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Rett syndrome (RTT) is a severe neurodevelopmental disorder, primar-

ily affecting girls and usually caused by heterozygous loss-of-function

mutations in the X-linked gene, methyl-CpG-binding protein

2 (MECP2),1,2 encoding an epigenetic reader, MeCP2. Importantly,

while loss of MeCP2 function causes RTT, locus duplication also cau-

ses a severe neurodevelopmental disorder, MECP2 duplication syn-

drome (MDS),3 suggesting MeCP2 is a “Goldilocks” protein—one that

requires a “just-right” activity level.4

Excitingly, re-expression of MeCP2 in mouse models reversed

phenotypes, both in hemizygous mutant males5 and heterozygous

females,6,7 giving hope for development of therapies for RTT in peo-

ple. Several groups explored conventional gene therapy approaches in

hemizygous male mice that harbored loss-of-function alleles

(reviewed in Ref. 8); and these were broadly effective in restoring nor-

mal phenotypes (although there was concern of liver toxicity with viral

strategies). Importantly, most of this work did not explore preclinical

efficacy and safety in heterozygous female animals (except for Refs.

9,10), a key shortfall since with heterozygous X-linked disorders,

females are cellular mosaics because of random X-chromosome inacti-

vation.11 Thus, heterozygous MECP2 mutant females are a somatic

mixture of cells\expressing either wild-type MECP2 or the inactive

mutant12; and for females, conventional gene therapy that restores

MeCP2 levels in mutant-expressing cells could cause overexpression

wild-type expressing cells, causing MDS. In addition, although most

mouse models express an MECP2 allele with complete loss-of-func-

tion, many people with RTT have alleles of MECP2 with only a partial

loss-of-function,1 putting them at risk for complications from MECP2

overexpression.

In this issue of Genes, Brain, and Behavior, two manuscripts13,14

refine RTT mouse models by introducing hypomorphic MECP2 alleles,

doing so in male and female mice. The models harbor either R294X, a

truncation and common, disease-causing hypomorphic allele of

MECP2,13,15 or R133C, a missense mutation that alters MeCP2 DNA

binding.14 In male mice hemizygous for either allele, gene restoration

with wild-type MECP2 rescued the loss-of-function phenotype and

absence-of-overexpression phenotype (similar to rescue in null male

mice). In heterozygous female mice, RTT-like phenotypes were also

rescued by adding a wild-type copy of MECP2; however, MECP2 over-

expression phenotypes were detected in motor coordination

tasks13,14 (like observed previously16), anxiety assessments, and asso-

ciative learning.14 Importantly, Vermudez et al. detected none of these

problems in similar genetic-rescue experiments in heterozygous

female null mice, showing hypomorphic alleles caused susceptibility to

overexpression phenotypes.

Overall, both manuscripts assert that RTT gene therapy must be

approached with caution. Broadly, restoring MeCP2 function can

reverse key disease features, even for hypomorphic alleles. Neverthe-

less, concerns remain, since RTT patients are commonly MECP2 hypo-

morphs, and so at risk for developing MDS overexpression

phenotypes.1 Recent promising work provided gene therapy vectors

with auto-regulatory elements that “sense” MeCP2 function, allowing

the cell to tune expression of exogenous MECP2.17 This technology

could overcome many hurdles, yet it is still important to evaluate par-

tial loss-of-function alleles in female mouse models; and testing for

behavioral abnormalities associated with MeCP2 overexpression is a

must. Most previous work only focused on evaluating RTT-like behav-

iors in preclinical gene therapy studies, oftentimes only assessing the

“Bird-score”,5 a visual assessment of RTT-like features. As shown in

Collins et al.,13 mice overexpressing MeCP2 are not abnormal in this

assessment, making evaluation of motor coordination and associative

learning a critical safety evaluation. Overall, this work has broad impli-

cations for genes that cause neurodevelopmental disorders with bi-
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directional dosage sensitivity, that is, causing disease from either loss

or gain of function. Any gene therapy strategy must consider how

gene replacement might manifest in patients with partial loss-of-

function alleles.
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