that will inform staging models based on biology as well as 

targeted prevention and tailored intervention and galvanize interest in developing pharmacologic 

agents that target the core biology of the illnesses for which we currently have few effective 

pharmacotherapeutics.
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Eating disorders are severe psychiatric disorders that, for many, evolve into chronic or 

fluctuating conditions with serious adverse outcomes1. Among adolescents and young 

adults, the disability-adjusted life years (DALYs) for anorexia nervosa (AN) and bulimia 

nervosa (BN) are among the highest of all psychiatric disorders2. Binge-eating disorder 

(BED) and other specified feeding and eating disorders have yet to be included in estimates, 

but are projected to account for the majority of global disease burden of eating disorders3. 

Although the disorders occur in pure forms, although diagnostic crossover across the course 

of illness is common4. For a brief definition of the symptoms and epidemiology of the three 

primary eating disorders, see Box 1.

Biological effects within eating disorders range from the subcellular (genetic variants 

and their effects on gene expression and structure), through the cellular (signaling) and 

intercellular (neurons and neuronal circuits), to organismal effects (eating disorders and 

disorder-related behaviors)5. These levels of biology are interconnected, but are investigated 

using different scientific approaches, with limited crosstalk to date. Integrating results from 

different approaches is vital. A hierarchically connected research approach, reflecting the 

biological interconnectivity, will provide a more complete understanding of the biology of 

eating disorders, providing the foundations for developing much-needed novel treatments. In 

this review, we describe the state of the science across biological levels and approaches and 

conclude by discussing progress towards this more integrated understanding.

Human Genetics of Eating Disorders

Twin-based heritability.

Large-scale twin studies yield heritability estimates ranging from 0.28 to 0.74 for AN6, 

with imprecision reflecting varying definitions of illness and sample size, with more severe 

definitions associated with higher heritabilities7. Heritability estimates range from 0.55 to 

0.626 for BN and 0.39 to 0.45 for BED6.

GWAS.

Candidate gene and linkage literature in eating disorders was rife with unreplicated small-

sample studies and was minimally informative beyond signaling the likely complexity of 

their genetics6. We take as a starting point the most recent genome-wide association study 

(GWAS) of AN performed by the Eating Disorders Working Group of the Psychiatric 
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Genomics Consortium (PGC-ED)8. Combining existing samples9 with the Anorexia 

Nervosa Genetics Initiative (ANGI)10 yielded a European ancestry dataset including 16,992 

AN cases and 55,525 controls, from 17 countries, and identified 8 genome-wide significant 

loci, including 4 single-gene loci: CADM1, MGMT, FOXP1 and PTBP28. Analysis of 

tissue enrichment for AN-associated genes revealed a significant association with the central 

nervous system, and comparison to single-cell gene expression datasets from mice revealed 

significant associations with hippocampal pyramidal neurons and striatal medium spiny 

neurons. Song et al.11 further identified that AN-associated genes were enriched in the 

prefrontal cortex.

Genetic correlations implicate psychiatric, education, and metabolic factors in AN.

Genetic correlations (SNP-rg) between AN and psychiatric disorders such as obsessive-

compulsive disorder (OCD), major depressive disorder (MDD), anxiety, and substance-

related disorders 8,12 correspond with clinical observations of comorbidity13 and twin 

studies14-16. Building on this work, AN and OCD risk genes pinpointed through GWAS 

showed similar prefrontal cortex expression alterations meaning that these disorders may 

have similar functional pathways11. A novel positive SNP-rg with objectively measured 

physical activity was found in the PGC-ED GWAS8 and may relate to the driven exercise 

seen in AN. Significant positive SNP-rg with educational attainment was not seen for IQ 

(Figure 1).

Earlier results hinted at a significant negative genetic correlation between AN and body 

mass index (BMI)9,17. The PGC-ED GWAS revealed significant genetic correlations with 

metabolic, lipid, and anthropometric traits, suggesting that metabolic mechanisms may drive 

physiological resistance to healthy body weight in AN8. The observed correlations were not 

confounded by the genetics of BMI—a concern given that BMI is a component of the AN 

diagnosis8. Likewise, exploratory Mendelian randomization (MR) analyses in the PGC-EDs 

GWAS indicated a bidirectional causal relationship between AN and low BMI. The authors 

concluded that both metabolic and psychological factors may need to be considered to fully 

understand AN and that doing so may hasten the development of more effective treatments. 

Based on the strong associations with psychiatric traits, physical activity, educational 

attainment, and metabolic traits, multivariate GWAS analyses (e.g., genomic structural 

equation modeling) could offer novel opportunities to disentangle common and specific 

genetic effects and help boost power for discovery.

Polygenic scores.

Polygenic scores (PGS) summarize genome-wide data into a single variable of genetic 

liability to the phenotype—as a sum of the number of risk alleles present in the individual 

weighted by the SNP effects from GWAS. Higher PGS for AN derived from the 2019 

PGC-ED GWAS were associated with increased odds of AN, and equally in females and 

males8. Further, PGS of age of onset of AN predicted age at onset in independent cohorts18. 

A rich body of literature applying PGS is emerging, with multiple studies reporting that BMI 

and psychiatric PGS influence childhood and adolescent disordered eating behaviors19-21. 

PGS for other phenotypes may also differentiate among AN, BN, and BED on the 

genomic level. UK Biobank analyses revealed strong positive associations between binge-
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type eating disorders (BN and BED) and anthropometric PGS (e.g., overweight and waist 

circumference), suggesting that binge eating may share genomic variants with overweight 

and obesity. In contrast, in AN, the direction of these associations was reversed22.

We anticipate increasing evidence that PGS will predict developmental phenotypic 

manifestations of illness (i.e., premorbid behavioral traits, course of illness) and gene-

environment associations, and ultimately inform risk assessment and clinical applications. 

Presently, clinical utility is limited23,24.

Cross-disorder GWAS.

A cross-disorder GWAS of eight psychiatric disorders (AN, ADHD, autism spectrum 

disorder, bipolar disorder, MDD, OCD, schizophrenia, and Tourette’s syndrome) revealed 

109 pleiotropic loci (i.e., signals for at least two disorders), of which eight had signals 

for AN25. The top locus (18q21.2) was associated with all disorders, has previously 

been implicated in MDD and neuroticism, and encodes the netrin 1 receptor gene (DCC) 

that regulates axon outgrowth. A joint genomic structural equation model showed that 

AN loaded onto a factor with OCD and Tourette’s syndrome26. These findings suggest 

overlapping genetic risk across disorders and that work needs to be done to separate 

specific from non-specific susceptibility variants, and the association of specific variants 

with cellular gene expression datasets to generate testable hypotheses for their ultimate 

impact on brain circuit function. Other cross-disorder GWAS on AN/OCD have yielded 

promising insights but require larger samples to pinpoint risk loci (i.e.,27).

Mendelian randomization (MR).

MR studies treat genetic variants as unconfounded proxies of an exposure of interest to 

evaluate the causal effect of an exposure on a phenotypic outcome. However, MR analyses 

investigating the causal effects of AN on other traits are presently limited in power. As 

stated earlier, a bidirectional causal association between AN and low BMI was found in 

the PGC-ED GWAS8. An MR study on the ALSPAC cohort (n = 4,473) suggested possible 

causal effects of genetically predicted childhood BMI on binge eating and weight and 

shape concern, and of binge eating and overeating on BMI28. In another study, adiponectin, 

a fat-tissue derived hormone, showed evidence consistent with a causal effect on eating 

disinhibition but not eating restraint29. Adams et al.30 found evidence consistent with a 

protective effect of fasting insulin level (n = 108,557) on AN (n = 72,515) (OR = 0.48, 

95% CI: 0.33, 0.71), but not for fasting glucose or glycated hemoglobin (HbA1c) on AN. 

Future MR studies will help to disentangle the nature of pleiotropy and shed light on causal 

exposure-outcome effects.

Rare mutations and copy number variants.

No Mendelian forms of eating disorders have been identified and efforts to find rare genetic 

variants have not yet been successful. In an exome-chip based GWAS in 2,158 AN cases 

and 15,327 controls31, 16 independent variants were taken forward for in silico and de 
novo replication. No findings reached genome-wide significance. Scott-Van Zeeland et al.32 

conducted a series of targeted sequencing and genotyping studies focusing on 152 candidate 

genes in 1,205 AN cases and 1,948 controls, implicating variants in the estrogen receptor-b 
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(ESR2) and epoxide hydrolase 2 (EPHX2) genes. A smaller exome sequencing study of 93 

AN cases reported an enrichment of rare variants in neuropeptide/neurotrophic pathways33. 

Combined linkage and sequencing of densely affected families with multiple AN or BN 

cases has been reported34,35. Results of these studies are tentative as sufficient sample sizes 

to identify rare point mutations have yet to be attained.

The situation is similar for genome-wide analyses of copy number variants (CNVs). Wang 

et al.36 found no evidence of CNV enrichment in AN cases compared to controls. Yilmaz et 

al.37 analyzed 1,983 female AN cases38 seeing no occurrence of well-established pathogenic 

CNVs for neurodevelopmental disorders (1q21.1; 2p16.3; 3q29; 7q36.3; 13q12; 15q11.2; 

15q13.3; 16p11.2(1); 16p11.2(2); 17q12; or 22q11.21). Chang et al.39 reported association 

of a 15q11.2 microduplication with AN, but cautioned that the results require validation. 

Currently, there is no credible evidence that novel or known large effect size CNVs influence 

AN. Much larger sample sizes may be required before we can exclude a role for CNVs 

carrying moderate effect sizes.

Limitations of human genetic studies.

Several limitations in the field should be considered. First, to our knowledge, no GWAS of 

bulimia nervosa, binge-eating disorder, purging disorder, atypical AN, avoidant/restrictive 

food intake disorder (ARFID), pica, or rumination disorder have been published. Second, 

for AN, genome-wide signals presently account for a low proportion of phenotypic variance 

(1.7%), while gene mapping and gene expression results presently rely on limited Hi-C, 

eQTL, and brain cell data. Larger sample sizes are required to improve statistical power 

and detect more susceptibility loci. Large, systematic sequencing studies are required to 

assess the role of rare variants and to complement common variant GWAS. Finally, although 

eating disorders are likely under-detected in males, the gender ratio is definitely tipped in 

the direction of females. Accruing larger samples sizes of afflicted males is essential for 

identifying genetic sex differences and is a priority for future research.

Integration.

Genomic discovery in eating disorders is underway and early discoveries highlight new 

directions for deepening our understanding of some of the more perplexing facets of AN 

(e.g., extreme weight dysregulation, the frequent re-loss of therapeutically restored weight, 

compulsive exercise). The PGC is expanding genomic samples of AN, BN, and BED 

with efforts such as the Eating Disorders Genetics Initiative (EDGI)40. Novel biological 

discoveries are anticipated to accelerate therapeutic opportunities in drug discovery, the 

repositioning of current drugs, and our understanding of pleiotropy including opposing 

effects that may mitigate unintended off-target effects. The availability of biobanks 

with genetic and electronic health record data offer opportunities for extending genetic 

associations to other medical phenotypes not currently available. As with many illnesses, 

global cooperation and harmonization of methods boost sample sizes and accelerate science. 

Clearly, collaboration with researchers in other fields will increase the utility of GWAS 

results and integrate them into a unified science of eating disorders. This unification 

can be achieved through targeting dimensional phenotypes and symptoms and generating 

hypotheses for testing the causal impact of genomic variants on neural circuit function.
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Eating disorders GWAS have focused primarily on diagnoses; however, exploring relevant 

dimensions or core symptoms may enhance translation to approximate phenotypes in 

animal models. Fine-mapping approaches are required to delve deeper into trait-associated 

regions to identify specific variants or genes that causally influence the target trait. 

Clearly describing the strength of evidence for the functional involvement of specific 

genes and variants in eating disorders will provide strong targets for causal validation and 

neurobiological exploration.

Neurobiology of genes implicated in AN GWAS.

Although too recent to have influenced neurobiological studies directly, several genes 

implicated by the latest AN GWAS have been studied in relation to other traits and show 

neurobiological relevance to eating disorders. For example, FOXP1 haploinsufficiency is a 

rare form of intellectual disability, related to autism spectrum disorder41. Haploinsufficiency 

of FOXP1 is associated with neurodevelopmental impairments, but also with feeding 

difficulties and gastrointestinal disturbance in humans and in mice, supporting FOXP1 in 

AN41. Conditional Foxp1 knockout studies in the mouse brain implicate neurogenesis and 

neural migration, particularly the development and functioning of medium spiny neurons 

and pyramidal neurons. Both cell types have been implicated as relevant neuronal cell types 

by systems biological analyses of the AN GWAS41.

As well as being implicated in AN, CADM1 and PTBP2 have also been implicated 

in GWAS of BMI42. PTBP2 encodes a neuron-specific RNA binding protein that 

organizes axonogenesis in the developing cortex, relevant across psychiatric disorders43. 

By comparison, CADM1 has not been associated with psychological or behavioral traits 

except BMI and AN (although family member CADM2 has been implicated in numerous 

traits related to impulsive behavior)44. CADM1 encodes a synaptic cell adhesion molecule. 

The BMI-associated variants appear to increase the expression of CADM1 in the human 

hypothalamus and cerebellum, and parallel experiments in mice suggest this increased 

expression contributes to weight gain, potentially through CADM1-positive innervation 

of POMC neurons45. CADM1 is also involved in the neural control of first estrous in 

mice, which is of particular interest given amenorrhea in AN1. MGMT, which encodes 

a DNA alkyltransferase, is the most well-studied of the genes implicated in the AN 

GWAS, as it is involved in DNA repair and protection against cancer46. The biological 

pathways linking DNA repair dysfunction to AN is unclear, although recent research 

suggests that postmitotic neurons require recurrent DNA repair that is relevant to neuronal 

dysfunction47,48. Assuming future GWASs support MGMT as a causal gene for AN, its role 

is worthy of future investigation.

Identifying conserved, eating disorder-relevant genes is currently limited by underpowered 

phenotype-driven analyses in humans and rodents. Neuroscience typically focuses on a 

different level of the biological hierarchy than statistical genetics. As such, deeper insight 

may be gained through examining the neuronal circuitry implicated directly through 

neuroscientific approaches and indirectly through GWAS-based approaches. GWAS-based 

approaches use information on cell-type specific genome biology, such as epigenetic 

markers49 or gene expression50. These methods show that genes associated with AN are 
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on average specifically expressed in brain tissues, especially in medium spiny neurons and 

CA1 hippocampal pyramidal neurons8. Results from these methods implicate the same cell 

types in other psychiatric disorders and are supported by functional studies in rodents. 

Differential vulnerability to ABA in female C57BL/6J mice was associated with GABAergic 

inhibition of hippocampal CA1 pyramidal cells51. Prolonged binge-like consumption of 

sucrose has been shown to alter the morphology of medium spiny neurons in the nucleus 

accumbens of rats52. However, beyond broad support for brain tissues in general, most 

circuits implicated in neurobiological studies of mice and of humans are poorly supported by 

these GWAS-based approaches, most likely due to limitations of power and insufficient data 

from appropriate tissues. For example, in contrast to the neurobiological evidence supporting 

a role for DA circuitry in AN, there is no such evidence from AN GWAS8. However, 

evidence for genetic variants affecting the DA system in eating disorders may emerge as 

the power of eating disorder GWAS increases. Both of these limitations are being overcome 

through increasing GWAS sample sizes and via collaborative brain mapping initiatives like 

the PsychENCODE project53.

Human Neuroimaging in Eating Disorders

Neuroimaging research in eating disorders has been motivated by (1) prior work in animal 

models which study microcircuitry involved in homeostatic and hedonic eating pathways 

and (2) genetic/GWAS studies that have identified shared functional networks that exhibit 

overlapping phenotypes (cortico-striatal-thalamo-cortical pathways) (Figure 2).

Hedonic reward pathways - Mesocorticolimbic and mesolimbic networks.

The brain reward system is well-defined and plays a central role in the drive to eat. 

Mesocorticolimbic and mesolimbic pathways project from the ventral tegmental area (VTA) 

to the cerebral cortex (frontal, cingulate, and entorhinal cortex) and limbic structures (ventral 

striatum, hippocampus, and amygdala), respectively. Importantly, these systems are largely 

intertwined and overlapping54, and assigning specific brain regions to one clinical phenotype 

(e.g., restriction) or characteristic (e.g., cognitive control) is unhelpful as they act in unison. 

Collectively, mesocorticolimbic and mesolimbic pathways are responsible for cognitive 

functions, reward, emotion, and motivation, which may represent transdiagnostic factors 

underlying AN, BN, and BED55,56.

Early studies focusing on understanding the neurobiology of eating disorders suggested 

that there were pathological alterations in monoamine neurotransmitter systems, specifically 

DA and 5-HT56. These align with other works that have strongly implicated the reward 

system in pathological changes in hedonic eating and decision making. The VTA 

comprises a cluster of dopamine (DA) producing neurons that play a key role in positive 

and negative reinforcement, decision making, working memory, incentive salience, and 

aversion. Dopaminergic VTA neurons innervate corticolimbic regions via the mesocortical 

pathway, forming the mesocorticolimbic reward network. A subpopulation of midbrain 

DA neurons projecting to the striatum co-release glutamate and GABA onto their target 

neural substrates57. Understanding the structural and functional connectivity of these reward 
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circuits in eating disorders has been a central focus for neuroimaging investigations 

highlighted below.

Functional neuroimaging studies suggest altered processing of rewarding and aversive 

food stimuli in acute and recovered AN58,59. In binge-type eating disorders (BN, BED), 

functional neuroimaging findings are less consistent60,61. Positron emission tomography 

(PET) data in individuals recovered from AN show increased striatal dopamine receptor 

(D2/D3) binding, which was also related to striatal responses during monetary choices and 

self-reported trait anxiety62. Although, two PET studies focusing on individuals with acute63 

and weight restored AN64 compared to healthy controls, found no difference in DA receptor 

binding. PET studies in individuals with BN have identified decreased striatal dopamine 

transporter availability65. In patients with BN, increases in glutamate signaling receptors 

(metabotropic glutamate receptor subtype 5; mGlu5) were higher in the anterior cingulate 

cortex (ACC), subgenual prefrontal cortex, and straight gyrus compared with controls66. 

Structural neuroimaging studies in AN and BN reveal volumetric abnormalities in the 

insula67. Further, lower white matter measures of axonal integrity (measured via fractional 

anisotropy) and increased structural white matter connectivity between the insula and orbital 

frontal cortex suggest that altered processing of taste perception may be present across 

eating disorders. The insular cortex extends beyond taste function and is a center of body 

awareness, integrating autonomic, cognitive, and affective processing68 of the homeostatic 

state of the body. Both structural and functional neuroimaging studies highlight deficits in 

the insula and abnormal interoceptive activity in AN69,70 and BN71.

Cognitive control and habitual responding—cortico-striatal-thalamo-cortical pathways.

The cortico-striatal-thalamo-cortical (CTSC) pathway is a brain circuit that controls 

movement execution, habit formation, and reward, all of which have been hypothesized 

to be relevant to eating disorders. Hyperactivity throughout the CTSC circuits is believed to 

underlie OCD72, increasingly relevant given the strong positive genetic correlation between 

OCD and AN8. Overlapping CTSC loops, including lateral PFC, ACC, dorsal striatum, the 

presupplementary motor area, insula, and parietal regions, are involved in these processes.

In patients with BN, there are limited neuroimaging data to suggest that functional 

and structural alterations in control circuits occur early in the course of BN and may 

contribute to the disorder’s persistence over time73,74. In patients with AN, maladaptive 

excessive self-control is commonly described although the differences in underlying 

neurobiological correlates (i.e., structures) involving cognitive control are inconsistent in 

imaging studies75,76. Both AN and BN patients show reduced gray matter volume in caudate 

nucleus, ACC, and insula77; however, these results may normalize in AN and BN following 

successful treatment78.

Limitations.

Deficits in cognitive control, executive functioning, reward and affective processing are 

commonly reported across multiple psychiatric disorders, with similar neurobiological 

correlates reported in the dorsal lateral prefrontal cortex, insula, and dorsal anterior 

cingulate cortex79-81. A limited number of studies compare neuroimaging across psychiatric 
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disorders (e.g.,82,83) or use meta-analytic techniques to do so (e.g.,79,80). Those that 

have been conducted have not included eating disorder patients despite evidence of 

psychiatric multimorbidity (including mood, substance use, and anxiety disorders)84. Eating 

disorder exclusion may occur because of state-specific neurobiological alterations due 

to malnourishment or dehydration stemming from key eating disorder specific behaviors 

(e.g., caloric restriction, purging, excessive exercise). Failure to account for state-specific 

effects has stymied human neuroimaging research in eating disorders. Eating disorder 

specific recommendations from experts in the fields of eating disorders and neuroimaging85 

have been proposed to account for malnutrition effects. Importantly, novel experimental 

designs are essential to disaggregate the extent to which any observed neurobiological 

alterations in AN are truly related to disease etiology or more accurately attributed to 

the impact of prolonged malnutrition/starvation. Accordingly, re-evaluation of prior eating 

disorder neuroimaging findings accounting for effects of malnourishment (e.g., white-matter 

alterations in AN86 and BN87) has led to improved understanding of state vs. trait effects in 

the brain.

Integrating human genetics and neuroimaging.

Imaging and genetics target distant levels of the biological hierarchy, and so integration 

is challenging. Genetically informed models of eating disorders hold the potential to 

generate construct-valid neurobiological disease models. Direct examination of the effect 

of genetic variation on brain structure and function is underway through the ENIGMA 

consortium88. Further insights could be obtained by examining intermediate levels of the 

biological hierarchy. Cellular-level data can be inferred from eating disorder GWAS—this 

has implicated hippocampal pyramidal neurons and striatal medium spiny neurons as the 

cell types that express identified genes in AN8. However, this approach remains in its 

infancy—larger sample sizes for GWAS and for gene expression datasets in neuronal and 

non-neuronal cells (e.g., microglia, oligodendrocytes) are needed to provide sufficient power 

for the parallel implication of brain circuits from neuroimaging and from GWAS.

Animal Models for Eating Disorders

As eating disorders GWAS become larger and more robust, their ability to interconnect 

with animal models will increase. Animal models offer speed in achieving power, control 

over allele frequency and genetic background, environmental exposure, and recording and 

collection of the appropriate cell types and tissues at appropriate time points to study the 

dynamic genetic architecture and genomic adaptations across eating disorder progression 

and recovery. Two popular animal models for eating disorder are the activity-based anorexia 

(ABA) model and the binge-like eating (BLE) model (see Box 2). Genes, variants, and 

circuit mechanisms gleaned from animal studies can be discovered and validated first 

within the same species and genetic background and then in humans. Likewise, identified 

genes from human GWAS and proposed circuitry from human neuroimaging studies can 

also be tested for causality and function in animal models, potentially on multiple genetic 

backgrounds (Figure 3).
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Phenotype-driven genetics of ABA.

Various mouse strains exhibit differential susceptibility to ABA. Specifically, DBA/2J 

female mice show greater wheel running activity, greater weight loss, less food intake, 

and severe hypoleptinemia compared to C57BL/6J89. C57BL/6J showed greater ABA than 

A/J and multiple chromosome substitution strains90. A genetic correlation between baseline 

physical activity (wheel running, locomotor) and ABA across inbred strains91 identified 

physical activity as a potential premorbid trait that predicts the development of ABA. 

Despite inbred strain differences in ABA, causal genetic factors have yet to be found.

Phenotype-driven genetics of BLE.

Phenotypic differences in BLE between inbred rodent strains implicate underlying causal 

genes92,93. In an intermittent, limited access paradigm for BLE of sweetened PF, 

cytoplasmic FMR-interacting protein 2(Cyfip2) was mapped and validated in a cross 

between C57BL/6 substrains. Cyfip2+/− mice showed a decrease in compulsive BLE 

of PF but not chow94. Cyfip1+/− mice also showed modulation of BLE, depending on 

parent-of-origin, genetic background, and sex95. CYFIP1 CNV is implicated in autism, 

ADHD, psychosis96, and, possibly, AN although lab validation of the CNV calling 

failed39. The study of BLE with increased genetic diversity, additional diets (high fat diet), 

and environmental variables will increase gene identification. In support, a recent study 

involving a cross between the BLE-prone DBA/2J strain with the BLE-resistant C57BL/6J 

strain92 identified multiple QTLs influencing eating behavior and body weight, including a 

sex-combined QTL containing the candidate gene Lcorl that influences initial consumption 

of palatable food, a female-selective locus containing the candidate gene Zeb1 underlying 

changes in body weight during BLE, and a male-selective locus for escalation in palatable 

food intake that contains the candidate genes Adipor2 and Plxnd197.

Given the diverse array of mouse crosses and populations that are now available to 

accelerate gene mapping, forward genetic studies of ABA and BLE in rodents provide 

the opportunity for novel gene/pathway identification. Such studies are sorely lacking. 

Nonetheless, CYFIP1 and CYFIP2 have homologs to study in humans. Although neither 

of these genes has yet been associated with AN through GWAS8, ongoing GWAS of BED 

and BN will be more relevant for assessing the association between CYFIP genes and binge 

eating in humans.

Omic studies of ABA.

Omics analysis has been applied to both brain tissue and gut microbiota to improve our 

understanding of molecular adaptations associated with ABA and BLE. Proteomic studies 

in ABA models have identified hypothalamic mitochondrial and autophagy processes98, 

deficits in energy metabolism in colonic mucosa99, and an increase in ATP-producing 

glycolytic enzymes in gut microbiota100. These results implicate an adaptive energy source 

in the gut that could influence brain function and feeding behavior in AN. Opposing changes 

in energy utilization between the hypothalamus and gut mucosa during ABA suggest that 

restoration of energy homeostasis between the CNS and periphery could improve treatment 

of AN in humans.
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Animal models can be used to longitudinally measure the impact of early life factors 

like stress, diet, or genetics on eating disorders. In a mouse model involving chronic, 

variable mild stress in pregnant dams, prenatal stress (PNS) induced transcriptomic indices 

of hypothalamic HPA and metabolic dysfunction associated with obesity and protected 

against ABA in adolescent female mice. PNS protection was associated with increased DNA 

methylation and placental miR-340 downregulation and upregulation of miR-340 targets101. 

Low miR-340 and ABA resistance were also associated with increased expression of SLC 

nutrient transporters (amino acids, glucose), and growth factors that are potentially regulated 

by miR-340 targets. Placental overexpression of miR-340 recapitulated fetal and adolescent 

hypothalamic and circadian dysfunction101, supporting a role for placental miR-340 in 

regulating nutrient availability that could influence eating disorder susceptibility.

Omics of BLE.

Transcriptome analysis of the striatum found a BLE-induced downregulation of myelination 

genes94, supporting reports of decreased white matter integrity with increased BE in 

individuals with BN102. Gut microbiota from male rat feces following intermittent access 

to energy-rich “cafeteria” showed changes in microbial flavonoid, bile acid, d-arginine, 

d-ornithine, fatty acid, and geraniol biosynthetic pathways that correlated with body weight, 

adipose tissue, glucose, leptin, and insulin103. Although similar studies are needed in 

humans, these data suggest that microbial pathways could be targeted to normalize eating 

and metabolic function in BE.

To summarize, omics analysis of relevant tissues at appropriate time points in animal models 

for eating disorders offer distinct, complementary advantages to human studies and will 

continue providing unique insights into the hedonic and homeostatic adaptations that could 

inform therapeutics. Furthermore, combining omics with phenotype-driven forward genetic 

studies can further inform mechanisms of gene dysfunction and the consequent genomic 

adaptations that drive and sustain disordered eating. Expanding these latter approaches 

would provide valuable triangulation of omics studies in humans.

Viral overexpression and neural circuit studies of ABA.

Contemporary circuit approaches to understand feeding suppression and stimulation have 

been reviewed elsewhere (e.g.,104-106). Here, we distinguish our discussion from the 

physiology of homeostatic meal termination—adaptive anorexigenic responses—and focus 

on related studies involving ABA that more holistically model AN pathology and behavioral 

phenotypes. These studies provide more direct evidence as to the associative and causal 

neurobiological factors of AN. Viral overexpression of the D2 dopamine receptor in D2-

containing mouse neurons of the NAc core induced hyperactivity, increased food intake, 

and enhanced ABA-induced wheel running and weight loss in females107. Only females 

showed severe weight loss during scheduled fasting alone, even without a change in food 

intake or hyperactivity. More recently, chemogenetic activation inhibition of the projection 

from medial PFC to NAc shell decreased cognitive flexibility and increased ABA whereas 

inhibition prevented ABA weight loss and increased cognitive flexibility108. Zhang and 

Dulawa propose that projections from the NAc shell to the lateral hypothalamus (LH) 
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and in turn, from the LH to the VTA, could link ABA-induced mesocorticolimbic reward 

dysfunction with ABA-induced changes in metabolism109 (Figure 4).

The NAc receives strong input from VTA dopamine-producing neurons, and specific 

chemogenetic activation of NAc-projecting VTA DA neurons increases food intake, food 

anticipatory activity, and survival in the ABA model110. These results implicate female-

specific metabolic dysfunction induced by NAc D2 overexpression107 and suggest that NAc 

D2 receptor density and signaling could affect risk for AN and predispose individuals 

toward excessive exercise, potentially as a means to alleviate underlying reward deficiency

—although further studies are needed to support this hypothesis. Combined with genetic 

studies implicating striatal neurons that express either D1 or D2 and human imaging studies, 

we propose that striatal circuits are a biological risk hub that warrant further investigation.

Moreover, animal, clinical, and genetic findings implicate leptin in the risk and maintenance 

of AN. Hyperactivity, eating restraint, and earlier weight loss after inpatient refeeding are 

correlated with lower leptin in AN patients111, implicating a loss of leptin signaling in VTA 

underlies ABA hyperactivity. In ABA rats, leptin treatment reduced hyperactivity via the 

VTA region112, implicating a loss of leptin signaling in VTA underlies ABA hyperactivity. 

GWAS-based genetic correlations suggest an overlap in the biological regulation of AN, 

leptin, and physical activity8. A case report suggested that leptin treatment may reduce 

hyperactivity and eating disorder-related cognitions in AN113. Although it has not been 

studied in AN, human neuroimaging studies in healthy individuals demonstrate that leptin 

regulates mesolimbic dopamine systems under stress114. Accordingly, leptin is an important 

hormone in linking genetics with alterations in the DA reward system.

Optogenetic and chemogenetic analysis of BLE.

Optogenetic and chemogenetic approaches seek to identify and manipulate specific cell 

types and fibers to test proposed circuitry in feeding115, see reviews (e.g., 104). Here, 
we focus on studies employing BLE paradigms directly or indirectly associated with the 
mesolimbic reward pathway.

Several studies have identified that activation of inputs to VTA dopamine (DA) neurons 

from the lateral hypothalamus, bed nucleus of the stria terminalis, or the dorsal raphe 

nucleus produces positive valence, appetitive behavior, and can increase compulsive-like 

food or liquid reward consumption104. Broadly, these studies support a physiological role 

for these brain circuits in shaping motivation and food consumption by transient phasic 

activation of VTA DA neurons. Conversely, persistent activation of VTA DA neurons using 

chemogenetics or via the 5HT2C receptor agonist lorcaserin resulted in a reduction in binge 

eating116. Of note, direct stimulation of VTA DA neurons does not stimulate eating per 

se117. These data suggest that the observed contribution of VTA DA neurons to BLE is 

complex and sensitive to the time scales of experimental manipulations. These findings 

also underscore the critical need to understand how VTA DA neuron activity is altered 

across multiple binge eating episodes. Finally, the incorporation of pathological BLE models 

that pair food consumption with aversive consequences (e.g., footshock) will be useful in 

distinguishing between patterns of VTA neuron activity that accompany adaptive hedonic 
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food consumption versus repetitive compulsive-like BLE that is insensitive to negative 

reinforcement.

Studies of BLE have also revealed important changes in neural circuits receiving robust 

dopamine inputs and how dopamine receptors modulate neural activity in these sites. The 

VTA and substantia nigra pars compacta DA neurons project to the ventral (NAc) and 

dorsal striatum. Released DA then shapes ongoing neural activity in medium spiny neurons 

primarily via modulation of downstream PKA-dependent signaling cascades. In the NAc, 

a multiday course of binge eating increase delta band oscillations of local field potentials 

(LFPs) and single unit activity in anticipation of palatable food intake118. Palatable food 

consumption was specifically disrupted via targeted stimulation during anticipatory periods, 

a phenomenon that may require activation of D2 receptors119. Interestingly, delta band 

oscillations in the ventral striatum were observed in humans118. Anticipatory activity, or 

ramps, are also visible in the dorsal striatum at the level of single neurons or bulk calcium 

transients during food approach 120. These ramps rapidly terminate during food consumption 

and their functional requirement to binge eating is unknown.

Modulation of the dorsal and ventral striatum also occurs from prefrontal and insular cortex 

(IC) inputs. The IC integrates taste, interoception, and motivation to regulate feeding, and 

food-predictive cues reliably activate IC neurons121,122. Chemogenetic activation of the 

anterior IC as a whole decreases palatable food intake and cue reactivity in a rat model 

of binge eating123, and optogenetic activation of the right anterior IC in mice similarly 

reduces food intake124. Conversely, in a model of compulsive binge eating in rats, pathway-

specific inhibition of the insula cortex (IC) to NAc decreased appetitive behavior to receive 

palatable food intermittently paired with foot shock125. These studies indicate a complex 

role of the insula in reinforcement and compulsive BLE. In the prefrontal cortex (PFC), 

activation of NAc shell projecting neurons reduced food intake in a binge-eating model in 

rats predisposed to high impulsivity, a trait observed in a previous study126. Optogenetic 

activation of inhibitory VIP-expressing interneurons of infralimbic and prelimbic mPFC 

in male mice decreased BLE of a high caloric diet127. These findings implicate reduced 

function of the PFC->NAc circuit in impulsivity and BLE. Further study of these circuits 

across the acquisition of BLE behavior (first episode vs last) is necessary to investigate the 

dynamics and link to pathology more precisely. Nonetheless, these findings demonstrate that 

BLE can be inhibited in real time through neural circuit manipulations demonstrating that 

ongoing activity of specific cortical and limbic circuits is required for BLE.

Animal Model Limitations.

One of the primary limitations in the use of animal models is their inability to capture 

complex psychological constructs important to the etiology of eating disorders like a drive 

for thinness, body dysmorphia, or intense fear of weight gain in the case of AN and a loss 

of control for BLE. However, emerging technologies in markerless pose estimation and deep 

learning provide basic scientists the opportunity to extract novel behavioral phenotypes that 

may be associated with these constructs128. The other major limitation of animal models 

is that, to date, animal models have not yet been used to test the causal nature of a sum 

of polygenic risk-associated common variants from an eating disorder group. This is an 
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important technical and conceptual factor to consider as we move closer to testing causality 

of disease-associated variants.

Integration.

Circuit approaches in animal models provide increasing specificity with regard to cell 

types and their connections underlying ABA and BLE. Convergent evidence across 

studies suggests that longitudinal assessment of neuronal function in mesolimbic and 

nigrostriatal circuits, combined with single cell omics will advance our understanding of 

the central neuronal adaptations as well as peripheral cell type-specific adaptations that 

drive maladaptive feeding. These assessments should incorporate hypotheses informed by 

emergent GWAS and human imaging data and can in turn contextualize and inform studies 

in humans.

Genetic, neuroimaging, and animal model research in eating disorders have largely 

represented independent disciplines. These sciences of eating disorders have now matured 

adequately that cross-communication is both possible and essential in order to strengthen 

causal inferences and translate observations into biological understanding and novel 

therapeutics.

Conclusions and Future Directions.

As human GWAS and neuroimaging studies grow and diversify and novel animal models 

are developed, efforts to bridge disciplines must expand. Ongoing GWAS of BED and 

BN will give context to findings from mouse BLE models. Gene-driven approaches in 

neurobiology and behavior should increasingly incorporate evidence for association of target 

genes from human GWAS. Interdisciplinary efforts will benefit studies investigating the 

main effects of genes and variants, as well as gene-gene and gene-environment interactions. 

Exquisite control over environmental factors in animal models will allow rigorous testing 

of putative interactions from genome-wide observational epidemiology in eating disorders. 

Finally, eating disorder research must be proactive in embracing other disciplines. For 

example, the utility and diversity of induced pluripotent stem cell models has increased 

rapidly, and the application of these models to eating disorder research could yield 

valuable new insights129. Our hope is to accelerate target identification by applying robust 

statistical genetic and pathway analysis methods, large-scale brain and neurodevelopmental 

systems biology approaches, and innovative chemoinformatics130. In order to do this, eating 

disorders should seek to communicate across disciplines, including establishing meetings 

dedicated to translational eating disorders research. Ultimately, the goal is to translate 

genetic and neuroscience findings directly into the clinic to enable biologically informed 

tailored treatment selection and delivery and to eliminate morbidity and mortality from these 

debilitating illnesses.
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Box 1:

Overview of Eating Disorder Phenotypes

Anorexia nervosa.

The hallmark symptom of AN is low body weight, accompanied by persistent restriction 

of energy intake and/or increased energy expenditure, intense fear of gaining weight or 

persistent behavior preventing weight gain, and distorted body image1. Both a restricting 

and a binge-eating/purging subtype exist. The lifetime prevalence is 1.4% (0.1-3.6) for 

women and 0.2% (0-0.3%) for men%)131. The standardized mortality ratio of AN is >5 
132 with deaths primarily attributable to illness effects and suicide133. Treatment outcome 

in adults is poor with only 30% achieving full recovery134. Family-based treatment 

for youth is recommended; multidisciplinary interventions are recommended for adults 

although the evidence base remains particularly weak135. No medications exist that 

successfully treat the disorder or are approved by the FDA135.

Bulimia nervosa.

The core symptoms of BN include binge eating (eating an unusually large amount of 

food in a circumscribed period of time accompanied by a sense of loss of control) and 

inappropriate compensatory behaviors (e.g., self-induced vomiting, abuse of laxatives, 

diuretics, fasting, excessive exercise), with self-evaluation being strongly influenced 

by shape and weight1. BN can occur at all body weights, but is diagnosed as AN 

binge-eating/purging subtype in the presence of AN. The lifetime prevalence is 1.9% 

(0.3-4.6%) for women and 0.6% (0.1-1.3%) for men131, and onset is typically in late 

adolescence or early adulthood. Cognitive-behavioral therapy (CBT) is the leading 

evidence-based treatment and fluoxetine, whose efficacy was established in placebo-

controlled clinical trials in the early 1990s, is the only FDA approved medication135 BN 

recovery rates are ~50% at 5-10 years follow-up136.

Binge-eating disorder.

BED is marked by recurrent binge eating that causes distress, the absence of regular 

compensatory behaviors, and behavioral and emotional features such as eating rapidly 

or when not hungry, and feeling embarrassed or disgusted by one’s behavior1. The 

lifetime prevalence is 2.8% (0.6-5.8%) for women and 1.0% (0.3-2.0%) for men131. 

Onset is typically early adulthood but can be at any time and in individuals spanning 

the normal to obese weight ranges1. Evidence-based treatments for BED include CBT, 

second-generation antidepressants, and since 2015, lisdexamfetamine an FDA approved 

stimulant originally prescribed for the treatment of attention deficit hyperactivity 

disorder137. Preclinical, clinical, genetic studies (of binge eating), and neuroimaging 

data converged on dysfunction in systems regulating eating behavior and reward (i.e., 

dopaminergic and noradrenergic), and support the repositioning of lisdexamfetamine in 

BED138.
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Box 2:

Animal Models for Eating Disorders

Activity-based anorexia (ABA).

AN has some characteristics that cannot be modeled in rodents (drive for thinness, body 

image distortion, intense fear of weight gain). However, key behavioral components of 

AN as well as traits commonly comorbid with AN can be modeled in mice (high physical 

activity, anxiety, depression, social anxiety, obsessive-compulsive-like behavior). Perhaps 

most well-known is the activity-based anorexia (ABA) model that starts with daily 

unlimited chow availability but for only 2h per day or less followed by introduction of 

a running wheel which leads to compulsive-like running, appetite suppression, voluntary 

restriction of food intake, decreased anxiety-like behavior, severe weight loss, and death 

without intervention139. ABA induces other AN-like effects on physiology, including 

hypothermia, loss of estrus, increased HPA axis activity, anhedonia, ulcers, and humoral, 

CNS, cardiovascular, and GI dysfunction140—a credible model for the behavioral and 

physiological components of AN.

Binge-like eating (BLE).

Binge eating shares several features with substance use disorders—tolerance, withdrawal, 

relapse, loss of control, and compulsive intake. Binge-like eating (BLE) has been studied 

in animals141, defined by increased intake of palatable food (PF; high caloric) versus 

chow and escalation of intake over time142. Compulsive-like eating refers to habitual, 

often increased effortful intake despite potential harm (aversive stimulus) that can relieve 

negative affect during withdrawal143. Home cage chow restriction, stress exposure, and 

limited, intermittent access to PF can all promote BLE144. Intermittent BLE models 

induce the most robust binge-like eating, yet do not typically induce obesity, as rodents 

voluntarily restrict chow intake in anticipation of PF which in turn, increases PF 

reinforcing efficacy145,146. BLE is a reasonable animal approximation of the behavioral 

components of dysregulated eating characteristic of human binge eating.
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Figure 1. Genetic correlations between anorexia nervosa and selected top traits.
The error bar represents the 95% confidence interval. Values retrieved from8.
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Figure 2. 
Human neuroimaging circuitry involved in eating disorders. (A) Represents the structures 

comprising two major dopaminergic pathways, mesolimbic and mesocortical pathways, 

supported by prior work in animal models. Both originate in the ventral tegmental area 

(red); mesolimbic pathways project to the nucleus accumbens, and is part of the complex 

circuit involving the amygdala (pink), hippocampus (green), and the bed nucleus of the stria 

terminalis (yellow). The mesocortical pathway projects primarily to the prefrontal cortex 

(orange) and insula (purple). (B) Represents sub-structures involved in the cortico-striatal-

thalamo-cortical (CSTC) pathway that are supported by recent genetic/GWAS studies with 

shared functional networks that exhibit overlapping phenotypes. The CSTC pathway is a 

multi-synaptic neuronal circuit that connects the cortex with the striatum and thalamus. The 

striatum (green) receives glutamatergic input from the cortex and the thalamus (blue) sends 

out GABAergic inputs to the sub-thalamic nucleus (pink, purple, red).
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Figure 3. 
Forward and backward translation of eating disorder-relevant traits at different levels 

of biological hierarchy. Activity-based anorexia (ABA) and binge-like eating (BLE) 

are behavioral models for restrictive eating in AN and for binge eating in BN and 

BED. Within the use of animal models, there are four primary approaches that seek 

to elucidate the fundamental biology of eating disorders: QTL mapping, Omics, neural 

circuit manipulations, and in vivo gene editing. QTL mapping is used to discover genetic 

loci and ultimately candidate causal genes and variants that regulate phenotypic traits at 

the molecular, cellular, or behavioral level. QT mapping capitalizes on natural variation 

across different strains or substrains of laboratory models like mice. Omics investigations 

are carried out at the genomic, transcriptomic(not shown), proteomic, microbiomic, or 

metabolomic levels and can reveal novel biological pathways that regulate feeding and/or 

metabolism. In vivo gene editing research can be used to establish causality for candidate 

genomic variants identified from rodent QTL/GWAS or in silico studies. Neural circuit 

approaches are also used to establish causal molecular, cellular, or circuit elements that 

drive eating behavior and metabolism. They span the range of observing neural activity 

and synaptic function, manipulating those circuits in real time (e.g., via optogenetic. 

chemogenetic, or pharmacological approaches), and layering these experiments with 

pathological models.
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Figure 4. Mesocorticolimbic reward dysfunction in activity-based anorexia.
VTA: ventral tegmental area; NAC: nucleus accumbens; LH: lateral hypothalamus; mPFC: 

medial prefrontal cortex; DREADD = designer receptor exclusively activated by designer 

drugs; Gi = G inhibitory DREADDS; Gs = G stimulatory DREADDS; D2 = D2 

dopamine receptor overexpression. Green indicates excitation of cell type and pathway. 

Red indicates inhibition of pathway. Purple indicates overexpression. Overexpression of D2 

dopamine receptors in medium spiny neurons of NAc core increased ABA phenotypes and 

combined with scheduled fasting alone (no wheel running), was sufficient to induce weight 

loss and glucose intolerance in females without affecting food intake107. Chemogenetic 

activation of the mPFC->NAc shell pathway decreased cognitive flexibility and increased 

ABA; inhibition had the opposite effect108. Chemogenetic activation of VTA neurons 

decreased ABA and increased survival110. Leptin injections into the VTA decreased wheel 

running112. Blue arrows indicate pathway proposed by Zhang and Dulawa109 to mediate 

mesocorticolimbic reward modulation of energy expenditure and metabolism in ABA. 

Additional work is necessary to delineate the circuits, neurotransmitters, and hormones that 

link ABA reward dysfunction with increased energy expenditure.
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Figure 5. Mesolimbic-centered neural circuits that modulate binge-like eating (BLE).
Converging on the VTA to NAc dopaminergic circuit, behavioral neuroscientists have 

used circuit-level techniques like chemogenetics and optogenetics to study BLE, normal 

feeding, and reward-like behavior. Inputs to the VTA from the DR, BNST, and LH modulate 

reward and food consumption as shown by pathway-specific optogenetics. Within the VTA, 

chemogenetic activation of VTA DA neuron reduces BLE and direct optogenetic activation 

has no impact on feeding. Within the NAc, pathway specific optogenetic inhibition of 

the inputs from the insular cortex reduces BLE. Similarly, chemogenetic activation of the 

NAc-projecting input cells from the vmPFC or VIP-expressing neurons in the prelimbic 

and infralimbic PFC also reduces BLE. Abbreviations: BLE – binge-like eating; BNST – 

bed nucleus of the stria terminalis; ChR2 – Channelrhodopsin2; DA – dopamine; D1R – 

dopamine D1 receptor; D2R – dopamine D2 receptor; DR – dorsal raphe; GABA – gamma 

aminobutyric acid; GLU – glutamate; IC – insular cortex; LH – lateral hypothalamus; NAc 

– nucleus accumbens; PET-1 - PC12 ETS Domain-Containing Transcription Factor; PFC – 

prefrontal cortex; VIP – vasoactive intestinal polypeptide; vmPFC – ventromedial prefrontal 

cortex; VTA – Ventral tegmental area.
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