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Abstract

Despite an explosive growth of next-generation sequencing data, genome diagnos-

tics only provides a molecular diagnosis to a minority of patients. Software tools that

prioritize genes based on patient symptoms using known gene-disease associations

may complement variant filtering and interpretation to increase chances of success.

However, many of these tools cannot be used in practice because they are embed-

ded within variant prioritization algorithms, or exist as remote services that cannot

be relied upon or are unacceptable because of legal/ethical barriers. In addition, many

tools are not designed for command-line usage, closed-source, abandoned, or

unavailable. We present Variant Interpretation using Biomedical literature Evidence

(VIBE), a tool to prioritize disease genes based on Human Phenotype Ontology codes.

VIBE is a locally installed executable that ensures operational availability and is built

upon DisGeNET-RDF, a comprehensive knowledge platform containing gene-disease

associations mostly from literature and variant-disease associations mostly from

curated source databases. VIBE's command-line interface and output are designed

for easy incorporation into bioinformatic pipelines that annotate and prioritize vari-

ants for further clinical interpretation. We evaluate VIBE in a benchmark based on

305 patient cases alongside seven other tools. Our results demonstrate that VIBE

offers consistent performance with few cases missed, but we also find high comple-

mentarity among all tested tools. VIBE is a powerful, free, open source and locally

installable solution for prioritizing genes based on patient symptoms. Project source

code, documentation, benchmark and executables are available at https://github.

com/molgenis/vibe.
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1 | BACKGROUND

Next-generation sequencing of the human genome enables clinical

geneticists and medical researchers to establish molecular diagnoses

for hereditary rare diseases.1,2 However, despite explosive data

growth3 and time-consuming best efforts, chances of successfully

detecting a causal variant are 40% at best.4-7

A typical genome diagnostic analysis is performed by an auto-

mated reduction of millions of variants to a few dozen candidates for

final interpretation by human experts. This reduction is accomplished

by filtering variants based on genomic annotations such as allele

frequency,8 inheritance mode,9 in silico pathogenicity estimates10 or

previous classification.11

The resulting list of candidate variants can be further filtered or

prioritized using the phenotype (ie, symptoms) of a patient. This is

achieved by taking advantage of known associations between clini-

cally relevant genes12-14 and clinical phenotypes, typically captured by

Human Phenotype Ontology (HPO)15,16 terms. These associations are

stored in structured data sources17 and may also be extracted from

clinical records18 or text mined from primary literature.19 Software

tools have been developed that perform matching of patient symp-

toms to gene-phenotype associations, followed by producing a list of

prioritized genes based on how well they fit the phenotype of the

patient.20-26 The list of prioritized genes allows experts to focus their

attention on the most likely candidate variants first.

Despite many developments, few phenotype-based gene prioritizers

are suitable for routine use in automated molecular diagnostic pipelines.

One key issue is the embedding of phenotype-gene matching inside vari-

ant prioritization algorithms,24,27 which means that the gene prioritization

step is only applied to candidate SNVs (single nucleotide variants) and

indels (small insertions and deletions). Additional molecular information

coming from large structural variation,28,29 comparative genomic hybridi-

zation, Sanger sequencing of poorly covered regions, cytogenetic obser-

vations, RNA-sequencing30 and metabolomics31 cannot be taken into

account, while diagnostic practice has shown that all available data must

be analyzed in unison to achieve maximum yield.32 Combining many

methods to analyze these different molecular data modalities, including

gene and variant prioritizers, into a single monolithic application is not a

sustainable solution. Therefore, VIBE focuses on providing candidate

genes based on patient symptoms and can be used as an interchangeable

module in composable pipelines for complex analyses.

Another key issue is not being able to install software locally.

Tools that operate via a web-interface or web-API (Application Pro-

gramming Interface)24,33-35 would not work in a routine diagnostic

setting, because they cannot depend on availability of external ser-

vices and because of perceived legal or ethical barriers of sending

patient details outside. Other blocking issues include tools not being

designed for command-line usage,36 source code or executables not

being openly available,37,38 and software being abandoned39 or no

longer being available at all.40-42

We have developed VIBE (Variant Interpretation using Biomedical

literature Evidence), an open-source software tool that prioritizes dis-

ease genes that have been reported in literature, animal models and

curated sources by considering patient symptoms. In contrast to the

most comparable tools, this software is available as a stand-alone

command-line executable which trivializes local integration into bioin-

formatic pipelines, allowing for use in routine genome diagnostics. By

doing so, VIBE may save a significant amount of time by automating

an otherwise labor-intensive process, thereby speeding up diagnosis.

2 | IMPLEMENTATION

VIBE (version 2.0) was programmed in Java 8,43 using DisGeNET44 as

its main data source. DisGeNET is a discovery platform containing

one of the largest publicly available collections of genes and variants

associated to human diseases. It integrates data from expert curated

repositories, GWAS (Genome-Wide Association Study) catalogs, ani-

mal models and scientific literature.45 The value that VIBE adds to

DisGeNET for use in genome diagnostics is that it (a) provides a qual-

ity open-source command-line executable, (b) semantically integrates

DisGeNET with additional resources, (c) allows users to prioritize

genes by HPO codes, and (d) runs offline to ensure availability and

reproducibility.

The core data source of VIBE v2.0 is the RDF (Resource Descrip-

tion Framework) representation46 of DisGeNET r6.0. These data were

supplemented with pda.ttl, phenotype.ttl, and void.ttl from DisGeNET

r5.0. We also included SIO (Semanticscience Integrated Ontology,

v1.43),47 used by DisGeNET to semantically harmonize its gene-disease

associations. Lastly, we incorporated Orphadata HOOM (The HPO-

ORDO Ontological Module) r1.3,16 which adds additional phenotype-

disease associations.

All these sources are combined into a TDB triple store, which is

built using Apache Jena (v3.12.0).48 On this triple store, a SPARQL

construct query is executed to obtain a minimized dataset in TTL

format. The minimized TTL set is then used to build the final TDB

triple store by Apache Jena. This database can be downloaded and

used directly by VIBE. Alternatively, a shell script and detailed

instructions are provided to build a custom database by the users

themselves.

After data preparation, VIBE can be executed as a stand-alone

executable and works completely offline. Patient symptoms are

accepted as the HPO codes from which optimized SPARQL queries

are constructed to interrogate the triple store. Query output is inter-

nally parsed, processed and formatted for writing to an output file.

VIBE comes with a unit test suite written in TestNG (v7.0.0)49 and is

compiled using Apache Maven (v3.3.9).50

Availability and requirements:

Project name: VIBE

Project home page: https://github.com/molgenis/vibe

Operating system(s): Platform independent

Programming language: Java

Other requirements: Java 8 or higher

License: GNU Lesser General Public License v3.0

Any restrictions to use by nonacademics: None
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2.1 | Input parameters

The minimal set of VIBE command-line input parameters consists of:

−t pointing to the TDB triple store directory, −o denoting the output

file location, and − p providing one or multiple HPO codes, for exam-

ple, HP:0002996. Nonrequired, advanced options are: −l for genes-

only output, −m to set maximum ontology distance traversal, −n to

select child or distance based ontology traversal, −w to supply an

HPO OWL file when using the -m and -n options to increase pheno-

typic search space, −v for running in verbose mode, and finally, −h to

print help.

2.2 | Algorithm

Users provide one or multiple HPO codes as input search terms.

If the −w option is used to supply an HPO OWL file along with

−m > 0 and −n set to distance, all neighboring HPO terms at tra-

versal distance m are added to the search terms. If −n set to

children, only descendants of the input terms are considered here

within the defined distance −m. VIBE first maps the HPO search

terms to CUIs (concept unique identifiers) from UMLS (Unified

Medical Language System51) using a SPARQL query. The query

branches into three paths to retrieve CUIs of any Diseases, Dis-

orders or Findings: (a) HPO to CUI matching according to UMLS

Metathesaurus, (b) HPO to ORDO matching according to HOOM,

(c) HPO to the gene-diseases associations according to Dis-

GeNET PDAs (Phenotype-Disease Annotations). A union of

resulting CUIs is then used to retrieve all matching GDAs (Gene-

Disease Associations). The GDAs are grouped by unique NCBI

(National Center for Biotechnology Information) gene identifiers.

The highest GDA score52 within each group determines the pri-

ority of the corresponding gene. The output is formed by listing

all found genes in descending order of priority, accompanied by

all GDA scores and PubMed identifiers of supporting literature

grouped per CUI matched to that gene. All SPARQL queries and

algorithms for data pre- and post-processing can be found in the

main VIBE repository.

2.3 | Output file

The default output produced by VIBE is a tab-delimited file con-

taining three columns: (a) gene (NCBI), an NCBI gene identifier,

(b) highest GDA score is the highest Gene-Disease Association

score from any of the associated diseases, disorders or findings,

and lastly, (c) diseases (UMLS) with sources per disease, containing

one or multiple associations represented by UMLS identifiers

(eg, C0410538) plus GDA score and PubMed identifiers when

available. Multiple associations are pipe-separated. The genes-

only output contains only comma-separated NCBI gene identi-

fiers in descending order of relevance according to highest GDA

score.

2.4 | Patient benchmark

We constructed a benchmark using the reported symptoms and

308 causal genes from 305 rare disease patient cases, including three

patients who received a dual molecular genetic diagnosis.53 Because

these are published patient cases, their disease-gene associations could

have been included in DisGeNET, causing circular reasoning and there-

fore an unfair comparison. Consequently, we first made sure that this

publication was not part of the DisGeNET data. The HPO terms from

these cases were then matched to the HPO (release v2018-03-08) to

obtain their corresponding codes. For details on processing the patient

benchmark data, see Data 1 (Supporting Information). The resulting

HPO codes were supplied to VIBE and seven other available tools that

can prioritize genes based on phenotypes: Phenomizer,38 PhenoTips,36

hiPHIVE,54 PhenIX,55 PubCaseFinder,35 AMELIE,34 and GADO.26 The

scope of these tools differs from known clinical genes (eg, Phenomizer),

to genes mined from literature (eg, AMELIE), and gene expression-

based predictions for all coding and noncoding genes in GADO.

To benchmark PhenIX and hiPHIVE, we used the exomiser-rest-

prioritizer module of the Exomiser open-source code (release 12.1.0) to

run a service that was able to prioritize genes based on HPO codes

only, without the need to supply a VCF file. We used data version

1909 and default arguments. For GADO, we used the stand-alone

command-line version 1.0.1 with prediction matrix hpo_-

predictions_sigOnly_spiked_01_02_-2018. We accepted all automati-

cally suggested alternative HPO terms in cases that the supplied HPO

term could not be used. PhenoTips was benchmarked by running the

“All-in-one package for OS X,” version 1.3.7. VIBE (version 2.0) was run

at default settings without ontology traversal. The other tools were

accessed via the web (AMELIE and Phenomizer during May/June 2018,

PubCaseFinder in January 2020). Multiple queries were submitted in

case input was restricted to a small set of genes to obtain a potential

ranking for all genes. Python and R scripts were written to retrieve,

merge, process and visualize the output gene lists from each assessed

tool, and are available in the supplementary VIBE repository.

To find out how the tools would perform in a real-life scenario,

we also simulated the interpretation of a clinical exome. In this sce-

nario, we suppose that a human expert is faced with 20 genes harbor-

ing candidate pathogenic variants of which one gene is causal. The

expert uses a phenotype-based gene prioritization tool to rank these

20 genes, followed by interpreting the variants starting from the most

likely gene. To simulate this, we downloaded the CGD12 (Clinical

Genomic Database, accessed 4 February 2020) to represent genes

that could appear as candidates in a clinical exome analysis, and

converted the gene names to NCBI identifiers (n = 3986). For each of

the 308 causal genes from the patient cases, we selected 19 other

pseudorandom genes from CGD and spiked in the causal gene. We

then let each of the tools rank these 20 genes and retrieved the rank

of the causal gene. If a gene could not be ranked because it was not

present in the output of a tool, it was assigned a random rank posi-

tioned after the genes that were returned, because this is what would

happen in practice. Suppose a tool returns a ranking for 15 of the

20 genes without the causal gene, then these 15 are investigated first,
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so the causal gene is later found anywhere between 16 and 20. To

compensate for outliers, we stabilized the rank as the median of

25 permutations. Finally, we counted per tool the number of causal

genes ranked first, second, third, and so on.

3 | RESULTS

To assess the behavior and performance of VIBE, we ran the bench-

mark described above. From each tool we obtained a list of prioritized

genes for every patient case. Figure 1 shows the number of returned

genes vs the rank of the causal gene if found within the output gene

list. The number of missed genes for each tool, where the causal gene

was not present in the output gene list, was added to the labels.

A heat map of the benchmark results is shown in Figure 2. For

each patient case, we plotted the causal gene rank for all assessed

tools. Causal genes that were not observed in the tool output are

shown in black. Hierarchical clustering shows a degree of dissimilarity

between all of the tested tools.
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The results from the clinical exome interpretation simulation are

shown in Figure 3. We plotted the cumulative number of detected

causal genes starting from rank 1 (best but least detected) through

rank 20 (worst but all detected). At rank 20, all tools arrive at their

total recall of 308 causal genes. Initially, AMELIE performs the best

with 166 detected causal genes at rank one, though most tools

quickly catch up when considering further ranks.

We also investigated to which degree the assessed tools are com-

plementary. This was achieved by counting how often a causal gene

was listed within the top 20 results for each case by one or multiple

tools. Remarkably, each tool listed at least one causal gene that was

not listed by any of the other tested tools using this cutoff. GADO

uniquely prioritized 1 causal gene, PubCaseFinder 1, Phenotips

2, hiPHIVE 3, PhenIX 5, VIBE 6, Phenomizer 15, and AMELIE 17. In

total, 50 genes were listed uniquely by one tool. If we consider

nonuniquely listed genes, that is, listed by one or multiple tools in

their top 20, we find 121 genes. See Figure 4 for a comparison of

unique hits for all tools at various cutoffs.

4 | DISCUSSION

VIBE seems to be a solid choice for routine genome diagnostics as a

phenotype-based gene prioritizer, especially when it needs to be inte-

grated in an automated bioinformatics pipeline. Locally installed soft-

ware such as VIBE ensures availability and reproducibility. It can

therefore be integrated into critical business processes, while external

services such as AMELIE may offer valuable information but cannot

always be used since privacy and availability are not guaranteed.

In our simulation, the tools with a high recall (AMELIE, Phenotips,

PhenIX, hiPHIVE, GADO, and VIBE) were all able to prioritize the

majority of causal genes within the top 5 (see Figure 3). VIBE's perfor-

mance appears especially consistent as shown by the stable number

of unique hits throughout a large threshold range (see Figure 4) and

narrower distribution of causal gene ranks than those of comparable

tools (see Figure 1, Y-axis). However, VIBE does seem to be lacking in

exceptionally well prioritized genes near the bottom of the graph.

Looking closer into the results, we find certain genes over-

represented at high positions. For instance, in the top 10 genes of the

305 cases, we find 226 occurrences of NCBI gene 4204 (MECP2) and

219 occurrences of NCBI gene 8085 (KMT2D). This is likely caused

by a form of bias, which we naturally aim to resolve in upcoming ver-

sions to let VIBE reach its fullest potential.

The question of which is the best tool is difficult to answer because

of large diversity in scope, design, output size, recall rate and ultimately,

user requirements. Indeed, we observed clear differences in number of

genes returned, number of missed genes, and ranking dissimilarity (see

Figures 1 and 2). The benefit of this diversity is complementarity. When

taking the top 20 all tools together, they list 121 of 308 (39.29%) of

causal genes, and of those 121, 50 were in fact unique to one tool

(41.32%). In fact, unique detection occurs at nearly any cutoff, for any

tool, as shown in Figure 4. The tested tools tend to each contribute

unique pieces to the diagnostic puzzle. Therefore, we envision future

projects that will try to combine the best features of these tools.

For now, a combination of tools could maximize chances of suc-

cess. For instance, in a genome diagnostic setting with unsolved rare

disease patients, it would be most efficient to first investigate candi-

date DNA variants in the output of a tool that returns few usual sus-

pect genes, before progressively broadening the search to include

more unexpected genes. By employing the strengths of each tool

appropriately, time can be saved on easily resolved cases allowing

more time to also reach a diagnosis for difficult, time-consuming

cases. Furthermore, our benchmark may be representative of clinical

practice to a degree but does not demonstrate individual strengths of

the tested tools. For instance, GADO is trained on gene expression
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data and its true strength is being able to implicate completely novel

coding and noncoding genes to human phenotypes for unsolved diffi-

cult cases. In that light, it is noteworthy that GADO's performance in

this solved-case benchmark is still quite close to tools based on more

direct evidence such as literature.

Finally, it must be emphasized that tools with high output vol-

umes are still useful. Of course no clinician will examine thousands

of prioritized genes based on a phenotype match. In practice, only

those genes in which variants have been found and have a possible

molecular effect (eg, low population frequency and high conserva-

tion) need to be followed up. Therefore, it is the variant selection

step that mainly determines how many genes require further inves-

tigation, not the gene prioritization tools. A large volume of priori-

tized genes is translated to a small set of genes for which

candidate variants were detected. As long as gene prioritizers gen-

erally rank causal genes higher than noncausal ones, they will aid

the diagnostic process. We have demonstrated this point in our

clinical exome interpretation simulation and visualized the results in

Figure 3.

5 | CONCLUSION

We have developed VIBE, a phenotype-based gene prioritization tool

that is straightforward to install and run locally on the command-line,

exhibits consistent performance, and therefore is a free and

open-source software (FOSS). This makes VIBE ideal for use in bioin-

formatic pipelines in the settings that mandate high availability and

reliability. VIBE will be updated to work with upcoming DisGeNET-

RDF data releases to continue offering the latest gene-disease

associations. Currently, VIBE version 2.0 has been released, with next

versions under active development. Project source code, documenta-

tion, benchmark and executables are available at https://github.com/

molgenis/vibe.

ACKNOWLEDGMENTS

We would like to thank the authors of DisGeNET for creating a great

resource and kindly providing us with help and feedback. We also

thank Dr Jules Jacobsen for helping to set up the Exomiser benchmark

and the MOLGENIS development team for technical assistance and

code reviews. This project has received funding from the Netherlands

Organisation for Scientific Research NWO under VIDI grant number

917.164.455 and the Netherlands CardioVascular Research Initiative:

“the Dutch Heart Foundation, Dutch Federation of University Medical

Centres, the Netherlands Organisation for Health Research and

Development and the Royal Netherlands Academy of Sciences” for

the GENIUS project” Generating the best evidence-based pharmaceu-

tical targets for atherosclerosis” (CVON2011-19). In addition, we

acknowledge support from the European Union's Horizon 2020

Research and Innovation Programme under grant agreement

No. 779257 (Solve-RD) and 825575 (European Joint Programma on

Rare Disease).

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

Sander van den Hoek: Conceptualization; writing-review and editing.

Freerk van Dijk: Conceptualization; writing-review and editing.

Dennis Hendriksen: Writing-review and editing. Cleo van Diemen:

Writing-review and editing. Lennart Johansson: Writing-review and

editing. Kristin Abbott: Writing-review and editing. Patrick Deelen:

Writing-review and editing. Birgit Sikkema-Raddatz: Writing-review

and editing.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/ggn2.10023.

DATA AVAILABILITY STATEMENT

VIBE executables, documentation, source code and data resources are

available at https://github.com/molgenis/vibe. Presented here is VIBE

v2.0, Git commit: 934b26a5c8d12fbe36e8ef63da945eae21217bfb.

The benchmark and other supporting code is available at https://

github.com/molgenis/vibe-suppl and https://github.com/svanden

hoek/query phenomizer. Benchmark data has been published

online.56

REFERENCES

1. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome

sequencing decreases infant morbidity and cost of hospitalization.

NPJ Genom Med. 2018;3(1):3-10. https://doi.org/10.1038/s41525-

018-0049-4.

2. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing

for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):

1502-1511. https://doi.org/10.1056/nejmoa1306555.

3. Kodama Y, Shumway M, Leinonen R. The sequence read archive:

explosive growth of sequencing data. Nucleic Acids Res. 2011;40(D1):

54-56. https://doi.org/10.1093/nar/gkr854.

4. Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing

rare disease in children. Nat Rev Genet. 2018;19(5):253-268. https://

doi.org/10.1038/nrg.2017.116.

5. Dragojlovic N, Elliott AM, Adam S, et al. The cost and diagnostic yield

of exome sequencing for children with suspected genetic disorders: a

benchmarking study. Genet Med. 2018;20(9):1013-1021. https://doi.

org/10.1038/gim.2017.226.

6. Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for

genetic identification of rare mendelian disorders. JAMA. 2014;312

(18):1880. https://doi.org/10.1001/jama.2014.14604.

7. Vissers LELM, van Nimwegen KJM, Schieving JH, et al. A clinical util-

ity study of exome sequencing versus conventional genetic testing in

pediatric neurology. Genet Med. 2017;19(9):1055-1063. https://doi.

org/10.1038/gim.2017.1.

8. Whiffin N, Minikel E, Walsh R, et al. Using high-resolution variant fre-

quencies to empower clinical genome interpretation. Genet Med.

2017;19(10):1151-1158. https://doi.org/10.1038/gim.2017.26.

9. Cassa CA, Weghorn D, Balick DJ, et al. Estimating the selective effects

of heterozygous protein-truncating variants from human exome data.

Nat Genet. 2017;49(5):806-810. https://doi.org/10.1038/ng.3831.

10. Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for

use with acmg/amp clinical variant interpretation guidelines.

6 of 8 VAN DER VELDE ET AL.

https://github.com/molgenis/vibe
https://github.com/molgenis/vibe
https://publons.com/publon/10.1002/ggn2.10023
https://publons.com/publon/10.1002/ggn2.10023
https://github.com/molgenis/vibe
https://github.com/molgenis/vibe-suppl
https://github.com/molgenis/vibe-suppl
https://github.com/svandenhoek/query
https://github.com/svandenhoek/query
https://doi.org/10.1038/s41525-018-0049-4
https://doi.org/10.1038/s41525-018-0049-4
https://doi.org/10.1056/nejmoa1306555
https://doi.org/10.1093/nar/gkr854
https://doi.org/10.1038/nrg.2017.116
https://doi.org/10.1038/nrg.2017.116
https://doi.org/10.1038/gim.2017.226
https://doi.org/10.1038/gim.2017.226
https://doi.org/10.1001/jama.2014.14604
https://doi.org/10.1038/gim.2017.1
https://doi.org/10.1038/gim.2017.1
https://doi.org/10.1038/gim.2017.26
https://doi.org/10.1038/ng.3831


Genome Biol. 2017;18(1):225. https://doi.org/10.1186/s13059-

017-1353-5.

11. Cassa CA, Tong MY, Jordan DM. Large numbers of genetic variants

considered to be pathogenic are common in asymptomatic individ-

uals. Hum Mutat. 2013;34(9):1216-1220. https://doi.org/10.1002/

humu.22375.

12. Solomon BD, Nguyen A-D, Bear KA, Wolfsberg TG. Clinical genomic

database. Proc Natl Acad Sci U S A. 2013;110(24):9851-9855. https://

doi.org/10.1073/pnas.1302575110.

13. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF,

Hamosh A. Omim.org: Online mendelian inheritance in man

(omim®), an online catalog of human genes and genetic disor-

ders. Nucleic Acids Res. 2014;43(D1):789-798. https://doi.org/

10.1093/nar/gku1205.

14. Shefchek KA, Harris NL, Gargano M, et al. The monarch initiative in

2019: an integrative data and analytic platform connecting pheno-

types to genotypes across species. Nucleic Acids Res. 2019;48:D704-

D715. https://doi.org/10.1093/nar/gkz997.

15. Robinson P, Mundlos S. The human phenotype ontology. Clin Genet.

2010;77(6):525-534. https://doi.org/10.1111/j.1399-0004.2010.

01436.x.

16. Köhler S, Carmody L, Vasilevsky N, et al. Expansion of the human pheno-

type ontology (hpo) knowledge base and resources. Nucleic Acids Res.

2018;47(D1):1018-1027. https://doi.org/10.1093/nar/gky1105.

17. Köhler S, Doelken SC, Mungall CJ, et al. The human phenotype ontol-

ogy project: linking molecular biology and disease through phenotype

data. Nucleic Acids Res. 2013;42(D1):966-974. https://doi.org/10.

1093/nar/gkt1026.

18. Köhler S, Øien NC, Buske OJ, et al. Encoding clinical data with the

human phenotype ontology for computational differential diagnos-

tics. Curr Protocols Hum Gen. 2019;103(1):e92-e92. https://doi.org/

10.1002/cphg.92.

19. Bravo A, Pinero J, Queralt-Rosinach N, Rautschka M, Furlong LI. Extrac-

tion of relations between genes and diseases from text and large-scale

data analysis: implications for translational research. BMC Bioinform.

2015;16(1):16-55. https://doi.org/10.1186/s12859-015-0472-9.

20. James RA, Campbell IM, Chen ES, et al. A visual and curatorial

approach to clinical variant prioritization and disease gene discovery

in genome-wide diagnostics. Genome Med. 2016;8(1):13. https://doi.

org/10.1186/s13073-016-0261-8.

21. Jalali Sefid Dashti M, Gamieldien J. A practical guide to filtering and

prioritizing genetic variants. Biotechniques. 2017;62(1):18-30. https://

doi.org/10.2144/000114492.

22. Godard P, Page M. Pcan: phenotype consensus analysis to support

disease-gene association. BMC Bioinform. 2016;17(1):518. https://

doi.org/10.1186/s12859-016-1401-2.

23. Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioriti-

zation of candidate genes for human diseases. Nat Methods. 2015;12

(9):841-843. https://doi.org/10.1038/nmeth.3484.

24. Singleton M, Guthery S, Voelkerding K, et al. Phevor combines multi-

ple biomedical ontologies for accurate identification of disease-

causing alleles in single individuals and small nuclear families.

Am J Hum Genet. 2014;94(4):599-610. https://doi.org/10.1016/j.

ajhg.2014.03.010.

25. Masino AJ, Dechene ET, Dulik MC, et al. Clinical phenotype-based

gene prioritization: an initial study using semantic similarity and the

human phenotype ontology. BMC Bioinform. 2014;15(1):248. https://

doi.org/10.1186/1471-2105-15-248.

26. Deelen P, van Dam S, Herkert JC, et al. Improving the diagnostic yield

of exome- sequencing by predicting gene–phenotype associations

using large-scale gene expression analysis. Nat Commun. 2019;10(1):

2837. https://doi.org/10.1038/s41467-019-10649-4.

27. Javed A, Agrawal S, Ng PC. Phen-gen: combining phenotype and

genotype to analyze rare disorders. Nat Methods. 2014;11(9):935-

937. https://doi.org/10.1038/nmeth.3046.

28. Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of

structural variants and indels for germline and cancer sequencing

applications. Bioinformatics. 2015;32(8):1220-1222. https://doi.org/

10.1093/bioinformatics/btv710.

29. Krumm N, Sudmant PH, Ko A, et al. Copy number variation detection

and genotyping from exome sequence data. Genome Res. 2012;22(8):

1525-1532. https://doi.org/10.1101/gr.138115.112.

30. Kremer LS, Bader DM, Mertes C, et al. Genetic diagnosis of mende-

lian disorders via rna sequencing. Nat Commun. 2017;8:15824.

https://doi.org/10.1038/ncomms15824.

31. Graham E, Lee J, Price M, et al. Integration of genomics and met-

abolomics for prioritization of rare disease variants: a 2018 literature

review. J Inherit Metab Dis. 2018;41(3):435-445. https://doi.org/10.

1007/s10545-018-0139-6.

32. van Diemen CC, Kerstjens-Frederikse WS, Bergman KA, et al. Rapid

targeted genomics in critically ill newborns. Pediatrics. 2017;140(4):

20162854. https://doi.org/10.1542/peds.2016-2854.

33. Antanaviciute A, Watson CM, Harrison SM, et al. Ova: Integrating

molecular and physical phenotype data from multiple biomedical

domain ontologies with variant filtering for enhanced variant prioritiza-

tion. Bioinformatics. 2015;473(23):3822. https://doi.org/10.1093/

bioinformatics/btv473.

34. Birgmeier J, Haeussler M, Deisseroth CA, et al. Amelie accelerates

mendelian patient diagnosis directly from the primary literature. bio-

Rxiv 171322. 2017. https://doi.org/10.1101/171322.

35. Fujiwara T, Yamamoto Y, Kim J-D, Buske O, Takagi T. Pubcasefinder:

a case-report-based, phenotype-driven differential-diagnosis system

for rare diseases. Am J Hum Genet. 2018;103(3):389-399. https://doi.

org/10.1016/j.ajhg.2018.08.003.

36. Girdea M, Dumitriu S, Fiume M, et al. Phenotips: patient phenotyping

software for clinical and research use. Hum Mutat. 2013;34(8):1057-

1065. https://doi.org/10.1002/humu.22347.

37. Miller NA, Farrow EG, Gibson M, et al. A 26-hour system of highly

sensitive whole genome sequencing for emergency management of

genetic diseases. Genome Med. 2015;7(1):100. https://doi.org/10.

1186/s13073-015-0221-8.

38. Köhler S, Schulz MH, Krawitz P, et al. Clinical diagnostics in human

genetics with semantic similarity searches in ontologies. Am J Hum

Genet. 2009;85(4):457-464. https://doi.org/10.1016/j.ajhg.2009.

09.003.

39. Sifrim A, Popovic D, Tranchevent L-C, et al. extasy: variant prioritiza-

tion by genomic data fusion. Nat Methods. 2013;10(11):1083-1084.

https://doi.org/10.1038/nmeth.2656.

40. Makita Y, Kobayashi N, Yoshida Y, et al. Posmed: ranking genes

and bioresources based on semantic web association study.

Nucleic Acids Res. 2013;41(W1):109-114. https://doi.org/10.1093/

nar/gkt474.

41. Pengelly RJ, Alom T, Zhang Z, Hunt D, Ennis S, Collins A. Evaluating

phenotype-driven approaches for genetic diagnoses from exomes in a

clinical setting. Sci Rep. 2017;7(1):13509. https://doi.org/10.1038/

s41598-017-13841-y.

42. Saklatvala JR, Dand N, Simpson MA. Text-mined phenotype annota-

tion and vector-based similarity to improve identification of similar

phenotypes and causative genes in monogenic disease patients. Hum

Mutat. 2018;39(5):643-652. https://doi.org/10.1002/humu.23413.

43. Oracle Corporation, Java Programming Language. https://www.java.

com. Accessed January 01, 2018.

44. Pinero J, Queralt-Rosinach N, Bravo A, et al. Disgenet: a discovery

platform for the dynamical exploration of human diseases and their

genes. Database. 2015;2015:28. https://doi.org/10.1093/database/

bav028.

45. Integrative Biomedical Informatics Group, DisGeNET Website.

http://www.disgenet.org. Accessed January 01, 2018.

46. Queralt-Rosinach N, Pinero J, Bravo A, Sanz F, Furlong LI. Disgenet-

rdf: harnessing the innovative power of the semantic web to explore

VAN DER VELDE ET AL. 7 of 8

https://doi.org/10.1186/s13059-017-1353-5
https://doi.org/10.1186/s13059-017-1353-5
https://doi.org/10.1002/humu.22375
https://doi.org/10.1002/humu.22375
https://doi.org/10.1073/pnas.1302575110
https://doi.org/10.1073/pnas.1302575110
https://doi.org/10.1093/nar/gku1205
https://doi.org/10.1093/nar/gku1205
https://doi.org/10.1093/nar/gkz997
https://doi.org/10.1111/j.1399-0004.2010.01436.x
https://doi.org/10.1111/j.1399-0004.2010.01436.x
https://doi.org/10.1093/nar/gky1105
https://doi.org/10.1093/nar/gkt1026
https://doi.org/10.1093/nar/gkt1026
https://doi.org/10.1002/cphg.92
https://doi.org/10.1002/cphg.92
https://doi.org/10.1186/s12859-015-0472-9
https://doi.org/10.1186/s13073-016-0261-8
https://doi.org/10.1186/s13073-016-0261-8
https://doi.org/10.2144/000114492
https://doi.org/10.2144/000114492
https://doi.org/10.1186/s12859-016-1401-2
https://doi.org/10.1186/s12859-016-1401-2
https://doi.org/10.1038/nmeth.3484
https://doi.org/10.1016/j.ajhg.2014.03.010
https://doi.org/10.1016/j.ajhg.2014.03.010
https://doi.org/10.1186/1471-2105-15-248
https://doi.org/10.1186/1471-2105-15-248
https://doi.org/10.1038/s41467-019-10649-4
https://doi.org/10.1038/nmeth.3046
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1101/gr.138115.112
https://doi.org/10.1038/ncomms15824
https://doi.org/10.1007/s10545-018-0139-6
https://doi.org/10.1007/s10545-018-0139-6
https://doi.org/10.1542/peds.2016-2854
https://doi.org/10.1093/bioinformatics/btv473
https://doi.org/10.1093/bioinformatics/btv473
https://doi.org/10.1101/171322
https://doi.org/10.1016/j.ajhg.2018.08.003
https://doi.org/10.1016/j.ajhg.2018.08.003
https://doi.org/10.1002/humu.22347
https://doi.org/10.1186/s13073-015-0221-8
https://doi.org/10.1186/s13073-015-0221-8
https://doi.org/10.1016/j.ajhg.2009.09.003
https://doi.org/10.1016/j.ajhg.2009.09.003
https://doi.org/10.1038/nmeth.2656
https://doi.org/10.1093/nar/gkt474
https://doi.org/10.1093/nar/gkt474
https://doi.org/10.1038/s41598-017-13841-y
https://doi.org/10.1038/s41598-017-13841-y
https://doi.org/10.1002/humu.23413
https://www.java.com
https://www.java.com
https://doi.org/10.1093/database/bav028
https://doi.org/10.1093/database/bav028
http://www.disgenet.org


the genetic basis of diseases. Bioinformatics. 2016;32(14):2236-2238.

https://doi.org/10.1093/bioinformatics/btw214.

47. Dumontier M, Baker CJ, Baran J, et al. The semanticscience inte-

grated ontology (SIO) for biomedical research and knowledge discov-

ery. J Biomed Semantics. 2014;5(1):14. https://doi.org/10.1186/

2041-1480-5-14.

48. The Apache Software Foundation, Jena. https://jena.apache.org.

Accessed January 01, 2018.

49. Cédric Beust, TestNG Testing Framework. https://testng.org.

Accessed January 01, 2018.

50. The Apache Software Foundation, Maven. https://maven.apache.org.

Accessed January 01, 2018.

51. Bodenreider O. The unified medical language system (umls): integrat-

ing biomedical terminology. Nucleic Acids Res. 2004;32(90001):267-

270. https://doi.org/10.1093/nar/gkh061.

52. Pinero J, Bravo A, Queralt-Rosinach N, et al. Disgenet: a comprehen-

sive platform integrating information on human disease-associated

genes and variants. Nucleic Acids Res. 2016;45(D1):833-839. https://

doi.org/10.1093/nar/gkw943.

53. Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, et al. Clinical

exome sequencing: results from 2819 samples reflecting 1000 fami-

lies. Eur J Hum Genet. 2016;25(2):176-182. https://doi.org/10.1038/

ejhg.2016.146.

54. Smedley D, Jacobsen JOB, Jäger M, et al. Next-generation diagnostics

and disease-gene discovery with the exomiser. Nat Protoc. 2015;10

(12):2004-2015. https://doi.org/10.1038/nprot.2015.124.

55. Zemojtel T, Köhler S, Mackenroth L, et al. Effective diagnosis of

genetic disease by computational phenotype analysis of the disease-

associated genome. Sci Transl Med. 2014;6(252):252ra123. https://

doi.org/10.1126/scitranslmed.3009262.

56. Van den Hoek S. (2020), VIBE benchmark data (version 2, February

3, 2020) [dataset], Zenodo, https://doi.org/10.5281/zenodo.3662470.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: van der Velde KJ, van den Hoek S,

van Dijk F, et al. A pipeline-friendly software tool for genome

diagnostics to prioritize genes by matching patient symptoms

to literature. Advanced Genetics. 2020;1:e10023. https://doi.

org/10.1002/ggn2.10023

8 of 8 VAN DER VELDE ET AL.

https://doi.org/10.1093/bioinformatics/btw214
https://doi.org/10.1186/2041-1480-5-14
https://doi.org/10.1186/2041-1480-5-14
https://jena.apache.org
https://testng.org
https://maven.apache.org
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1038/ejhg.2016.146
https://doi.org/10.1038/ejhg.2016.146
https://doi.org/10.1038/nprot.2015.124
https://doi.org/10.1126/scitranslmed.3009262
https://doi.org/10.1126/scitranslmed.3009262
https://doi.org/10.5281/zenodo.3662470
https://doi.org/10.1002/ggn2.10023
https://doi.org/10.1002/ggn2.10023

	A pipeline-friendly software tool for genome diagnostics to prioritize genes by matching patient symptoms to literature
	1  BACKGROUND
	2  IMPLEMENTATION
	2.1  Input parameters
	2.2  Algorithm
	2.3  Output file
	2.4  Patient benchmark

	3  RESULTS
	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  PEER REVIEW
	  DATA AVAILABILITY STATEMENT
	REFERENCES


