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A B S T R A C T

Under the normalization of epidemic control in COVID-19, it is essential to realize fast and high-precision face
recognition without feeling for epidemic prevention and control. This paper proposes an innovative Laplacian
pyramid algorithm for deep 3D face recognition, which can be used in public. Through multi-mode fusion,
dense 3D alignment and multi-scale residual fusion are ensured. Firstly, the 2D to 3D structure representation
method is used to fully correlate the information of crucial points, and dense alignment modeling is carried out.
Then, based on the 3D critical point model, a five-layer Laplacian depth network is constructed. High-precision
recognition can be achieved by multi-scale and multi-modal mapping and reconstruction of 3D face depth
images. Finally, in the training process, the multi-scale residual weight is embedded into the loss function
to improve the network’s performance. In addition, to achieve high real-time performance, our network is
designed in an end-to-end cascade. While ensuring the accuracy of identification, it guarantees personnel
screening under the normalization of epidemic control. This ensures fast and high-precision face recognition
and establishes a 3D face database. This method is adaptable and robust in harsh, low light, and noise
environments. Moreover, it can complete face reconstruction and recognize various skin colors and postures.
. Introduction

Under the background of normalization of epidemic prevention and
ontrol, it is the focus of epidemic prevention work to do a good
ob of monitoring personnel flow. Some countries have introduced
he policy of removing masks. Therefore, it is particularly critical to
ealize the non-contact, efficient and safe management of people or
eople in public places. Among them, there are two most serious
roblems. First, how to use the method of quickly recognizing faces
n public places, you can confirm your identity, and get information
bout your health and itinerary. Second, how to use scientific and
echnological means to obtain information about people closely linked
n time and space, and timely screen to avoid a large-scale outbreak
f the epidemic [1]. To solve the above problems, face recognition
nd reconstruction algorithms are listed as important research direc-
ions by researchers. Because three-dimensional face recognition and
hree-dimensional reconstruction have many advantages, such as non-
ontact, non-sensory recognition, good range, and safety. Therefore,
t can provide an effective method for the normalization of epidemic
revention and control, and effectively avoid the risk of cross-infection
f bacteria and viruses caused by physical contact [2]. Concerning user
rivacy, first of all, all data sets used in this algorithm research are
ublic data sets for research. Secondly, when the algorithm is applied
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to the 3D vision face recognition module, the collected face images only
record the face feature values. Face image data will not be saved, so
users do not have to worry about privacy leakage at all. Therefore,
under the background of the normalization of epidemic prevention
and control, it is essential to realize face recognition of different skin
colors and angles quickly, efficiently, and accurately in the face of
many scenes without masks. This paper proposes an innovative three-
dimensional face recognition algorithm based on the deep Laplacian
pyramid. It can be used for rapid face recognition, and reconstruction
in the normalization of epidemic prevention and control and is helpful
to obtain their identity and health information efficiently. Because this
paper focuses on the high-precision recognition and reconstruction of
three-dimensional faces, the research in the field of face recognition is
mainly analyzed below.

Face recognition is a biometric identification technology based on
facial feature information for identity authentication. The development
of this technology mainly relies on deep learning, 3D face recognition,
and ultra-low resolution face [1–3]. Generally, face recognition is
divided into two-dimensional face recognition and three-dimensional
face recognition two categories. 3D face recognition is relative to 2D
face recognition. The data used in two-dimensional face recognition is
a two-dimensional image, which is essentially a projection of a three-
dimensional object in a two-dimensional plane. Because the face itself
ttps://doi.org/10.1016/j.comcom.2022.12.011
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has three-dimensional attributes, so the use of three-dimensional face
data for face recognition has more advantages [4–6]. 3D face data
can be estimated from 2D color images or obtained directly by 3D
imaging equipment. That is to say, face recognition based on 3D is the
mainstream research direction [7,8]. The main research of this paper
is also based on 3D face recognition.

However, previous studies on 3D face recognition and 2D face
recognition are often independent. Traditional two-dimensional face
recognition mainly uses mathematical methods to extract correspond-
ing features from the image matrix, which generally scales invariant
features. The commonly used algorithms include SURF, SIFT, HARRIS,
GFTT, and so on. 3D face recognition processing is 3D data, such as
point clouds, voxels, etc. These data are complete, three-dimensional,
and can express the facial features of objects from various angles.
The processing methods and processes are similar in two and three
dimensions. The difference is that the data to be processed is different.
Considering the limitations of two-dimensional face recognition and the
difficulty of three-dimensional face recognition. In this paper, the data
fusion strategy is innovatively adopted to combine two-dimensional
data processing and three-dimensional data analysis. Using the idea
of residual iteration, 2D and 3D features of the human face are fused
without loss of network speed. The feature information of different
levels of the image is highly correlated. In the network model design,
the Laplace function is skillfully used to construct a pyramid structure,
which is densely connected by residual modules. Each level is no longer
a single independent distribution. It is a compact architecture. Based on
this, our algorithm has higher recognition results. The generalization
works better. Moreover, it can tolerate more postures, expressions, and
skin tone changes.

Facial recognition outcomes are often analyzed at the data level.
But this approach is not suitable for subjective visualization. Some
researchers [6,9] have proposed that facial recognition and recon-
struction should not be completely independent of one another. Both
perform matching calculations on features such as pixel and texture, so
the recognition and reconstruction fields are also similar in principle.
Inspired by the above, we use facial recognition and recon visualiza-
tion for multimodal fusion. It aims at improving recon performance
and reconstruction visualization. Furthermore, the traditional research
of three-dimensional face recognition and face reconstruction is of-
ten independent of each other. Resulting in poor face pose diversity
recognition. Face reconstruction research has its limitations. In addi-
tion, light noise and different facial skin colors and expressions have
significant interference with 3D recognition, resulting in poor accuracy.

Under the background of normalization of epidemic prevention and
control, in order to monitor the flow of people in real time. As well
as the timely tracking of people infected in time and space in case
of an outbreak. This paper proposes a five-layer Laplacian pyramid
network structure to solve the above problems. This method is a 3D
face reconstruction method based on depth residual matching, and has
high accuracy in 3D face recognition. The problem of effective recon-
struction of 3D face data under occlusion and high reflection conditions
is solved. It solves the problem of multi-angle and multi-pose face
reconstruction. Multi-mode end-to-end reconstruction strategy based on
disparity matching. Through multi-dimensional matching and feature
fusion, the problem of 3D face reconstruction without image feature
information is effectively solved, and it has high robustness to the
environment. Thanks to the real-time performance of non-inductive
recognition and reconstruction of 3D algorithm. To a large extent, we
guarantee the freedom of personnel, and the algorithms and research
can be used to monitor the epidemic prevention and control, so as to
better maintain social stability.

Under the background that COVID-19 needs to wear a mask, the
existing face recognition algorithms need to locate the features of dif-
ferent local information of the face, or need to learn the global face as a
whole, so they generally cannot recognize the face accurately. Based on

this problem, our proposed algorithm not only pays attention to global t
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face recognition, but also introduces learning factors with different
resolutions. More attention is paid to the local feature recognition of
the face, and the complete face reconstruction can be carried out,
which makes a new direction for the high-precision face recognition
and reconstruction work under the condition of wearing a mask.

The main contributions of the algorithm in this paper include:

1. Innovatively proposed multi-pose stereo face detection and
dense alignment. The three-dimensional graph structure models
of the front and side key points are established to provide a
high-precision model for the following 3D face reconstruction
algorithm.

2. Innovative proposed a lightweight end-to-end Laplacian 3D face
recognition reconstruction network. It integrates 3D face recog-
nition and reconstruction visualization into the entire network
architecture. The loss function of residual design is introduced
based on Laplace network architecture. The joint dense fusion
strategy is used to reconstruct the disparity map of face structure
image and face texture image, which improves the accuracy and
speed of the algorithm to a certain extent.

3. This paper combines the relationship between face recognition
and expression reconstruction to form a complete algorithm.
It has universal applicability. It can be applied to face recon-
struction and scene recognition in low light and low texture.
It has stable and efficient performance for three-dimensional
face reconstruction and recognition with different skin colors,
expressions, and postures. It can be applied to practical projects.

. Related work

As mentioned above, the main problems that our method can solve
re 3D face recognition and visualization representation. We discuss the
ork closely related to these tasks in the following sections.

.1. Traditional 3D face recognition

According to the source of 3D face data, the 3D face recognition
ethod is divided into the 3D face recognition method based on a

olor image, the face recognition method based on high-quality 3D
can data, face recognition method based on a low-quality RGB-D
mage [10,11]. Among them, the 3D face recognition method is based
n color images and included in the use of 3D face model parameters
or face recognition, using a 3D face model to synthesize a new human
ace image recognition [9]. Blanz [12] uses the model’s 3D geometric
istortion for facial recognition. This method from a single image
stimates the geometry and 3D texture parameters. Second, the Euclid
istance of these parameters is used to determine if they belong to the
ame person. This method uses the benefits of the 3D facial model and
ets a better recognition effect under specific conditions. However, the
rawback is that it is highly affected by lighting and the calculation is
ery large [13].

A multi-pose 3D facial recognition method based on the combi-
ation of 3D geometry and local analysis is proposed [10,11,14]. To
mprove the recognition accuracy, this method could be divided into
he different local 3D faces. Reconstruction by the method of 3D
eometric face locally, different parts of the geometric parameters, and
exture combination as recognition characteristics. According to the
dentification of each component to determine its weight in the overall
lassification, achieve the result that improves recognition constructed

statistical model for 3D face modeling and recognition [15]. By
atching BFM with color images, the corresponding attitude and illu-
ination settings can be obtained. At the level of recognition, the facial

dentity coefficients of the different models can be directly compared.
owever, BFM’s limitation is that it can only model neutral faces [16,
7], therefore it is not suitable for facial images with expressions. For

he face recognition method based on high-quality 3D scanning data,
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which respectively includes the global feature method and local feature
method in the global method, the face recognition method based on
3DMM and the face recognition method based on the curve are very
classic. Papath [18] represented the face as a four-dimensional point
set, and the elements in the set were composed of the three-dimensional
coordinates of a point, and the gray level of the corresponding points
in the two-dimensional image. ICP was suitable for matching between
rigid surfaces, but the face was not a rigid surface, so some methods
only used the areas less affected by expressions for recognition. Chang
et al. [19] selected the nose region for ICP registration and recognition.
Faltemier et al. [20] divided the face into 28 overlapping regions. Mo-
hammadzade et al. [21] first found the nose tip of a three-dimensional
face and intercepted a certain range of face regions according to the
nose tip. Then, according to a reference face model, the iterative nearest
neighbor normal point method is used to find the nearest neighbor
point set corresponding to the reference model for each 3D face data.
Finally, the normal vector of these points is used as the feature for face
recognition ICP face registration, and the average distance of matching
points is generally used as the similarity measure of two faces. Since the
average distance is greatly affected by noise points, Hausdorff distance
is used as the similarity measure of the two-point sets [22]. To reduce
the influence of noise points and 3D point cloud sampling differences
on ICP registration, also some researchers [23,24] used sparse ICP
combined with a resampling method for registration and achieved a
good recognition effect.

Curvilinear method Drira et al. [25] used the radial curve based on
the nose tip to represent the whole face surface. In this method, the
nose tip is first located, and then the face surface is segmented by a
plane passing through the nose tip at every certain Angle. The plane
and face surface intersection line is a radial curve. Some radial curves
are discontinuous or too short due to occlusion or missing surface data,
and these radial curves are discarded. The rest of the curve is used for
face recognition. The distance between curves was obtained by elastic
shape analysis. Lei et al. [26] also defined a curve at every certain Angle
with the tip of the nose as the starting point. According to the curve,
the face depth map is sampled, and the depth value of the sampling
point is composed of a vector. To reduce the influence of expression,
only the features of the upper half of the face were extracted. Then the
kernel principal component analysis was used to map the ARS to the
high dimensional feature space. Finally, a support vector machine is
used for face recognition.

To sum up, the above research on 3D face recognition is often one-
sided. For a single face feature image processing. This does ensure the
efficiency of the network model, but it loses a lot of other features.
More facial features cannot be learned, which affects the accuracy of 3D
recognition. For different skin colors, and different gender, multi-pose,
and big expression recognition effect is not ideal.

2.2. 3D face representation

3D face reconstruction methods have been rapidly developed into
practical applications. Prime examples include VR/AR, 3D avatar cre-
ation, video editing, image synthesis face recognition, virtual makeup
or voice-driven facial animation Refs. [27–29]. To produce the prob-
lem manageable, most existing methods combine prior knowledge of
geometry or appearance by using pre-computed 3D face models. These
models [30–32] reference rough human face shapes but fail to capture
geometric details. Like emotion-dependent wrinkles, which are crucial
for the authenticity and support analysis of human emotions. There in
common are several effective ways to instantly recover detailed facial
geometry, however, they typically require high quality training scans
or lack robustness to occlusion. None of these academic studies looked
at how wrinkles change with creative expression.

Before typically learning, it traditionally relies on the expression
method of texture features, and high-precision 3D scanning is gener-

ally used as training data. So you cannot maintain an unconstrained
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image. To solve the above problems, deep learning research rises in the
whole scientific field. Two-dimensional identification and reconstruc-
tion cannot meet the practical application of engineering. Therefore,
3D face recognition and reconstruction are critically important [33].
However, the apparent lack of 3D face data and the considerable
difficulty of modeling pose challenges to the reconstruction task. Sci-
entifically based on this, 3D face reconstruction methods have been
developed rapidly. To simplify the processing process, most of the
existing methods rely on a 3D face model based on prior calculations.
These models combine prior knowledge of geometry and appearance
and can reconstruct rough face shapes, but cannot capture geometric
details of the face, so it is difficult to reconstruct a multi-pose face state.
There are moreover possible ways to miraculously restore smooth facial
shapes. However, they typically require multiple high-quality scanning
devices for multi-angle scanning and typically lack the robustness of
occlusion reflection scenes.

According to the above research results, some key problems of face
recognition can be summarized. Face recognition and reconstruction
are frequently studied independently. 3D recognition and 2D recogni-
tion are not combined effectively. But essentially, the 3D data of the
image is directly correlated with the 2D data. Therefore, multimodal
fusion of 2D and 3D data is carried out in this paper. The two are
no longer single and independent. This prevalent method typically has
better face recognition effect. Better data generalization performance
is guaranteed. And can tolerate more facial expressions and creative
expressions, as private well as skin color. The research of face recog-
nition and reconstruction method develops no integral problem. This
paper typically presents an innovative design of Laplacian pyramid
network structure. It typically aims to carefully construct end-to-end
dense connection through iteration of residuals on different feature
layers. There are five layers of loss functions for different data feature
dimensions. Such network design effectively and cleverly integrates
two-dimensional information and three-dimensional features of the
face. The research of the two-dimensional face and three-dimensional
recognition is no longer distributed independently. And the geometry
structure of the face is learned by the clever 3D face point detection
assisted network. It can improve the prediction accuracy of the algo-
rithm and ensure the speed. Moreover, our algorithm has excellent
recognition and reconstruction results for face images of different skin
color, different posture and diverse race. Specific network design and
loss functions are described in Chapters 3.

3. Proposed method

First of all, the rapid detection and positioning of faces in an
extensive background is the key to determining whether the key point
model can be effectively established. After that, the data pre-processing
of two-dimensional face image needs to extract face key points under
multiple positions, three-dimensional face reconstruction and recogni-
tion, and multi-angle facial three-dimensional key points on the front
and side. The rapid cascade of human face detection and the capture
of three-dimensional key points guarantee the complete reconstruction
and recognition of multiple postures and human faces. So we study a
deep 3D face recognition algorithm for Laplace pyramid matching. Our
algorithm is proved in the face orientation Angle (−100 to +100), and
densely connected structure of face features matching and computa-
tional reconstruction. It is worth mentioning that our network using
Laplace pyramid architecture for depth estimation can ensure that the
global features simultaneously, through the Laplace operator to capture
and store local information, aims to reconstruct high precision face
depth map for 3D recognition.

3.1. Acquisition of facial stereoscopic key points

First, a model is established, a deformable shape instance 𝑆 is
defined 𝑆 = [𝑥 , 𝑦 ,… , 𝑥 , 𝑦 ]𝑇 , and 𝑁 images are trained, including
1 1 𝐿 𝐿
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𝐿 feature points. Where, the coordinates are expressed as (𝑥𝑖, 𝑦𝑖),
∀𝑖 = 1,… , 𝐿. Then, generalized Purkuk analysis and principal com-
ponent analysis were used to extract the alignment and orthogonal
basis, and the shape examples represented by mean and feature vectors
were obtained by changing the plane rotation and shift parameters of
proportional parameters to enhance the training data.

𝑆𝑝 = 𝑆 + 𝑈𝑃 (1)

Where 𝑈 represents the orthogonal basis of 𝑛 eigenvectors, 𝑆̄ rep-
resents the mean value of shape vectors, and 𝑝 = [𝑝1, 𝑝2,… , 𝑝𝑛]𝑇

represents the shape parameter vectors.
The following definition of facial expression (texture) model for

deformation function 𝑊 (𝑃 ), in the actual data for the general texture
deformation through the definition of face texture, face appearance
model set feature equation function 𝐹 , used to extract human to
image features, after the feature deformation for reference model and
vectorization.

𝐴 = 𝐹 (𝐼𝑖)(𝑊 (𝑃𝑖)), ∀𝑖 = 1, 2,… , 𝑁 (2)

and then conduct principal component analysis on 𝐴 to establish the
example of gauss appearance:

𝐴 = 𝐴 + 𝑈𝐶 (3)

where 𝐴 is the appearance parameter vector. Formula (1) and formula
(3) describe the change of shape and appearance.

When given a training set with 𝑁 images and 𝐿 feature points in
each image, S can align the feature points in the image (move the
feature points to the position of the reference model through affine
transformation), and adjust the position of each feature point (𝑥𝑖, 𝑦𝑖),
𝑣𝑖 = 1 …𝑁 , And the average value was taken to obtain the results
in 𝑥 = [𝑥1𝑖 ,… , 𝑥𝐿𝑖 ]

𝑇 , 𝑦 = [𝑦1𝑖 ,… , 𝑦𝐿𝑖 ]
𝑇 where 𝑈 can be obtained

by taking the average value of the training shape s1. sl and s the
difference between the average shape PCA after operation, and take
the corresponding eigen value’s largest first n characteristic vectors are
usually the eigenvalues of the eigenvectors corresponding to the total
energy accounted for more than 90% of the total energy of adjusting the
shape parameter vector 𝑝, equivalent to adjust the shape of the different
characteristic vector expression of the weight, can make the shape of
the different instances, as shown in Fig. 1.

The average shape is at the far left of the shape model instance.
It also includes the side and depression results of 3D face modeling
obtained by randomly generating the weights of the first five feature
vectors within the range of [−3, 3], as shown in Fig. 2. The estab-
lishment of three-dimensional point model is required to fit the image
feature residuals generated by the minimum. So we can represent as
below. And the 3D point model we show as in Fig. 1. The three-
dimensional modeling formula based on three-dimensional key points
is shown as follows.

argmin
𝑝,𝑐

‖

‖

𝑡(𝑤(𝑝) − 𝑎 − 𝑈𝑎𝐶‖

‖

2 (4)

3.2. Establish a dense multi-dimensional face alignment

In the field of vision research of face reconstruction, face alignment
is the key to the quality of reconstruction and recognition [34–36].
Among the early methods, there are many alignment methods based
on two-dimensional facial markers [37,38], such as local model, two-
dimensional calibration alignment based on neural network and so
on [18,21,22]. However, the limitation of the traditional method is
that it can only return to the visible area of the face, which leads
to the inability to effectively express faces in different poses and
environments.

In order to solve these problems, this paper proposes a multi-pose
alignment model framework for 3D faces. A basic model is established
from a two-dimensional facial texture image by stereo point fitting.
Then, the spatial coordinates are reconstructed in the three-dimensional
 p

33
Fig. 1. Facial key points of front and side faces.

eometric legend by the method based on three-dimensional recon-
truction. The dense alignment of three-dimensional faces can be ef-
iciently realized. Firstly, to ensure the semantics of the position stereo
eature points, we establish a three-dimensional coordinate system
ased on the facial stereo key points and the facial texture map. After
hat, we establish densely connected face alignment. Specifically, the
wo-dimensional texture map structure and key stereo points are used
s constraints for network training. Construct the geometric structure
f two-dimensional to three-dimensional faces. This effective scheme
an obtain three-dimensional feature estimation parameters for stereo
lignment in high-dimensional space. Therefore, our method does not
eed complex parameters such as distortion parameters and refractive
ndex, which significantly speeds up the network’s overall training
rchitecture and recognition rate. Based on the above research, we
uilt a 3D geometric model of face texture image through intensive
lignment of key points, which was used for supervision constraints of
he Laplacian pyramid network. The auxiliary network learned faster
nd more feature visualization results were shown in Fig. 2.

.3. Laplace Laplace pyramid network

We show the main algorithm structure in Fig. 3, the two-dimensional
ectangle represents the two-dimensional convolution. Among them,
he yellow two-dimensional convolution is mainly used to build the key
eature point model of human face. Three-dimensional cube represents
he cost volume of three-dimensional convolution. Where the green
hree-dimensional cube represents the cost volume of low and middle
imensions. The red cube represents the high-dimensional cost volume.
he specific algorithm derivation and calculation process are as follows.

First, according to the given two-dimensional image as the input,
fter the establishment of the three-dimensional point model, the rough
econstruction is carried out to encode the image into a cost body, and
hen the residual is calculated through the Laplace pyramid network
rchitecture to form a low-frequency and middle-frequency matching
ace depth image, and finally, through multi-mode fusion into a high-
requency complete depth map, The encoder we trained includes a
esNet network as a generator of low-frequency disparity and a three-
imensional pyramid network architecture. The specific calculation
rocess is as follows: For the Laplace residual of the input face image,
t is expressed as 𝐿𝑓 .

𝑓 = 𝐼𝑓 − 𝑈𝑃 (𝐼𝑓+1), 𝑓 = 1, 2, 3 (5)

Where 𝑓 represents the horizontal exponent of the Laplacian pyra-
id. If represents the 𝑈𝑃 obtained by downsampling the original input
1

2𝑓−1 below let 𝑅𝑓 be the residual depth of the pyramid network
he depth residual contains the rough geometric features and facial
xpression features, as well as the information of the three-dimensional
ey points of the face. Through the series of multiple modules, the
ixel-level stack is carried out to accurately restore the local details of
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each scale in the decoding process. Finally, the depth image is output
through the highest sub-link of the Laplace pyramid:

𝐷𝑓 = 𝑅𝑓 + 𝑈𝑃 (𝐷𝑓 + 1), 𝑓 = 1, 2, 3 (6)

It can be seen that, through the residual updating iteration of the
tower structure, the network can well predict the depth image of the
3D face. To make the decoding process of depth images more efficient,
we add the operation of weight standardization in the activation of the
convolution cost body. It is worth mentioning that to robustly estimate
the depth of information. We design the decoder can completely in the
course of backpropagation gradient normalization, thus improving the
gradient flow. Among them, the backpropagation is calculated in each
layer of the Laplace pyramid. This can ensure that the residual error
information of the color depth of translation is the stability and ideal.
We plotted Tables 1 and 2. The input and output of low frequency and
high frequency are given, respectively. And the specific parameters of
low frequency and high-frequency disparity volume.

3.4. Loss

We use face images with texture information to train our model
with supervised learning. It contains 5 terms of Laplacian pyramid
loss functions. The first term aims at training the coarse reconstruction
low-resolution disparity. Same as, we use the smooth 𝐿1 loss between
the texture images 𝐷𝑛 and the predicted low-resolution disparity 𝐷̃𝑛
or each key point pixel 𝑛, which is widely used because of its low
ensitivity to outliers and defined as

1 =
1

𝑁
∑

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝐷𝑛 − 𝐷̃𝑛) (7)
𝑁 𝑛=1
w

34
n which,

𝑚𝑜𝑜𝑡ℎ𝐿1
=

⎧

⎪

⎨

⎪

⎩

1
2
𝜃2, 𝑖𝑓 |𝜃| < 1

|𝜃| − 1
2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

where 𝑁 is the number of the key point pixels. The second term is used
to supervise the key facial 3D point edge refinement in face, which is
defined as

𝐿2 =
1
𝑁

𝑁
∑

𝑛=1
𝑠𝑚𝑜𝑜𝑡ℎ𝐿2

(𝐷𝑛, 𝐷̃
𝑟
𝑛) (9)

here 𝐷̃𝑛 is the disparity depth value of pixel 𝑛 in the refined low-
esolution disparity depth map.

The third term focuses on training the high-resolution disparity
acial depth generator. In other words, the training set for the high-
esolution is dynamically generated. We use 𝑘 to denote the set in-
luding the pixels where the absolute errors between the ground truth
isparities and the low resolution disparities are larger than 1. Then
e use the pixels in 𝑘 to train the high-resolution disparity facial depth
enerator and the loss is defined as

3 =
1
|𝐾|

∑

𝑛∈𝑘
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1

(𝐷𝑔
𝑛 − 𝐷̂𝑛) (10)

where |𝐾| denotes the number of elements in the set 𝑘 and 𝐷̂𝑛 is
he predicted high-resolution facial disparity for pixel 𝑛.

We adopt the fourth term to supervise the final disparity facial depth
map. The loss is defined as

𝐿4 =
1
𝑁

𝑛
∑

𝑛=1
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1

(𝐷𝑔
𝑛 −𝐷𝑛) (11)

here 𝐷 is the final disparity depth value of the pixel 𝑛.
𝑛
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Table 1
Low and high resolution disparity regression.

Critical Hierarchy Input parameter Output Tensor

Low-resolution Conv 3D, 3 × 3 × 3, f = 64 1
8
𝐷 × 1

8
𝐻 × 1

8
𝑊 × 64

Conv 3D, 3 × 3 × 3, f = 64, s = 2 1
16

𝐷 × 1
16

𝐻 × 1
16

𝑊 × 64

Conv 3D, 3 × 3 × 3, f = 64(double) 1
16

𝐷 × 1
16

𝐻 × 1
16

𝑊 × 64

Residual connection ×2 1
8
𝐷 × 1

8
𝐻 × 1

8
𝑊 × 32

Transposed 3D conv, 3 × 3 × 3, f = 32, s = 2 1
4
𝐷 × 1

4
𝐻 × 1

4
𝑊 × 1

Soft argmin 1
4
𝐻 × 1

4
𝑊

Upsampled low-disparity 𝐻 ×𝑊
Key-point refined low disparity 𝐻 ×𝑊

High-resolution Conv 3D, 3 × 3 × 3, f = F, s = 2 1
4
𝐷 × 1

4
𝐻 × 1

4
𝑊 × 𝐹

Conv 3D, 3 × 3 × 3, f = 2F 1
4
𝐷 × 1

4
𝐻 × 1

4
𝑊 × 2𝐹

Residual connection ×2 1
4
𝐷 × 1

4
𝐻 × 1

4
𝑊 × 2𝐹

Transposed 3D conv, 3 × 3 × 3, f = F, s = 2 1
2
𝐷 × 1

2
𝐻 × 1

2
𝑊 × 𝐹

Residual connection 1
2
𝐷 × 1

2
𝐻 × 1

2
𝑊 × 𝐹

3 × 3 × 3, f = 1, s = 2 𝐷 ×𝐻 ×𝑊 × 1
Soft argmin 𝐻 ×𝑊
r
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Table 2
Summary of our low and high cost volume architecture.

Layer Description Output Tensor

Input facial image 𝐻 ×𝑊 × 3

High-resolution features

Conv 5 × 5, features = 32, s = 2 1
2
𝐻 × 1

2
𝑊 × 32

Conv 3 × 3 × 2, features = 32 1
2
𝐻 × 1

2
𝑊 × 32

Conv 3 × 3, features = 32 1
2
𝐻 × 1

2
𝑊 × 32

Residual connection 1
2
𝐻 × 1

2
𝑊 × 32

Conv 3 × 3, features = 8 1
2
𝐻 × 1

2
𝑊 × 8

High-resolution cost volume 1
2
𝐷 × 1

2
𝐻 × 1

2
𝑊 × 16

Low-resolution features

Conv 3 × 3 × 3, features = 64, s = 2 1
4
𝐻 × 1

4
𝑊 × 64

Residual connection 1
4
𝐻 × 1

4
𝑊 × 64

Conv 3 × 3, features = 32 1
4
𝐻 × 1

4
𝑊 × 32

Repeat features 1
8
𝐻 × 1

8
𝑊 × 32

Low-resolution cost volume 1
8
𝐷 × 1

8
𝐻 × 1

8
𝑊 × 64

The last term addresses on the problem of how to automatically
elect the disparities between the low-resolution and high-resolution
isparities. For each pixel, low resolution disparity is selected if the
igh resolution disparity is greater than the absolute error between
round and low resolution dis-parity. During the training, we dy-
amically mark the pixels of each face image. For each pixel 𝑛, if

‖

‖

‖

𝐷𝑔
𝑛 − 𝐷̃𝑛

‖

‖

‖1
≤ ‖

‖

‖

𝐷𝑡
𝑛 − 𝐷̃𝑛

‖

‖

‖1
, we label the pixel 𝑛 as 𝑝𝑛 = 0. Otherwise,

e label it as 𝑝𝑛 = 1. Let 𝑦𝑛0 and 𝑦𝑛1 are the values of the pixel 𝑛 in
the two feature maps, respectively. Then we use a softmax loss to train.
Then the loss is defined as

𝐿5 = − 1
𝑁

𝑁
∑

𝑛=1
(1 − 𝑝𝑛) log 𝑦𝑛0 + 𝑝𝑛 log 𝑦𝑛1 (12)

The total loss function is represented as below.

𝐴𝐿𝐿 = 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5 (13)

4. Experiments

The algorithm model is trained by dual-card NVIDIA 1080 TI GPU
of Ubuntu 16.04 system, Pycharm and Matlab were used as visual
 s

35
platforms for training and modeling, respectively, which can be tested
on GPU platforms.

In this paper, the Laplacian pyramid network is selected as the trans-
fer learning model of the feature extraction subnet. The attenuation
parameter is set to 5 × 10 − 4, and the learning rate and momentum
parameters are set to 1e − 4 and 0.9 respectively. In addition, the
andom gradient descent method is used as a learning optimizer. By
reezing the weight of the first K layer in the pre-training model, fine-
uning the network, and then training the remaining N–K layers to
earn the weight and deviation of the unfrozen layer. Then, the optimal
atching between frozen layers is found through continuous iteration,

nd the fine-tuning of network parameters is retrained according to
he results. In order to intuitively show the 3D recognition capability
f the proposed Laplacian pyramid network, the low-frequency fea-
ures extracted from the first convolution block of the network are
isualized. There are two convolution layers in the first convolution
lock, and each convolution layer has 64 filters. Therefore, we can
enerate 64 low-frequency feature maps for facial attribute mapping
f each data type. In the second convolution block, there are two
wo-dimensional convolution layers. Through this operation, a 3D cost
oxel is generated through this operation, which contains medium and
igh-frequency information, and then fused into the decoder through
aplace’s decoding network. Multi-modal fusion of facial feature in-
ormation in two-dimensional and three-dimensional levels is obtained
y five-layer regression iteration and fusion of various facial shapes
nd features related to expressions. This convolution layer can extract
acial features with higher dimensions and finally output 512 feature
aps. The depth of redundant representations will be combined into a

ingle compact facial feature. Through the above operations, we make
he network model robust and efficient, and we propose Laplace 3D
ace recognition network. It can form a high-level and high-frequency
ace recognition representation and more effectively recognize and
econstruct three-dimensional faces.

.1. Data set

The BU-3DFE (Binghamton University 3D Facial Expressions) [39]
atabase is widely used for static/dynamic 3D facial expression recogni-
ion. This database is the benchmark database for 3D facial expression
ecognition research. It contains 100 subjects (56% female and 44%
ale) aged 18 to 70 years. In addition to neutral expressions, there
ere six basic expressions (happiness, disgust, fear, anger, surprise, and
adness), each of which contained four intensity levels. Each subject
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Fig. 4. The first and fourth columns represent the original input image. The second and fifth columns represent the output texture image. The third and sixth columns are the
final high-frequency depth images that our network outputs. Through this group of images, it is confirmed that our proposed network framework can truly recognize 3D faces and
reconstruct depth disparity.
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had 25 3D facial expression models, and there were 2500 3D facial
expression point cloud models and 2D facial texture images in the
database.

Aflw2000-3D dataset [40] for evaluating challenging unconstrained
3D face alignment. The database contains the first 2000 images from
the AFLW and is annotated with extended 3DMM parameters and 68
3D annotations. In the experiment, we add and use this database to
evaluate performance on facial reconstruction and face alignment tasks.

Aflw-lfpa [41] is another extended dataset of AFLW. Images were
extracted from AFLW according to attitude, and a test image dataset
containing 1299 evenly distributed yaw angles was constructed. In
addition, each image is tagged with 13 other landmarks, which are used
to expand the only 21 visible landmarks in the AFLW. The database is
evaluating tasks for 3D face alignment. We measured the accuracy of
our results using 34 visible landmarks as ground truth values.

4.2. Evaluation index

There have been two types of face recognition tests: 1:1 face verifi-
cation and 1: N face recognition. The 1:1 face verification test method
used in this paper utilizes TAR as the ordinate and FAR as the abscissa.
TAR@FAR = 1% has been used to evaluate the model’s performance.
The test dataset would include positively and negatively sample pairs.
Positive sample pairs contain two images of the same individual, while
antagonistic sample pairs are two images of two different people. The
accurate acceptance rate is called TAR. The positive sample of the
comparison score in the face verification process is greater than the
set threshold value in the positive sample of the total.

FAR is the false acceptance rate, indicating the Proportion of the
comparison score of antagonistic sample pairs in the total number of
opposing sample pairs when the comparison score of opposing sample
pairs is greater than the set threshold in the face verification process.
TAR@FAR = 1% represent N antagonistic sample pairs, which are input
nto the network model for feature comparison. N comparison scores
re obtained, and the value with the highest score is taken as the
hreshold. Then all positive sample pairs are compared in the input
etwork model. The Proportion of the number of positive sample pairs
ith the comparison score more significant than the threshold in the

otal positive sample pairs is TAR@FAR = 1%.
We adopted the preferred recognition rate (Top1) for the Test

ethod of 1:n face recognition to evaluate the model’s performance.
he depth Test data set in the table was taken as an example. The num-
er of registered samples was 10000, the number of test samples was
500, each test sample is compared with all samples in the registration
et, and then the comparison score is sorted in descending order. If the
ag with the highest score is the same as that of the test sample, it is
he same person. Then the final Top1 is Rank1 by counting the number
f Rank1 hits plus one Proportion of the hit number in the total test
ample number.
36
When calculating the similarity score of two face features, Euclidean
distance and cosine distance is usually used in face recognition. Eu-
clidean distance directly calculates the distance between two points,
and the calculation formula is shown below. Take the output features
in this paper as an example. Since the output is a 512-dimensional
feature vector, we use N to represent it. Thus get the distance of two
face feature vectors. The smaller the distance, the closer the face.

𝑑(𝑥, 𝑦) =

√

√

√

√

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (14)

Where, 𝑑 represents Euclidean distance. 𝑥 represents the point in
-dimensional space. 𝑦 represents the point in 𝑛-dimensional space.

The cosine distance is the two face features as two vectors, calculate
he cosine value of the Angle, as shown in the formula below. When the
ngle between the two vectors is closer to 0, the difference is smaller,

he face is closer to the face similarity score in this paper is calculated
y the cosine distance.

(𝑥, 𝑦) = cos
𝑥⃗ ⋅ 𝑦

‖𝑥‖ ⋅ ‖𝑦‖
(15)

4.3. Qualitative evaluation

The Laplacian pyramid network of a single input image can be
an excellent method to use 3D point geometry information and low
frequency, medium frequency, and high-frequency information in the
image to achieve realistic 3D face reconstruction. Our network archi-
tecture is shown in Fig. 3. The output of the comparison results can
be seen in Fig. 4. More and more precise 3D face depth maps and
texture map results are shown in Fig. 5. The visualization results of
the reconstruction of different skin colors and races are displayed.
Proved that our network architecture is an accurate 3D reconstruction.
Moreover, it can complete 3D face recognition. Because compared with
other methods, our network through continuous intensive iterative
learning of The Laplacian pyramid and the supervision mechanism of
three-dimensional key points. The smooth reconstruction of multi-pose
and multi-view is realized. At present, the research results include
PRNet [42] and 3DDFA-V2 [43], but the reconstruction results ob-
tained by these methods are reconstructed after cutting surfaces. This
creates artificial interference, and experimental results and effects are
inconsistent. Our approach is to cascade output using an end-to-end
network architecture. The experimental results are robust and reliable.
The test of many data also confirms that our network is not sensitive
to dark environments and low texture areas and has stable output
performance.

It is worth mentioning that the general 3D face recognition task is
heavy. The generic mapping is usually used for two-dimensional plane
expansion. This operation for the two-dimensional face recognition
effect is better and can better point matching estimation. Nevertheless,
in the three-dimensional face task heavy, the effect is not ideal. For
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Fig. 5. This set of graphs shows the results we predicted for faces with different skin tones and different expressions. It contains output texture images of different tables and
corresponding clear and smooth depth images.
incomplete symmetry of the face, the three-dimensional structure will
appear distorted.

We were inspired by the merits of generic mapping after the low-
frequency output of the Laplace pyramid network. We adopt the strat-
egy of depth mapping and integrate the geometric modeling of 3D key
points. Multi-pose, multi-angle 3D face recognition, and reconstruction
are realized. In Fig. 6, the multi-pose and multi-angle image recon-
struction effects of different input images. In Fig. 6, the first column
represents the depth image of the depth map. It can be seen that the
deep face in the figure is spread out as a generic mapping structure.
The second column shows the depth display result of the profile face.
The third column represents the lateral upper body depth image display
results. The fourth column represents the frontal upper body depth
image results. The fifth column represents the reconstruction result
of the full-face depth image of the front. This is output by the high
superimposed frequency.

4.4. Quantitative evaluation

We compare the Laplace Pyramid network with other open meth-
ods, including 3DDFAV2 [43], RingNet [44], PRNet [42], 3DMM-
CNN [45], DECA [46] and Extreme3D [47]. Note that the Plath Pyra-
mid network intensively implemented 3D reconstruction and validated
the SOTA performance. NoW benchmark included 2054 face images of
100 subjects without human interference. Then the 3D data matching
training was conducted, and the test group and the verification group
were divided by 8 : 2. Each subject had a reference 3D face scan. The
images included images of neutral expressions indoors and outdoors
and images of expressions from different angles from front to side.
Assessment of this data set provides a standard definition, after strict
alignment scan and reconstruction, the measurement of all reference
scan vertices to the triangle mesh surface recent distance. For gender
bias of the test results, we report (W) women and men (M), respectively.
NoW error of the test object found that to restore women more accurate
shape. Reconstruction error is expressed as follows: median: 1.18/1.19
37
Table 3
Reconstruction error on the NoW benchmark.system of units:mm.

Method Median Mean Std

3DMM-CNN [45] 1.84 2.34 2.07
PRNET [42] 1.51 1.98 1.89
SENet [48] 1.24 1.56 1.30
RING-NET [44] 1.20 1.54 1.32
3DDFAV2 [43] 1.24 1.58 1.39
MGC-NET [49] 1.32 1.89 2.70
DECA [46] 1.18 1.39 1.24
Ours 1.15 1.38 1.21

(W/M), average: 1.32/1.45 (W/M), and standard: 1.21/1.21 (W/M).
The Laplacian pyramid network presents the most advanced NoW
results, containing the lowest mean median and standard deviation
reconstruction errors. In this way, it is proved that detailed high-
frequency shapes can improve visual quality more than rough shapes.
At the same time, to verify the performance of our network more
comprehensively.

We find that the predicted artificial preprocessing of the clipped
surface mesh is smaller than the present reference plane, which will
lead to a high reconstruction error of the missing area. For a fair
comparison, we use the Basel standard output of the Basel Face Model
(BFM) parameters for a complete reconstruction. Furthermore, get
these complete mesh evaluations now. As shown in Table 3, the most
advanced current results are given. Reconstruction errors with the
lowest mean, median, and standard deviation are provided.

The benchmark of Feng et al. [50], which consisted of 2000 face
images of 135 subjects and a reference 3D face scan image of each
subject, was selected for testing. The benchmark consisted of 1344
low-quality (LQ) images extracted from videos and 656 high-quality
(HQ) images taken in control scenes. The Laplacian pyramid network
provides state-of-the-art performance by measuring the distance from
all reference scan vertices to the nearest point on the reconstructed
mesh surface, as shown in Table 4. In order to verify the performance of
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Fig. 6. Multi-view multi-angle reconstruction of the display map.

he error indicators in this paper more intuitively. A schematic diagram
f the error area with color is presented. Among them, different colors
how the error of different indicators. The smaller the area of error
olor map is, the better the network performance is. In Figs. 7 and 8,
e show the median, mean, and standard error for different networks.
edian, mean, standard error for men and women.

In addition, we show TOP1 accuracy and TAR@FAR = 1% ac-
uracy of different networks through intuitive bar charts. Including
ttention-Net [51], ECANet-K9 [52], ECANet-K3 [53], SENet [48],
esnet-34 [54] and our network. As shown in Fig. 9, in two accuracy
ssessments. Our algorithm is more accurate than other algorithms.
t is verified that our algorithm has superior performance in 3D face
ecognition. We compared data and feature performance from different
odels. The evaluation indicators include TAR@FAR = 1% and Top1.
ur network uses 3D face data for training. Feature analysis uses multi-

evel depth features. As shown in Fig. 9, the 3D recognition accuracy
f our model fusion is higher than that of other networks. In Fig. 10,
e visualized the recognition result of the 3D face. It can be seen

hat the output results of our algorithm can completely reconstruct
he front and side images of the face. This is all done by entering

two-dimensional image of a plane. The validity of the Laplacian
ace recognition algorithm is verified. For different races, different skin
olors, different postures, and different facial expressions, the visual
econstruction effect has good robustness. (See Table 5)

.5. Ablation experiments

In order to verify the effectiveness of our network more specifically.
blation experiments were introduced to verify the validity of each
38
Table 4
Performance on the Feng benchmark. system of units: mm.

Method Median LQ Median HQ Mean LQ Mean HQ Std LQ Std HQ

3DMM-CNN [45] 1.89 1.86 2.34 2.30 1.90 1.88
PRNET [42] 1.80 1.58 2.40 2.06 2.19 1.79
SENet [48] 2.40 2.38 3.44 3.5 6.10 6.76
RING-NET [44] 1.66 1.59 2.02 2.03 1.78 1.67
3DDFAV2 [43] 1.64 1.48 2.09 1.90 1.87 1.63
DECA [46] 1.58 1.49 1.90 1.87 1.67 1.69
Ours 1.38 1.45 1.89 1.85 1.51 1.65

Table 5
Comparison results of the models.

Modal Dataset Feature TAR@FAR=1% Top1

Tang et al. [55] 3D Map 92.16% 87.10%
Song et al. [56] 3D distance 93.08% 87.80%
Li et al. [57] 3D normals 91.2% 82.01%
Wang et al. [58] 3D curvature 88.60% 83.60%
Zeng et al. [59] 3D curvature 79.63% 70.93%
Berretti et al. [60] 3D depth/SIFT 85.56% 77.54%
Yang et al. [61] 3D shape index 86.60% 82.30%
Li et al. [62] 2D+3D meshHOG/SIFT 90.16% 86.32%
Ours 3D multi-scale deep feature 99.84% 93.64%

layer of the Laplacian pyramid network. In Fig. 10, the analysis can
be obtained. In the ROC curve, the Laplace fusion module, that is,
the high-frequency fusion module has the highest 3D face recognition
accuracy. Its ROC curve is smoother, and its area is more extensive
than other curves. It has been proved that the performance of the
Laplace fusion module is the best. Secondly, the performance of depth
maps is better. The reliability of selecting a depth map for fusion is
verified. The third performance is the key fusion module. For this
reason, we use this method to supervise the whole network and assist
the overall network model in learning more facial features faster. Then
we tested the 3D face recognition performance of different network
architectures. You can refer to the performance analysis in Fig. 11.
To verify the effectiveness of each layer in the network. We have
done ablation experiments on each layer of the network. The green
line represents the final performance of the Laplacian fusion layer. It
can be seen that its roc curve is very stable, and tends to be high
and stable after FAR is higher than Where the pink line represents
the intermediate frequency level of the Laplacian network. The blue
line represents the lowest frequency level of the Laplacian network.
The red line represents the performance of the 2D texture layer, and
it can be seen that its performance is the lowest. The yellow line
represents the performance of the key point model. In a comprehensive
analysis, with the hierarchical superposition of low frequency, inter-
mediate frequency, and high frequency of the Laplacian network, the
final fused network performance is far superior to other output layers.
The effectiveness and high performance of the overall design of the
network model are verified. In Fig. 12, we show the comparison results
between the Laplace network and other mainstream networks. Includes
ECANet-K3 [53], ResNet,62, SENet [48], PRNet [42] comparison. It
can be seen that the performance of Laplace’s intermediate frequency
layer and high-frequency output layer is much higher than that of
other networks. The TAR value of the Laplacian high-frequency output
layer represented by the green line is the highest when FAR is equal
to 0.010. The pink line represents the lowest TAR value of ResNet.
The comparative experiment proves that the final performance of our
network is higher than other mainstream algorithms. We can see that
the red Laplacian intermediate frequency model has the best effect in
the initial ascent. After FAR is 0.002, it tends to be stable. The accuracy
of the intermediate frequency model is above 0.9895. Green represents
the Laplacian network model of high frequency fusion. Network per-
formance did not improve quickly in the early days. This is because
network models need to integrate multi-level learning. It can be seen

that when FAR is 0.006, the performance of the high-frequency fusion
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Fig. 7. This table show the different network and error map.
Fig. 8. This table show about different people facial and including different error map.
Fig. 9. This figure shows the comparison of two kinds of accuracy evaluation indexes under different network architectures. The first line is the accuracy index of The Laplace
network, which is higher than the results of other methods.
model is significantly improved. The final 3D recognition rate is more
than 0.9959. It is worth mentioning that our network performance is
also the best in the comparison model. The ablation experiments above
confirmed the effectiveness of our network. And it has higher efficiency
of 3D recognition. It is necessary to observe the TAR value when FAR =
0.010. The larger the final value of TAR, the better the performance of
the network. The green part is the highest frequency output of our net-
work. The TAR value is the largest, and the performance of the network
is the best. Moreover, while considering the network performance, we
need to take into account the efficiency of the network. Therefore, the
robustness of the model is also very stable.
39
5. Conclusion

This paper introduces the design of the Laplace end-to-end pyramid
network. A convergence strategy for dense connection is adopted. The
problems of 3D face registration, reconstruction, and 3D recognition
are solved. By learning the 3D critical points of the human face,
we can directly use regression to extract the complete 3D structure
and semantic information from 2D images and then carry out 3D
reconstruction and recognition. For other advanced algorithms, our
work integrates reconstruction and 3D facial recognition. To ensure
the quality of reconstruction and obtain the recognition effect. The
quantitative and qualitative results show that this method is robust to
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Fig. 10. This set of images shows the comparison results of our 3D visualization. The first and fifth columns represent the original input image. The second and sixth represent
the output texture image. The third and seventh columns represent the output 3D frontal face image. The fourth and eighth columns represent the output side 3D face image.
Fig. 11. ROC curves of different layers and multimodal fusion of the Laplace pyramid
network. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.).

Fig. 12. ROC curves of different network structure and the Laplace pyramid network.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.).
40
pose, illumination and occlusion. Experiments on test data sets show
that this method is superior to other methods. In addition, the recog-
nition robustness of different facial poses, skin colors, and expressions
is better. The experimental results show that this method is faster than
other methods, has a higher 3D recognition rate, and is suitable for real-
time applications. It can be used in COVID-19 epidemic normalization
personnel management and has a good prospect for the establishment
and engineering application of the 3D face database.

In future research, we will focus on using active, structured light
to recognize and reconstruct 3D faces. The goal is to combine the
functional, structured light theory with the current passive algorithm.
A more universal and practical algorithm is studied. It will be used
in facial recognition products to help prevent and control epidemics.
Because face information involves privacy issues. We will consider
introducing the federal learning technology in future work while train-
ing data and transmitting privacy with the control network model.
Federal learning such as DEEP-FEL combined with the network model
is adopted for training. Better control the privacy of user data.
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