Skip to main content
. 2022 Nov 29;10:1066103. doi: 10.3389/fchem.2022.1066103

TABLE 2.

Summary of the recent biodegradation performance of L-PBF Mg-based powders.

Mg alloys Powder characteristics (μm) Geometry and relative density Biodegradation performance In vitro test Refs
Mg 25 (10–45) Single track Ng et al., (2010); Ng et al., (2011b)
Mg 25.85, 43.32 Gas atomization Cubic; 96.13 (Hu et al., (2015)
Mg-Ca 100–200 Gas atomization Scaffold Liu et al., (2017)
Mg-3Zn 60 Gas atomization Cubic; 97.9 4.6–6.7 ml/cm2 per day 7d SBF immersion Chen et al., (2016)
AZ91D 59 Gas atomization Cubic; 99.5 Wei et al., (2014)
ZK30-xCu 10 Non-porous block Biodegradation rate: ZK30 < ZK30–0.1Cu < ZK30–0.2Cu < ZK30–0.3Cu Xu et al., (2019)
Mg–5.6Zn–0.5Zr (ZK60) 30 Non-porous block Hydrogen evolution rate in Hank’s solution: 0.006–0.019 ml/cm−2 h−1 48 h immersion in Hank’s solution Shuai et al., (2017b)
ZK60-Nd Porous scaffold cylinder 1.56 mm per year - Shuai et al., (2017c)
ZK60-xCu 4.5–13.6 Non-porous block ZK60-xCu: 9.5–11.3 5d MG-63 direct contact Shuai et al., (2018)
WE43 25–60 Porous scaffold cylinder 0.17 ml/cm2/d 3d MG-63 direct contact Li et al., (2018b)
WE43 25–60 Porous scaffold cylinder; pore size: 600 μm Li et al., (2018a)
WE43 25–60 7.2 mm per year Zumdick et al., (2019)
WE43 21.77–64.46 Porous scaffold cylinder; pore size: 300–500 μm 0–4 h: 1 ml/cm2/h 4–12 h: 4.26 ml/cm2/h 12 h immersion in Hank’s solution; 7 d direct contact with human bone marrow mesenchymal stem cells Liu et al., (2022c)
Mg-Nd-Zn-Zr (JDBM) Porous scaffold cylinder; Pore size: 800 μm Approximately 40% weight loss after 21 d of static immersion 21 d DMEM immersion Wang et al., (2021b)
JDBM 63.9 ± 14.5 Pore size: 300–400 μm Biodegradation rate: 0.039 ± 0.003 g/d 10d SBF immersion; 21 d MC3T3-E1 differentiation Xie et al., (2022)
Zn-xMg 20 Porous scaffold cylinder; Pore size: 600 μm Biodegradation rate: Zn < Zn–0.1 Mg < Zn–0.2 Mg < Zn–0.5Cu 28d Hank’s immersion; 5 d MC3T3-E1 direct contact Qin et al., (2022)