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Gut Microbiota Linked with Reduced Fear of Humans in Red
Junglefowl Has Implications for Early Domestication

Lara C. Puetz,* Tom O. Delmont, Ostaizka Aizpurua, Chunxue Guo, Guojie Zhang,
Rebecca Katajamaa, Per Jensen, and M. Thomas P. Gilbert*

Domestication of animals can lead to profound phenotypic modifications
within short evolutionary time periods, and for many species behavioral
selection is likely at the forefront of this process. Animal studies have strongly
implicated that the gut microbiome plays a major role in host behavior and
cognition through the microbiome–gut–brain axis. Consequently, herein, it is
hypothesized that host gut microbiota may be one of the earliest phenotypes
to change as wild animals were domesticated. Here, the gut microbiome
community in two selected lines of red junglefowl that are selected for either
high or low fear of humans up to eight generations is examined. Microbiota
profiles reveal taxonomic differences in gut bacteria known to produce
neuroactive compounds between the two selection lines. Gut–brain module
analysis by means of genome-resolved metagenomics identifies enrichment
in the microbial synthesis and degradation potential of metabolites associated
with fear extinction and reduces anxiety-like behaviors in low fear fowls. In
contrast, high fear fowls are enriched in gut–brain modules from the butyrate
and glutamate pathways, metabolites associated with fear conditioning.
Overall, the results identify differences in the composition and functional
potential of the gut microbiota across selection lines that may provide
insights into the mechanistic explanations of the domestication process.
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1. Introduction

Phenotypic plasticity is conventionally
viewed as being directly encoded by the
genome, either due to conventional ge-
netic, or even epigenetic, variation. How-
ever, a growing body of evidence shows
that microorganisms residing in the gut
of animals (their microbiota) may play a
crucial role on their adaptive capacity.[1]

The gut microbiota is a major actor in the
nutrition, health, physiology, and behav-
ior of complex animals,[2–7] and the close
connection between hosts and their gut
microbiota has led researchers to assert
that their combined activities represent
both a shared target for natural selection
and a driver of adaptive responses.[8–14]

Adapting to novel environments involves
modification of biological systems in an
effort to maintain fitness in response
to a stressing agent. Ample evidence
now portrays the gut microbiome
as a dynamic biological system that
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responds to environmental changes and is able to adapt to novel
conditions.
Domestication is an evolutionary process of adaptation that

can lead to profound phenotypic modifications in animals
within short time periods. The central selective pressure is
thought to be imposed through the new social environment,
and the initial exposure to humans is known to induce rapid
behavioral change in wild animals during the early stages of
the domestication process.[15] A reduction in acute fear and
long-term stress toward humans is a shared feature among
domesticated animals[16,17] and often a prerequisite to successful
breeding in captivity.[18] Contemporary research has strongly
implicated the gut microbiome in brain development, host be-
havior, and cognition, through its ability to produce and modify
metabolic, immunological, and neurochemical factors in the gut
that can impact host physiology and the nervous system.[19,20]

Consequently, we hypothesized that host gut microbiota may
be one of the earliest phenotypes to change as wild animals are
domesticated.
To test this hypothesis, we examined the association of gut

microbiome features with two selected lines of red junglefowl
(the ancestors of domestic chickens) that were bred at the
University of Linköping (Sweden) solely for either high or low
fear of humans, over the course of eight generations. In this
study, red junglefowl were reared under identical controlled
environments and housed in mixed group pens.[21–23] As such,
we were able to uniquely assess whether the community com-
position of the gastrointestinal microbiota differed between the
two behavioral phenotypes without introducing the confounding
effects of environment, including diet, on microbial community
structure. We additionally performed functional analysis of
genome-resolved metagenomes to assess the potential of the
microbiome to produce or degrade neuroactive compounds that
may act as mediators of microbiota–gut–brain signaling.[24] In
this exploratory study, we hypothesize that the gut microbiome
profiles and their neuroactive potential are associated with red
junglefowl behavioral phenotypes, which may provide novel
insights into the mechanistic explanations of the domestication
process.

2. Results

2.1. Low Fear Red Junglefowl Are Consistently Depleted in
Lactobacillales and Enriched in Clostridiales

To facilitate the detection of low abundant taxa and create fine-
scale community composition profiles of the gut microbiota of
the two red junglefowl behavioral phenotypes, a 16S rRNA gene
amplicon survey was first performed on fecal samples represent-
ing high (HF) and low (LF) fear individuals selected in the sixth
(S6) and seventh (S7) generations (2016 collection year; n = 22)
and from the eighth generation (S8) (2018 collection year; n =
29). A total of 2582 amplicon sequence variants (ASVs) were
identified, 23 of which were differentially abundant between the
high and low fear behavioral phenotypes, and an additional 34
ASVs were discriminant to either selection line in both sam-
pling years (Figure S1 and Table S1, Supporting Information). Al-
though many occurred within the rare biosphere, a noteworthy
number of differences occurred in abundant and highly preva-

lent taxa (Figure S1, Supporting Information). Most of these dif-
ferences were Firmicutes ASVs (n = 42), the most abundant phy-
lum (Figure S1, Supporting Information). Order level differences
identified that Clostridiales were significantly more abundant in
the low fear selection line (Figure 1; Wald test, t value = 3.1,
p value = 0.003) and further analysis at the ASV level revealed
a significant enrichment of ASVs belonging to the Ruminococ-
caceae (genera Subdoligranulum and UCG-014), Lachnospiraceae,
Clostridiaceae_1, and Peptostreptococcaceae families within this or-
der, the latter two of which had ASVs exclusively found in this
line (Figure 2; Table S1, Supporting Information). Conversely, the
Lactobacillales order was significantly more abundant in the high
fear selection line (Figure 1; Wald test, t value = -3.7, p value =
0.0006), including many ASVs from the Lactobacillus genus, but
additionally a Streptococcus sp. and several unknown ASVs from
this order (Figure 2; Table S1, Supporting Information).
Low fear fowls were also enriched in several Bacteroidetes

ASVs (Figure 2A; Table S1, Supporting Information). Further,
many ASVs were discriminant to the LF selection line including
ASVs from Actinobacteria (Rathayibacter and unknown genera),
Gammaproteobacteria (Pseudomonas and unknown genera), Ver-
rucomicrobia (Cerasicoccus sp.), and finally a Proteobacteria (He-
licobacter sp.) (Figure 2B). Conversely, high fear fowls were en-
riched in Synergistes and Sutterella ASVs, as well as several un-
known ASVs from the Erysipelotrichales order (Figure 2).

2.2. Genome-Resolved Analysis of Red Junglefowl Fecal Samples
Yielded 194 Manually Curated Microbial Genomes

Shotgun metagenomic sequencing of the 51 fecal samples
yielded 6.1 billion high-quality short-reads, of which 19–91%
mapped to the chicken genome (Table S2a, Supporting Infor-
mation). We then performed a comprehensive genome-resolved
metagenomic survey of the microbial populations through
coassembly of these data after host-derived reads were removed.
Subsequent manual binning within the anvi’o[25] framework us-
ing differential coverage across all samples resulted in 194 nonre-
dundant metagenome-assembled genomes (MAGs) (Figure 3A;
Figure S3 and Table S2b, Supporting Information). Six samples,
all males, had a sequencing depth of less than 10 million single-
end reads (<1 Gb) after quality control and were removed from
downstream analyses (as per recent recommendations[26]) due
to the large amount of host DNA (>70%) minimizing micro-
bial signal. However, for this study, we note that each behavioral
phenotype was equally represented by the MAGs (HF: n = 22,
LF: n = 23) (Figure S4, Supporting Information). The genomic
database revealed that twoMAGswere affiliated to Archaea, while
all remaining MAGs (n = 192) were affiliated to known bacte-
rial orders, including 40% identified at the species level (aver-
age nucleotide identity >95%). We identified 15 bacteria phyla;
the most frequent MAGs being Firmicutes (n = 94 MAGs), fol-
lowed by Bacteroidetes (n = 57), Actinobacteriota (n = 14), Pro-
teobacteria (n = 13), Patescibacteria (n = 6), Tenericutes (n = 4),
Cyanobacteria (n = 1), Fusobacteria (n = 1), Deferribacteres (n =
1), Spirochaetes (n = 1), Synergistetes (n = 1) and Verrucomicro-
bia (n = 1) (Figure 3A). Complete taxonomic assignments using
theGenome TaxonomyDatabase Toolkit (GTDB-Tk)[27] are found
in Table S2b (Supporting Information).

Advanced Genetics 2021, 2, 2100018 2100018 (2 of 12) © 2021 The Authors. Advanced Genetics published by Wiley Periodicals LLC

http://www.advancedsciencenews.com
http://www.advgenet.com


www.advancedsciencenews.com www.advgenet.com

Figure 1. Relative abundance of bacteria detected in fecal microbiota of red junglefowl selected for high fear and low fear towards humans. Relative
abundance of order-level bacterial in 16S rRNA amplicon sequence variants detected in 23 high fear and 27 low fear red junglefowl fecal samples: A)
Top 10 most abundant bacteria orders and differentially abundant. B) Clostridiales (Wald test, t value = 3.1, p value = 0.003) and C) Lactobacillales (Wald
test, t value = –3.7, p value = 0.0006) orders between the high and low fear selection lines. D) Differential abundance of the class Clostridia (Wald test,
t value = 3.3, p value = 0.002) observed in the metagenome-assembled-genomes (MAGs) detected in 22 high fear and 23 low fear red junglefowl fecal
samples. Microbial community composition was modeled at the order and class level for B,C) the 16S and D) shotgun sequence data respectively by
fitting the beta-binomial regression model implemented in the “corncob” package in R. Differentially abundant taxa were considered significant using
the parametric Wald test with a controlled false discovery rate (p value cutoff <0.05) ** p ≤ 0.01, *** p ≤ 0.001.

We subsequently modeled microbial abundance at the class
level to reveal a significant enrichment of ClostridiaMAGs in low
fear individuals (Wald test, t value = 3.3, p value = 0.002), cor-
roborating similar findings to the 16S amplicon data presented
above (Figure 1D). Further, two MAGs were discriminant to the
low fear selection line in both collection years and affiliated toHe-
licobacter magdeburgensis (similarly identified in the 16S sequence
data; Figure 2B) and an unknown Limosilactobacillus population
within theFirmicutes (Figure 3). Conversely, Limosilactobacillus in-
gluviei was significantly enriched in the high fear fowls, and a
ClostridialesMAG with no culture representatives (UBA9475 sp.
003534045) were exclusively found in this line across both years
(Figure 3). All four MAGs were less than 2% redundant and near
complete (>92%) (Figure 3A).

2.3. Gut–Brain Modules Well-Represented in the Gut Microbiota
of the Red Junglefowl

In order to describe the neuroactive potential of gut microbiota
in relation to gut–brain interactions in the red junglefowl, we
applied a module-based framework previously developed in
human microbiome research.[24] This framework identifies
microbial pathways that metabolize molecules that have the
potential to interact with the host nervous system. We found
41 out of the 56 annotated gut–brain modules (GBMs) known
to produce or degrade neuroactive compounds and these were
spread widely across the phylogenic range of the red junglefowl
MAGs (Figure 3A). Several phylogenetic GBM hotspots (high
prevalence of GBMs) were observed in the Proteobacteria (all
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Figure 2. Differential abundance of bacterial 16S ASVs between behavioral phenotypic groups of red junglefowl. A) Differences in the abundance of ASVs
detected in 50 red junglefowl fecal samples, grouped by order-level taxonomic classification, between high (n = 23) and low fear (n = 27) selection lines
estimated with corncob using the Wald test with a controlled false discovery rate. ASVs enriched in either selection line were categorized by family-level
classification and annotated on the right y-axis. B) Discriminant number ASVs, exclusively found in either selection line, grouped by order and genus
level classifications.

Gammaproteobacteria) and Actinobacteria phyla, whereas MAGs
affiliated to the Patescibacteria phylum, known for its streamlined
genomes lacking several metabolic pathways, carried no more
than one, if any, of the GBMs (Figure 3A). None of the GBMs
were ubiquitous (present in >90% of the MAGs), which can in
part be explained by the incomplete nature of MAGs, and nearly
half (n= 20) were rare (prevalence< 5% of theMAGs) (Figure 4).
Notably, propionate II synthesis was present in 22% of the red
junglefowl MAGs (n = 194) yet rarely found in human reference
genomes used to originally validate this framework (n = 532).[24]

Additionally, we identified two modules, vitamin K synthesis
II and acetate synthesis III, that were detected in fowl MAGs
but absent in humans. Serotonin, dopamine, acetylcholine,
polyunsaturated fatty acids (PUFAs), and propionate I synthesis
were absent in RJFMAGs in addition to glutamate I degradation.
Most GBMs (n = 32; 78%) were present in over 50% of all RJF
samples and two were rare, namely kynurenine synthesis (2%)
and acetate synthesis II (8%) (Figure 4C).

2.4. Behavioral Selection Induces Shifts in the Functional
Potential of the Red Junglefowl Gut Microbiome

To explore whether neuroactive compound metabolism could be
associated with behavioral selection, we assessed the detection of
GBMs in MAGs that were significantly enriched or discriminant
to a behavioral phenotypic group. Based on the GBM framework
applied to all RJF samples, there were no significant differences
in the overall differential abundance of GBMs (Figure 4C); how-
ever, when applied to each of the four significantly enriched or
discriminant MAGs, we identified nine associations with either
of the selection lines, three of which were GBMs rarely found
in the red junglefowl MAGs (present in <5% of all MAGs) (Fig-
ure 3B). Two of the three rare GBM associations were short-chain
fatty acids (SCFA),metabolites produced by gut bacteria, and sus-
pected of playing key roles in the microbiota–gut–brain axis. In-
terestingly, high fear fowls were enriched in GBMs from the bu-
tyrate pathway, namely butyrate synthesis I and II, the latter of
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Figure 3. Gut–brain module (GBM) distribution in red junglefowl metagenome-assembled genomes (MAGs). A) Maximum-likelihood phylogenetic tree
comprising 194 gut-associated MAGs identified in 45 red junglefowl fecal samples (HF: n = 22, LF: n = 23). The innermost circular layer represents
the percent completion of each genome followed by the associated phylum in the second layer. The following middle layers represent the 41 gut–brain
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which was found in only 3.1% of the MAGs, whereas the low
fear selection line was enriched in the rare SCFA module from
the propionate pathway, propionate degradation I (Figure 3B).
Four GBMs were additionally enriched in the low fear selection
line including two from the tryptophan/tryptophan derived path-
ways, namely quinolinic acid and tryptophan synthesis, inositol
degradation, and finally the rare GBM menaquinone synthesis
(vitamin K) II. Conversely, p-Cresol synthesis from the tyrosine
pathway and glutamate synthesis II from the glutamate-derived
pathway were GBMs associated with the high fear selection line
(Figure 3B).

3. Discussion

Here we demonstrate that despite having been subjected to rel-
atively few generations of bidirectional selection for low or high
fear toward humans, significant differences exist in the commu-
nity composition of the red jungle fowl gut microbiota. Recent
studies have identified that ecological shifts during domestica-
tion, specifically changes in diet, can have major impacts on the
gut microbiota.[28–31] Although diet undoubtedly plays a signifi-
cant role in shaping the gut microbiome, the controlled environ-
ments used in this study allow us to rule out diet as the driver of
phenotypic differences between selection lines during the early
stages of domestication in red junglefowl. We further posit that
differences in microbial community composition may reflect al-
tered interactions within the microbiota–gut–brain axis.
During early domestication, one central selective pressure is

thought to be the new social environment (human encounters),
in which specific animals exhibiting excessive fear and stress
reactions toward humans would have been unlikely to thrive,
thus reproduce. Experimental studies using germ-free mice have
demonstrated that the presence of a functional gut microbiota
affects synaptic plasticity[32] as well as fear memory retention[33]

and extinction in the host.[34] Further, shifts in community com-
position of certain gut microbiota, namely an increase in Lacto-
bacillus and a decrease in Clostridium, have been identified to be
highly correlated with host learning and memory in rats.[35] As
such, these observations would suggest that gut microbiota may
have been capable of intensifying or reducing fear-like behaviors
and memory retention during the domestication of at least some
wild animals. As the potential bacterial species that could be re-
sponsible for these phenotypes, as well as the mechanisms un-
derlying their presentation, remain elusive, it is interesting that
we found significant order-level increases ofClostridiales andBac-
teroidales in the gut microbiota of red junglefowl in low fear an-
imals and significant enrichment of Lactobacillales in high fear
animals.
Increased prevalence of Lactobacillus in the gut microbiota of

our high fear selection animals is consistent with observations in
phobic dogs undergoing intense states of fear,[36] supporting a po-

tential role for this genus in red junglefowl fear phenotypes. Fur-
thermore, this bacterial genus has been repeatedly implicated in
enhanced fear memory retention in mammals.[37–39] Lactobacil-
lus rhamnosus JB-1, for example, has been associated with both
aggressor avoidance behaviors as well as enhanced fear memory
recall in mice.[37,38] These phenotypic changes in mice were ac-
companied by gene expression profiles in the brain related to fear
memory, impaired fear extinction, and stress responses.[37,38]

In contrast to our observed association of Lactobacillus with
fear behavior, we observed that Clostridiales were enriched in
the low fear fowl and several unknown Clostridiales species
have been associated with reduced stress in Japanese quail.[40]

This observation is interesting in light of previous findings
associating these taxa with impaired fear memory in obese
mice, including members of the orders Lachnospiraceae and
Ruminococcaceae.[41] Clostridiales are also known to promote host
serotonin biosynthesis[42] and higher blood serotonin has been
observed in the low fear red junglefowl males.[43] Although sero-
tonin cannot cross the blood-brain barrier, peripheral serotonin
is important in neurodevelopment.[44,45] The gut microbiota has
been found to play a key role during neonatal neurodevelopment
in mice in which microbiota-derived signals induce learning-
related plasticity, including fear extinction learning, that persists
into adulthood.[34] While Chu and co-workers[34] inferred that a
more diverse gut microbiota was required for normal fear ex-
tinction behavior, it is possible that certain individuals within
the community, such as the Clostridiales enriched in the low
fear fowls here, may play a more significant role in the fear ex-
tinction process. We additionally observed an increased abun-
dance of Bacteroides and Parabacteroides in low fear fowls, both
of which are 𝛾- aminobutyric acid (GABA) producing bacteria.[46]

GABA is an inhibitory neurotransmitter that can cross the blood-
brain barrier,[47–49] although to what extent remains debatable,
and GABA signaling has been implicated in fear extinction
learning.[50,51] Notably, increased abundance in Bacteroides and
Parabacteroides has not only been associated with decreased lev-
els of anxiety, distress, and irritability in healthy women but also
increased gray matter in the cerebellum,[52] an associated phe-
notypic trait consistently observed in low fear red junglefowl.[53]

Together these data suggest that gut microbiota significantly en-
riched in low fear fowls may have the capacity to impair fear
memory, promote fear extinction, or prevent anxiety-like behav-
iors, all of which would be relevant to overcoming a fear response
toward humans during domestication.
To explore variation in neuroactive metabolic potential re-

sulting from differences in gut microbiota between the two
behavioral selection lines, we applied a module-based analytical
framework to our metagenomic data.[24] For the high fear jungle-
fowl, our analysis of gut–brain modules revealed the increased
functional potential of butyrate synthesis I and II, p-Cresol
synthesis, and glutamate synthesis, suggesting a role for these

modules (GBMs) detected in the collections of MAGs and categorized by functional association. Six MAGs were differentially abundant or exclusive
to a behavioral phenotypic group and highlighted on the tree based on the enrichment in either the high fear (orange) or the low fear (blue) selection
line. B) Detection of GBMs in the six differentially occurring MAGs highlighted in (A). The numbers in parentheses correspond to the frequency of the
GBM found in all MAGs and values in bold were considered rare (present in <5% of the MAGs). Pathways and functions were annotated for each GBM
along the bottom x-axis. GBMs exclusively present in MAGs enriched in the high fear group are highlighted in orange and those in the low fear group
are highlighted in blue.
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Figure 4. Comparison of gut–brain module (GBM) distribution in human and red junglefowl microbial genomes. GBM detection frequency in A) human
gut-associated microbial reference genomes (n = 532) drawn from Valles-Colomer et al.[24] and previously used to validate the GBM framework and B)
red junglefowl MAGs (n = 194) identified from fecal samples in the current study. Rare (<5% of genomes) and ubiquitous GBMs (>90% genomes)
are highlighted, while others are in gray. GBMs found exclusively in red junglefowl MAGs are in bold. Figure modified from Valles-Colomer et al.[24]

C) Heatmap of the log10 frequency of 41 GBMs detected in 45 fecal metagenomes of red junglefowl selected for high and low fear toward humans.
Clustering of GBMs and metagenomes is based on GBM frequency (Euclidean distance and Ward linkage) and the data were visualized using anvi’o.
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microbial-induced pathways in fear phenotypes. Butyrate can
cross the blood-brain barrier[54] and has been implicated in both
neuronal plasticity and long-term fear memory formation via in-
creased histone acetylation in the brain.[55,56] Further, increased
levels of both p-Cresol and glutamate have been observed in the
gut, blood, urine, and feces of children with autism.[57,58] The
microbial metabolite p-Cresol specifically has also been shown to
induce autistic-like behaviors in at least various mammal species
(similar data are lacking for birds), including enhanced fear and
anxiety-like behaviors.[59–62] Last, glutamate is themain excitatory
neurotransmitter in the brain, and glutamatergic signaling plays
an important role in fear conditioning in at least mammals[63,64]

(as above, similar data are lacking for birds). Although glutamate
does not enter the brain across the blood-brain barrier,[65] the
level of glutamate in the blood is positively correlated with that
in the brain,[66] suggesting that gut microbiota may play a role
in modulating glutamatergic signaling in the brain. With regard
to the above (and indeed several subsequent) points, we note
that although many of the examples we provide here are from
mammalian studies, as we are unaware that similar data exist
from avian studies, the deep evolutionary conservation of the
gut–brain axis in vertebrate phylogeny[67] and the conserved
properties of some chemical signaling, such as GABAA receptor
subunits among vertebrates,[68] suggest the potential to translate
these findings to the red junglefowl.
For the low fear junglefowl line, our gut–brain module anal-

ysis identified five enriched neuroactive compounds, including
vitamin K2 synthesis and inositol and propionate degradation.
Circulating levels of propionate and vitamin K have been asso-
ciated with fear extinction and reduced anxiety-like behaviors
in rodents, respectively.[34,69] Furthermore, dietary inositol de-
creased fearfulness in chickens[70] and levels of inositol in the
brain have been associated with synaptic plasticity and episodic
memory.[71,72] Although the mechanism by which the gut micro-
biota influences the brain via the production and degradation of
these neuroactive compounds remains elusive, it is possible that
they have neuromodulatory effects relevant to behavioral shifts
observed during domestication.
We additionally found several associations of the gut micro-

bial community composition with other correlated phenotypes
previously documented in the two red junglefowl selection lines.
When selecting solely on fearfulness toward humans, red jun-
glefowl displays a range of associated phenotypic changes in-
cluding increased feeding efficiency, growth, and reproductive
output in low fear relative to high fear animals.[21,22,43] Similar
shifts in microbial composition to those reported in this study
have been documented between chickens with high and low
feed efficiency; namely, higher feeding efficiency associated with
Clostridiales and propionate producing bacteria[73–75] and lower
feeding efficiency associated with Lactobacillus,[74–76] consistent
with low fear and high fear junglefowl phenotypes, respectively.
Additionally, the potential synthesis of tryptophan was associ-
ated with low fear fowls in the GBM analysis. Although the role
of bacterially derived tryptophan in host physiology remains un-
known, dietary tryptophan is known to improve reproductive ca-
pacity and growth performance in livestock[77] in addition to facil-
itating a reduced stress response in animals,[78] consistent with
what we see in the low fear fowls. Together these data suggest
that community-level shifts in gut microbiota during domestica-

tion may alter the physiology of the host through their contribu-
tion to metabolism and nutrient absorption, even without dietary
changes.[4,5]

Our results identified differences in the composition and func-
tional potential of the gut microbiota across selection lines that
might provide insights into the mechanistic explanations of the
domestication process. While we do not attempt to address a
causative role in the observed relationships, these findings pro-
vide the foundation for future studies. We also note that the
data generated here do not allow us to differentiate whether the
gut microbiota is under selection themselves or that they are re-
sponding to selection on host traits, namely behavior. Stress and
anxiety-like behaviors, for example, can induce change in the gut
microbiome[79–84] possibly through several mechanisms that al-
ter the physicochemical properties of the intestinal habitat.[85]

Furthermore, a small, though a potentially not insignificant por-
tion of the gutmicrobiome is almost certainly determined by host
genetics,[86] and it remains unresolved whether host genetic fac-
tors also play a role in shaping the gut microbiome during the
domestication process, although we hypothesize that it may well
be plausible. Likely the behavioral phenotype selected on during
domestication reflects a convergence of microbial, host, and en-
vironmental factors. However, we hope our study can be used
to lay the groundwork for future experimental work, including
other layers of data such as host and microbiome transcriptome
and metabolome information, as well as fecal transplant experi-
ments, to describe the role of the gut microbiome in the domes-
tication process and more broadly in ecoevolutionary dynamics.

4. Experimental Section
Animals and Sample Collection: All experimental protocols performed

on the red junglefowl were approved by Linköping Council for Ethical
Licensing of Animal Experiments, ethical permit to Per Jensen, number
14916-2018 (Linköping, Sweden). Animal handling experiments were con-
ducted in accordance with the approved guidelines. Gut microbiota were
sampled from adult red junglefowl (Gallus gallus) that were bidirectionally
selected over eight generations based solely on their fear response toward
humans in a long-term study at the LinköpingUniversity, Sweden. For a de-
tailed description of the breeding scheme and selection see refs. [21,22],
and the housing conditions of animals specific to the three generations
used in this study see ref. [23]. Briefly, the chickens originated from two
unrelated zoo populations, Copenhagen Zoo (Denmark) and Götala Re-
search Station (Sweden), and were interbred for two generations to create
the initial outbred parental (P0) generation. The parental generation was
then used to select for the most fearful (high fear; HF) and least fearful
(low fear; LF) individuals toward humans in subsequent generations us-
ing a standardized fear of human test when the birds were 12 weeks old.
Red junglefowl from both high and low fear selection lines were hatched
and reared together under standardized conditions in mixed groups in the
same pens for a given generation and received food and water ad libitum.
The commercially available conventional chicken feed for red junglefowl
remained consistent among years.

Fecal samples were collected and preserved in RNAlater stabilization
solution from HF and LF selection lines in the sixth (S6) and seventh (S7)
generations in the fall of 2016 (HF: n = 11, LF: n = 10) and from the eighth
generation (S8) in the winter of 2018 (HF: n = 12, LF: n = 17).

DNA Extraction: Prior to DNA extraction, RNAlater was removed
with centrifugation (13 000 g for 10 min) and the pellet was washed twice
with 1 mL of PBS. DNA was extracted from approximately 150 mg of fecal
sample using the DNeasy PowerSoil Kit DNA (Qiagen, Venlo, NL) follow-
ing the manufacturer’s protocol with several modifications. Samples were
incubated for 10 min at 65 °C after adding Solution C1 and bead beaten
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for 10 min at 30 Hz using a TissueLyser II (Qiagen, Hilden, Germany).
Purified DNA was incubated in Solution C6 for 15 min at 37 °C before the
final elution spin. Four negative controls (i.e., all reagents except sample
continued in the workflow from extraction to sequencing as any other ex-
tracts) were included in order to check for potential reagent contamination

Bacterial Community Composition from 16S rRNA Amplicon Sequencing:
A dual indexed PCR approach was used to target the V3-V4 variable re-
gion of the bacterial 16S rRNA gene (≈465 bp) for all fecal samples (n
= 50) using the primer pair Bact-341F (5′-CCTAYGGG RBGCASCAG-3′)
and Bact-806R (5′-GGACTACNNGGGTATCTAAT-3′) with Illumina Nextera
overhang adapters (Illumina Inc., San Diego, CA, USA).[87–90] PCR was
performed in triplicates and pooled prior to indexing PCR for each indi-
vidual in order to reduce PCR bias. Pooled libraries were sequenced on an
Illumina MiSeq platform using 250PE. Full methodological details can be
found in Supporting Information.

Illumina adapter and primer sequences were removed from the 16S
metabarcoding sequence data using cutadapt v.2.6[91] and subsequently
analyzed using the program DADA2 v.1.12.1[92] and R v.3.6.1[93] to infer
amplicon sequence variants (ASVs). Complete code was modified from
ref. [94]. Briefly, forward and reverse reads were trimmed to 230 bp. The
entire dataset was used to define an error rate at each base pair, and all
sequences were denoised using the pooled approach to increase the likeli-
hood of resolving rare sequence variants. Forward and reverse reads were
merged, and any pair without perfect overlap and <400 bp was removed
prior to chimeric sequence filtering. Each ASV was annotated with the RDP
Bayesian classifier[95] against the SILVA database[96] to produce a 16S am-
plicon taxa table. All subsequent analyses were done in R v.3.6.3 unless
otherwise stated.[97] ASV data were preprocessed with the phyloseq pack-
age v.1.30.0,[98] and potential contaminants were assessed with the de-
contam package v 1.6.0.[99] Only samples with >10000 reads and ASVs
with more than three observations were included in downstream 16S data
analysis.

Metagenomic Shotgun Sequencing: Shotgun metagenome data were
prepared with genomic DNA using various methods. Libraries were built
on six samples using a NEBNext protocol, during which metagenomic
DNA was fragmented to an average length of ≈350 bp using the Bioruptor
XL (Diagenode, Inc.), with the profile of eight cycles of 15 s of sonica-
tion and 90 s of rest. Sheared DNA was converted to BGIseq sequencing
technology compatible libraries using NEBNext library kit E6070L (New
England Biolabs) and blunt-ended BGISEQ-500-compatible adapters AD1
and AD2.[100] For all other samples (n = 45) metagenomic data were
prepared using the BEST single-tube library preparation protocol[101] as
optimized to be BGISEQ-500 compatible.[100] Briefly, genomic DNA was
fragmented to 350 bp using an M220 Focused Ultrasonicator (Covaris,
Woburn, MA). Sheared DNA was converted into BGISEQ-500 libraries fol-
lowing four steps: blunt end-repair, adapter ligation (2 𝜇L of 10 × 10-6

m BGI 2.0 adapters), fill-in reaction, and SPRI magnetic bead purifica-
tion (Sigma-Aldrich). Indexing PCR cycle numbers for all metagenomic li-
braries (4–14 cycles) were determined through qPCR library quantification.
Libraries were pooled equimolar over six lanes in 100bp or 150 bp paired-
endmode on the BGISeq-500 platform aiming for aminimumof 50million
reads per sample.

Assembly and Genome-Resolved Metagenomics: Prior to sequence as-
sembly, all paired-end reads were demultiplexed and quality filtered.
AdapterRemoval v.2.3.1[102] was used to trim unidentified bases and
adapter sequences from the ends of the reads. Host and human
reads were removed using bwa-mem algorithm v.0.7.15[103] against
the human (RefSeq: GCF_000001405.26) and red junglefowl (RefSeq:
GCF_000002315.4) reference genomes. Quality filtered metagenomic
reads were then coassembled using MEGAHIT v.1.1.1 with k-mer sizes:
77,87,97,107,127,137,147,157,167 and default parameters.[104] Contigs
less than 2500 nt were removed from the resulting assembly output and
corresponding header names were simplified using anvi’o v.6.2.[25] PCR
duplicates were removed from the metagenomic reads used for coassem-
bly with seqkit v.0.8.0[105] and subsequently mapped to the assembled
contigs using bwa-mem algorithm v.0.7.15 with default parameters.[103]

Samtools v.1.9[106] was used to sort and index the output SAM files into
BAM files.

BAM files were used to generate a contigs depth of coverage ta-
ble with jgi_summarize_bam_contig_depths (MetaBAT2 v.2.12.1).[107] We
then applied the automatic binning algorithm in CONCOCT[108] on this
coverage table to generate 10 large contig clusters to maximize ex-
plained patterns while minimizing fragmentation error, as performed
elsewhere.[109,110] Subsequently, a manual binning and curation were per-
formed for each CONCOCT cluster following the contigs workflow imple-
mented in anvi’o v.6.2.[25] Briefly, anvi’o was used to generate a contigs
database that identified open reading frames using Prodigal v.2.6.3[111]

and single-copy core genes using HMMER v.3.2.1[112] against the collec-
tion of built-in HMM profiles for bacteria and archaea. Gene-level taxon-
omy was classified using Kaiju v.1.5.0,[113] with NCBI’s nonredundant pro-
tein database, including fungi and microbial eukaryotes, and genes were
further annotatedwith functions using theNCBI’s Clusters ofOrthologous
Groups (COG).[114] Anvi’o was then used to profile each metagenomic
BAM file to estimate the coverage and detection statistics of contigs in
the contigs database and combined mapping profiles into a merged pro-
file database for all individuals. In addition, one imported an anvi’o collec-
tion corresponding to the 10 CONCOCT clusters. Finally, each CONCOCT
cluster was manually binned and further refined using the anvi’o interac-
tive interface[115] taking into account sequence composition, differential
coverage, GC content, and taxonomic signal of the considered contigs.
MAGs with completeness >50% and redundancy <10% were retained for
downstream analyses[116] (Genomic features of the MAGs can be found
in Table S2b in the Supporting Information).

The taxonomy of the final list of MAGs was inferred using the Genome
Taxonomy Database Toolkit (GTDB-Tk)[27] version 95. However, NCBI tax-
onomy was used from the GTDB output to describe the phylum of MAGs
in the results and discussion sections, in order to be in line with the liter-
ature.

MAGs were considered to be detected in a given sample when
>50% of their length was covered by reads to minimize nonspecific read
recruitments.[110] The number of recruited reads below this cutoff was set
to 0 before determining vertical coverage, the number of bases covering
each genome divided by its length.

Gut–Brain Module (GBM) Detection: The red junglefowl shotgun
metagenomic data were translated into neuroactive potential using a pre-
viously describedmodule-based reconstruction framework.[24] Briefly, one
searched for the presence of 56 gut–brain modules (GBMs), each corre-
sponding to a process of synthesis or degradation of a neuroactive com-
pound by the gut microbiota, in each of the red junglefowl MAGs (n =
192). As module structure follows the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database syntax, gene calls for eachMAGwere exported
from the contig database within anvi’o and functionally annotated with
KEGG identifiers using GhostKoala.[117] GBM coverage was calculated as
the number of pathway steps for which at least one of the orthologous
groups is found in a genome, divided by the total number of steps consti-
tuting the GBM using Omixer-RPM v.0.3.2 (https://github.com/raeslab/
omixer-rpm). GBM presence in microbial MAGs was defined with a de-
tection threshold of at least 66% coverage, to provide tolerance to miss
annotations and missing data in incomplete genomes.[24] GBM detection
was visualized with corrplot v.0.84[118] in the four differentially abundant
or discriminant red junglefowl MAGs to identify over/underrepresented
metabolic GBMs between the two behavioral selection lines.

Differential Abundance Estimates: Expected relative abundance of mi-
crobial taxa was modeled directly from read counts for 16S and shot-
gun sequence data at different taxonomic levels (phylum, class, order,
family, genus, and ASVs) using a beta-binomial model controlling for
collection year and controlling for the effect of selection and collection
year on dispersion. The model was fit using corncob v.0.1.0,[119] an r-
based package designed specifically for marker gene compositional data,
which uses sophisticated models to account for sequencing depth and
rare taxa in high-dimensional data and estimates abundance with uncer-
tainties to support hypothesis testing between selection lines. The Wald
test was used to test for differential taxon abundances between selection
lines with a controlled false discovery rate (p-value cutoff < 0.05).[120]

Graphical representations were performed in R using the package
ggplot2 v.3.2.1.9000.[121]
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