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Features derived from blood 
pressure and intracranial pressure 
predict elevated intracranial 
pressure events in critically ill 
children
Kassi Ackerman 1, Akram Mohammed 1, Lokesh Chinthala 1, Robert L. Davis 1, 
Rishikesan Kamaleswaran 2,3 & Nadeem I. Shafi 1*

Clinicians frequently observe hemodynamic changes preceding elevated intracranial pressure events. 
We employed a machine learning approach to identify novel and differentially expressed features 
associated with elevated intracranial pressure events in children with severe brain injuries. Statistical 
features from physiologic data streams were derived from non-overlapping 30-min analysis windows 
prior to 21 elevated intracranial pressure events; 200 records without elevated intracranial pressure 
events were used as controls. Ten Monte Carlo simulations with training/testing splits provided 
performance benchmarks for 4 machine learning approaches. XGBoost yielded the best performing 
predictive models. Shapley Additive Explanations analyses demonstrated that a majority of the top 
20 contributing features consistently derived from blood pressure data streams up to 240 min prior to 
elevated intracranial events. The best performing prediction model was using the 30–60 min analysis 
window; for this model, the area under the receiver operating characteristic window using XGBoost 
was 0.82 (95% CI 0.81–0.83); the area under the precision-recall curve was 0.24 (95% CI 0.23–0.25), 
above the expected baseline of 0.1. We conclude that physiomarkers discernable by machine learning 
are concentrated within blood pressure and intracranial pressure data up to 4 h prior to elevated 
intracranial pressure events.

The importance of minimizing intracranial pressure (ICP) elevations in the setting of traumatic brain injury 
(TBI) has been underscored by several studies. For instance, one study demonstrated that the number of 5-min 
episodes of intracranial hypertension was predictive of poor  outcome1; another study showed that for every hour 
that ICP was greater than 20, the odds of poor outcomes increased by 4.6%2.

Clinically recognizable, stereotyped vital sign changes (known as the Cushing  reflex3) cannot be relied upon 
to predict elevations in ICP because they occur late and indicate impending herniation. Often, tachycardia due 
to an early sympathetic surge precedes an ominous  bradycardia4, suggesting that hemodynamic signals are likely 
to contain features (or “physiomarkers”) which could be predictive of ICP elevation.

The application of machine-learning to physiologic signals offers an opportunity to detect higher-order fea-
tures, i.e. those not discernable by human care providers. We analyzed continuous streaming data collected from 
bedside monitors of children with severe brain injuries using machine learning methods to evaluate (a) whether 
there are novel and differentially expressed physiomarkers of elevated ICP events contained within hemodynamic 
and other physiologic signals, and (b) if these physiomarkers can reveal robust predictive performance.

Methods
Clinical framework and data pre-processing. We conducted a retrospective study of children aged 
2–17 years who were admitted to the Pediatric ICU and Neuro ICU of a tertiary/quaternary children’s medical 
center from October, 2017 until December, 2020. This study was approved, and informed consent was waived 
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by the Institutional Review Board of the University of Tennessee Health Science Center (Memphis, TN). All 
methods were performed in accordance with the relevant guidelines and regulations.

To be included, children had to have undergone concurrent invasive arterial blood pressure (ABP) and ICP 
monitoring. Records which had < 4 h of concurrent electrocardiogram (EKG), ABP and ICP data were excluded.

All patients were managed in accordance with standards of care for brain injury, including the pediatric TBI 
 guidelines5. An elevated ICP event (case) was defined as ≥ 20 cm  H2O for 10 min, and events were considered 
independent if they occurred at least 5 h apart in the same patient (Fig. 1). Control records were derived from 
patients without elevated ICPs as well as from those with cases when ICPs were < 20 cm  H2O for 6 h. Thus, each 
patient could provide cases and controls.

Six physiologic signals (ABP, consisting of systolic, diastolic, and mean blood pressures; electrocardiogram 
(EKG)-derived heart rate (HR); pulse rate from plethysmography; ICP; cerebral perfusion pressure (CPP); and 
oxygen saturation) were each sampled at 1-min intervals via a Drager Monitoring system since this is a frequency 
of data acquisition that is common among many ICUs.

All records were manually adjudicated by an ICU physician to confirm criteria and identify signal artifact. 
Records with > 10% missing data or significant artifact burden in any of the SBP, DBP, MAP, or CPP data streams 
were excluded. Next, line graphs of the data were reviewed to manually identify obvious blood pressure artifacts. 
These were removed with a two-step artifact detection algorithm after the standard deviation (SD) of the entire 
4-h record was determined. Because artifacts were most dramatically represented in the systolic blood pressure 
(SBP) data stream, any SBP value which exceeded the first datapoint of a 5-min block by two SDs was removed 
and forward-filled; this was repeated after sliding the 5-min block forwards by 1-min through the entire record. 
This step allowed us to identify and remove “wide artifact”. Next, any SBP minute-to-minute change that exceeded 
30% was removed and forward-filled, allowing identification and removal of “narrow artifact” that was not 
captured in the first step. At the points of artifact, SBP, MAP, DBP, and CPP data streams were all corrected. An 
example of artifact removal is provided in supplementary figures.

Machine learning. 4-h records were divided into 8 non-overlapping but consecutive 30-min analysis win-
dows as depicted in Fig. 1. Prediction horizons—that is, the times in advance each model bundle was asked to 
predict the elevated ICP event—were increased by 30 min until the beginning of the record. Eighteen statistical 
features were derived from each physiologic signal from the 30-min window immediately prior to each pre-
diction horizon. These were mean, median, max, min, quantiles (0.2, 0.4, 0.6, 0.8), variance, standard devia-
tion, aggregated variance, centroid, kurtosis, skew, sample entropy, binned entropy, absolute change, and mean 
change.

Predictive modeling was performed with logistic regression (LR), support vector machine (SVM), random 
forest (RF), and XGBoost (XGB). The records were divided 70/30 for training and testing, respectively. During 
model training, we used a subset of the training data for hyperparameter selection using Bayesian  optimization6. 
Due to a significant imbalance between the numbers of case events (records with elevated ICP events) and con-
trol periods (records without elevated ICP events), one control was chosen for each case in a random fashion 
during training. Training and testing were iterated with ten different 70/30 splits at each time window following 
10 Monte Carlo simulations. Explainability of models generated were assessed using averaged Shapley Additive 
Explanations (SHAP) scores from each  simulation7. Model performance was assessed not only by area under the 
receiver operating characteristic (AUROC) curves, but also by area under the precision-recall (AUPRC) curves, 
which are more appropriate for imbalanced data sets. Sensitivity, specificity, positive and negative predictive 
values were also determined. An illustration of the architecture can be found in supplementary figures.

Results
Case events, control periods, and data preprocessing. 112 patients were identified using hospital 
procedure records for external ventricular drains and intraparenchymal pressure monitoring devices placed 
at our institution. 57 of the 112 patients met exclusion criteria and 55 patients met inclusion criteria. Of the 55 
patients, 33 had complete datasets. Reasons for missingness included patients being transported off unit, arterial 

Figure 1.  Elevated ICP event schematic. The prediction horizon is the time prior to the ICP event over which 
features from the preceding analysis window are used for prediction. ICP had to remain < 20 cm  H2O for one 
hour before subsequent data could be considered for inclusion.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21473  | https://doi.org/10.1038/s41598-022-25169-3

www.nature.com/scientificreports/

line or sensor dysfunction, etc. 24 patients had quality data with limited artifact burden that satisfied definitions 
for elevated ICP events, control periods, or both. A total of 21 case events from 9 patients and 200 control peri-
ods from 22 patients were ultimately included for model development and testing (Fig. 2).

Our algorithmic artifact removal resulted in 1.2% of the data being replaced (means of 2.8 and 2.8 min 
replaced per 4-h record in cases and controls, respectively). 92% of the manually identified artifacts were 
removed.

Table 1 summarizes the clinical characteristics of the 24 patients who had elevated ICP events and those who 
did not. Supplemental Table 1 summarizes patient characteristics by elevated ICP events and control periods. 
Decompressive craniectomy was present during a higher percentage of control periods when compared to case 
events (71% and 48% respectively). Etiologies of brain injury were not dissimilar, although there were slightly 
more case events derived from patients with TBI, and slightly more control periods derived from patients with 
non-traumatic hemorrhage.

An intraparenchymal monitor was used equally and in the majority of patients; the remainder had an exter-
nalized ventricular drain, which were set to transduce continuously. Vasoactive support was less common during 
control periods (16%) compared to case events (29%), although mean vasoactive infusion scores (VIS) were 
similar (1 ± 4 and 3 ± 5, respectively). The remaining 43% of case events and 62% of control periods were not 
on anti-hypertensive infusions or vasoactive support. Pupil reactivity at the time of case and control records 
was similar. Deaths were distributed equally (1 case patient only, 1 control patient only, 1 patient contributing 
a case and control).

Predictive modeling. The relative performances for each of our modeling approaches at predicting ele-
vated ICP events with a 30 min prediction horizon are depicted in Fig. 3. At the 30–60 min analysis window 
(i.e. 30 min prediction horizon), XGB produced a model benchmark AUROC of 0.82 (95% CI 0.81–0.83). The 
AUPRC benchmark at the 30  min horizon was 0.24 (95% CI 0.23–0.25), which was significantly above the 
baseline expected AUPRC of 0.10. Sensitivities of the models ranged from 0.87 to 0.93, with XGB achieving a 
sensitivity of 0.93 (95% CI 0.91–0.95). Specificities ranged from 0.59 to 0.65, with XGB achieving 0.65 (95% CI 

112 Screened

55 Met inclusion criteria

33 Complete 
datastreams

24 Pa�ents: 
21 case events, 

201 control periods

15 Pa�ents: 
0 Case events, 

95 Control periods

7 Pa�ents:
19 Case events,

106 Control periods

2 Pa�ents:
2 Case events, 

0 Control periods

9 Insufficient or poor-
quality data

22 Missing datastreams

57 Met exclusion criteria

Figure 2.  Consort diagram demonstrating the final data set. An elevated ICP event (≥ 20 cm  H2O for 10 min) 
comprised a case event; events were considered independent if they occurred at least 5 h apart in the same 
patient. Control periods consisted of 6-h durations in which ICPs remained < 20 cm  H2O. Thus, each patient 
could provide case events and control periods. Data was regarded as “insufficient” if > 20 min (~ 10% of a record) 
was of poor quality or missing.
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0.64–0.66). Positive (PPV) and negative predictive values (NPV) for XGB were 0.21 and 0.99, respectively. We 
suspect these over-estimate real-world PPV and NPV since elevated ICP events likely have a lower prevalence 
than the 10:1 ratio utilized in our modeling. When we trained and tested the models using features derived from 
blood pressure alone, performance metrics dropped (see Supplemental Fig. 3).

Feature expression in physiologic signals. The averaged SHAP value plot depicts how the top 20 fea-
tures contributed to the performance of the XBG 30–60 min predictive model bundle (Fig. 4). For instance, 
lower values in ICP kurtosis of the fast-Fourier transform were associated with a lower likelihood—and higher 
average means in the ICP were strongly associated with a higher likelihood—of developing elevated ICPs. Higher 
dynamics and variability in both the ICP (sample entropy) and EKG (binned entropy) signals increased likeli-
hood of elevated ICP events; conversely, lower dynamics and variability in DBP (mean change), SBP (standard 
deviation) and MAP (sample entropy) were associated with future elevated ICP events. SHAP value analysis after 
training and testing our models with blood pressure features alone can be seen in Supplemental Fig. 4. High/low 
values were less segregated to either side of 0, suggesting reduced directional prediction.

Table 1.  Clinical characteristics of patients who had elevated ICP events vs patients who had no elevated 
ICP events. § Suffered a thrombotic stroke and cardiac arrest. *Remainder had externalized ventricular 
drains (EVD). One patient had data from both an EVD and intraparenchymal pressure monitor but not 
simultaneously.

Patients (n = 24) Patients with events (n = 9) Patients with controls (n = 15)

Age (mean ± SD) 7 ± 5 6 ± 5 8 ± 5

Male (%) 12 (50%) 3 (33%) 9 (60%)

Diagnostic category

Traumatic brain injury 16 (67%) 6 (67%) 10 (67%)

Non-traumatic hemorrhage 4 (17%) 1 (11%) 3 (20%)

Obstructive mass 3 (13%) 1 (11%) 2 (13%)

Ischemic§ 1 (4%) 1 (11%) 0

Intraparenchymal pressure monitor (%)* 16 (67%) 7 (78%) 9 (60%)

Craniectomy (%) 16 (67%) 5 (56%) 10 (67%)

Figure 3.  Performance of each modeling approach for predicting elevated ICP events with a 30 min prediction 
horizon. Error bars = 95% confidence intervals.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21473  | https://doi.org/10.1038/s41598-022-25169-3

www.nature.com/scientificreports/

Considering the 20 most contributing features in each of 10 Monte Carlo simulations with iterative splits, the 
heat map in Fig. 5 represents how many of these features derived from each physiologic signal in every 30-min 
analysis window. Said another way, this heat map conveys to what extent the top contributing features from each 
physiologic signal were differentially expressed.

Two results suggest the internal validity of this representation. First, differentially expressed features contained 
within the ICP signal increased progressively in time windows closer to elevated ICP events. This is an expected 
result and can be thought of as analogous to a ‘positive control’ as well as to the demonstration of ‘dose–response.’ 
Second, the plethysmography oxygen saturation (SatO2) signal contributed the fewest top 20 features across all 
time windows—again, this was an expected result, likening it to a ‘negative control’.

Strikingly, features contained within the blood pressure signal were the most differentially expressed across 
every time window up to 4-h prior to elevated ICP events, even matching ICP signal-derived features at 0–60 min. 
Features from within the blood pressure signal at 30–60 min derived 40%, 40%, and 20% from the systolic, 
diastolic, and mean blood pressures, respectively (not shown).

Heart rate derived features demonstrated modest differential expression.

Discussion
The primary purpose of this pilot study was to determine whether novel physiomarkers for elevated ICP events 
can be detected using machine learning methods in the physiologic data streams from continuous bedside 
monitors of children with severe brain injury. Secondarily, we benchmarked the predictive performance of the 
modeling approaches we used.

Though we expected features derived from the heart rate signal to have high differential expression, we did 
not find this to be the case (Fig. 5). We found, instead, that features contained within the blood pressure signal 
were consistently the most differentially expressed, and that models trained on features derived from these in 
conjunction with ICP features performed best. This suggests that (a) non-ICP derived physiomarkers for elevated 

Figure 4.  Average SHAP value plot, which assesses feature importance. Displayed in descending order of 
importance are the 20 features which were most contributory to the XGB model bundle performance with the 
30-min prediction horizon, along with averaged SHAP values. For instance, low values (blue) of ICP kurtosis 
favor a prediction of “control” (negative SHAP values), whereas high values (red) of ICP mean favor a prediction 
of “event” (positive SHAP values).
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ICP events are derived predominantly from the blood pressure signal, and (b) ICP- and non-ICP derived physi-
omarkers are accessible to machine learning analyses.

Our findings are consistent with observations of both clinical and experimental biology. Hemodynamic 
changes routinely occur prior to elevated ICP events, which are thought to be regulated by the sympathetic nerv-
ous system with the aim of reducing ICP by autoregulatory cerebral  vasoconstriction4,8; in fact, the “sympathetic 
surge” is regarded by clinicians as a harbinger of herniation  events9–12. A relationship between ICP and sympa-
thetic tone has also been demonstrated experimentally. In mice and humans, ICPs above 10 mm Hg resulted in 
elevations in renal and muscle sympathetic outflow,  respectively13. A 10 mm Hg increase in ICP also caused renal 
sympathetic outflow-mediated BP elevations without changes in HR in  sheep14. Notably, the strong contribution 
of blood pressure features to our XGB predictive model endured across every time window we tested (Fig. 5) 
as did our model performance (see AUPRC values), raising the provocative possibility that autonomic nervous 
system adaptation or dysfunction may produce predictive physiomarkers long before elevated ICP events occur, 
which we defined as over 20 cm  H2O (~ 15 mmHg).

We do not believe this result can be causatively explained by clinical differences among case events and control 
periods. Children of different ages can have significantly disparate hemodynamic parameters, but the ages of case 
and control records were not different. Although 20% more control records were derived from patients who were 
not on either vasoactive or anti-hypertensive infusions, the mean VIS between case events and control periods 
was similar. That said, we cannot predict how vasoactive/inotropic agents, antihypertensives, or hemodynamic-
influencing sedatives impact these physiomarkers. Also, despite more control records coming from patients 
with craniectomies, this surgery would only serve to reduce the chances of having elevated ICP events and not, 
in itself, impact hemodynamics.

The limited contribution of MAP from among the hemodynamic signals stands in interesting contrast to 
the findings of Güiza et al., whose model predicted elevated ICP events 30 min prior to occurrence with an 
AUROC of 0.87 in an initial  study15 using only ICP and MAP as model inputs. With a pediatric external vali-
dation  cohort16, these authors found a lower AUROC of 0.79, comparable to our benchmark AUROC of 0.82. 
This may have been because their initial development cohort contained only 13 pediatric patients. Sensitivities 
were similar (92% and 93%), though our model achieved better specificity (48% vs 65%). Güiza et al.’s excellent 
predictive performance using MAP and ICP alone may be a reflection of their large training cohorts as well as 
their predominantly adult population which has less vital sign variation than children. It is also possible that 
different machine learning modeling approaches—and importantly, the features which are examined—may 
modulate the measured contribution of each physiologic signal. Nevertheless, our findings that differentially 
expressed physiomarkers are concentrated within the blood pressure signal as well as the ICP signal are consist-
ent with Güiza et al.’s modeling results.

Conclusions from our small, pilot study of children with varied ages and severe brain injury pathologies 
derive from 24 patients, of which 9 had events, which is its principal limitation. Our use of multiple splits and 
Monte Carlo simulations across elevated ICP events and controls is an attempt to overcome this limitation as well 
as to correct for event-control imbalance. A more ideal cohort size would allow an equal number of events and 
controls to be derived from every patient, or alternatively, would have each patient contribute only one event or 

Figure 5.  Heat map of most important features across 10 training–testing iterations in every 30 min analysis 
window. 200 features in each column are categorized by physiologic signal. Darker blue means a greater number 
of features derived from the physiologic signal.
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control period in a randomized fashion to allow splits across patients instead of across samples. Therefore, our 
results require external validation in a larger cohort, which will likely require multi-site collaboration.

Minute-to-minute data resolution may have constrained our model performance. Measures of change and 
variability were limited in our feature selection, and our design did not consider changes in feature values 
over time across analysis windows. Our records were curated and imbalanced. We did not study the impact of 
vasoactive agents or sedatives (e.g. propofol, dexmedetomidine) which may have hemodynamic effects, or of 
management conditions (e.g. craniectomy, type of ICP monitor, etc.), though their use appear similar across 
case events and control periods. Automated signal artifact removal algorithms would be required for any future 
bedside implementation.

In summary, we find that discriminatory physiomarkers discernable by machine learning methods are con-
centrated within blood pressure and ICP data for up to 4 h prior to future elevated ICP events in children with 
severe brain injuries, and models using ICP- and blood pressure-derived features demonstrate strong benchmark 
performance. Taken in aggregate, our findings support the idea that future attempts at high fidelity predictive 
modeling of elevated ICP events should leverage features contained within hemodynamic and ICP signals.

Data availability
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publicly available. Data are, however, available from the authors upon reasonable request and with permission of 
the Institutional Review Boards of the University of Tennessee Health Science Center and Methodist Le Bonheur 
Children’s Hospital. To request data, please contact Dr. Nadeem Shafi by email at nshafi@uthsc.edu.
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