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Intramedullary spinal cord tumors and inflammatory 
demyelinating lesions share several MRI characteris-

tics (eg, localization, shape, signal intensity, and con-
trast enhancement) (1–3), which poses a clinical chal-
lenge for accurate diagnosis. It is essential to accurately 
differentiate spinal cord tumors, including astrocytomas 
and ependymomas, from demyelinating lesions such as 
multiple sclerosis (MS) and neuromyelitis optica spec-
trum disorders (NMOSD) and to accurately classify 
these subtypes because they imply fundamentally differ-
ent treatments and prognoses.

Substantial progress has been made in applying 
deep learning (DL) to diagnose brain disorders (4–6), 
but only a few DL studies have focused on spinal cord 
diseases (7,8). The limited evidence to date suggests 
that DL can be used to characterize and segment spi-
nal cord tumors or demyelinating lesions (7,8), but to 

our knowledge no study has addressed the differential 
diagnosis of these lesions or their subtypes. Whereas au-
tomated pipelines for clinical diagnosis integrating le-
sion segmentation and differential diagnosis by DL have 
been reported for supratentorial lesions (eg, gliomas and 
white matter hyperintensities) (5,6,9), they have not yet 
been reported for intramedullary spinal cord lesions.

The aim of our study was to develop a DL pipe-
line for assisting clinical diagnosis by integrating the 
segmentation and classification of spinal cord tumors 
(astrocytoma and ependymoma) versus inflammatory 
demyelinating lesions (MS and NMOSD) and their 
subtypes. We hypothesized that such a DL pipeline 
could be achieved by using MRI, and therefore we 
conducted this study using T2-weighted images. We 
deliberately chose basic T2-weighted images because 
they are generally clinically available.
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Accurate differentiation of intramedullary spinal cord tumors and inflammatory demyelinating lesions and their subtypes are warranted because 
of their overlapping characteristics at MRI but with different treatments and prognosis. The authors aimed to develop a pipeline for spinal cord 
lesion segmentation and classification using two-dimensional MultiResUNet and DenseNet121 networks based on T2-weighted images. A ret-
rospective cohort of 490 patients (118 patients with astrocytoma, 130 with ependymoma, 101 with multiple sclerosis [MS], and 141 with neu-
romyelitis optica spectrum disorders [NMOSD]) was used for model development, and a prospective cohort of 157 patients (34 patients with 
astrocytoma, 45 with ependymoma, 33 with MS, and 45 with NMOSD) was used for model testing. In the test cohort, the model achieved 
Dice scores of 0.77, 0.80, 0.50, and 0.58 for segmentation of astrocytoma, ependymoma, MS, and NMOSD, respectively, against manual la-
beling. Accuracies of 96% (area under the receiver operating characteristic curve [AUC], 0.99), 82% (AUC, 0.90), and 79% (AUC, 0.85) were 
achieved for the classifications of tumor versus demyelinating lesion, astrocytoma versus ependymoma, and MS versus NMOSD, respectively. 
In a subset of radiologically difficult cases, the classifier showed an accuracy of 79%–95% (AUC, 0.78–0.97). The established deep learning 
pipeline for segmentation and classification of spinal cord lesions can support an accurate radiologic diagnosis.

Supplemental material is available for this article.
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two-classification models were developed using two-dimensional 
MultiResUNet (10,11) and DenseNet121 networks (12): tu-
mor versus demyelinating lesion (model 1), astrocytoma versus 
ependymoma (model 2), and MS versus NMOSD (model 3) 
based on sagittal T2-weighted images (Table E1, Appendix E1 
[supplement]). Details of image preparation for DL and model 
development are presented in the methods section of Appendix 
E1 (supplement). A pipeline including segmentation and clas-
sification of spinal cord lesions is shown in Figure 2A.

Data Collection
Radiologic assessments including lesion characteristics, man-
ual lesion segmentation, and classification were performed by 
neuroradiologists with different levels of experience in neuro-
radiology (D.C. and X.X., with 2 years of experience; J.Z. and 
L.Q., with 3 years of experience; X.H. and C.F., with 11 years 
of experience; and Y.D., with 12 years of experience; Appendix 
E1, Table E2 [supplement]) with reference to the presentations 
of other available imaging sequences (eg, T1-weighted, con-
trast-enhanced T1-weighted, and axial T2-weighted images). 
Difficult cases were those with disagreement by the neurora-
diologists regarding the most likely diagnoses (Appendix E1 
[supplement]).

Statistical Analysis
Statistical analyses of demographics, clinical variables, and 
MRI variables (Appendix E1 [supplement]) were performed 
using software (SPSS version 22; IBM). A two-sided P 
value of less than .05 was considered to indicate statistical 
significance.

The Dice score was used to evaluate segmentation perfor-
mance. Accuracy, sensitivity, specificity, positive predictive value, 
negative predictive value, precision, recall, and area under the 
receiver operating characteristic curve (AUC) were calculated to 
evaluate classification performance. Additionally, we conducted 
sensitivity analyses by using gradient-weighted class activation 
mapping (Grad-CAM), subgroup analyses according to patient 
age and sex, and additional combinations with available contrast-
enhanced T1-weighted images (Appendix E1 [supplement]).

Data Availability
We made our code publicly available. It is available at https://
github.com/Leezhaohui/spinalcord_classification.

Results

DL Segmentation of Spinal Cord Tumors and Demyelinating 
Lesions
In the independent test cohort, the mean Dice scores were 
0.77, 0.80, 0.50, and 0.58 for astrocytoma, ependymoma, MS, 
and NMOSD, respectively (Table E3 [supplement]). Repre-
sentative cases are shown in Figure 2B. A subset of DL seg-
mentations (five tumors and 16 demyelinating lesions in the 
validation cohort; seven tumors and 23 demyelinating lesions 
in the test cohort) needed further manual review and correc-
tion (Appendix E1 [supplement]).

Materials and Methods
Authors who are not employees of or consultants to BioMind, 
Neusoft Medical Systems, Bayer Schering, Biogen, GeNeuro, 
Ixico, Merck Serono, Novartis, or Roche had control of image 
and clinical data that might present a conflict of interest for 
authors Z.L., X. Guo, X. Gong, and F.B.

Our study was performed in accordance with the Declaration 
of Helsinki and was approved by the animal and human eth-
ics committee of the local institution. Written informed consent 
was obtained from all patients.

Patients
We retrospectively reviewed data collected from January 2012 to 
December 2018 and identified 494 patients (119 patients with 
astrocytoma, 131 with ependymoma, 101 with MS, and 143 
with NMOSD) based on their first clinical diagnosis and be-
fore clinical treatment to train (n = 392; 80%) and validate (n 
= 98; 20%) the segmentation and classification models (Table 
1, Appendix E1 [supplement]). Four patients (astrocytoma [n = 
1], ependymoma [n = 1], and NMOSD [n = 2]) were excluded 
because of insufficient image quality, resulting in 490 patients 
(118 patients with astrocytoma, 130 with ependymoma, 101 
with MS, and 141 with NMOSD) in the training and validation 
sets. For independent testing, 157 patients (34 astrocytoma, 45 
ependymoma, 33 MS, and 45 NMOSD) were prospectively and 
consecutively enrolled from January 2019 to December 2020 
(Table 1, Appendix E1 [supplement]). Inclusion and exclusion 
criteria are in Figure 1 and Appendix E1 (supplement).

DL and Model Development
For integrated segmentation and classification of spinal cord 
tumors versus demyelinating lesions and their subtypes, three 

Abbreviations
AUC = area under the receiver operating characteristic curve, DL 
= deep learning, Grad-CAM = gradient-weighted class activation 
mapping, MS = multiple sclerosis, NMOSD = neuromyelitis optica 
spectrum disorders

Summary
A deep learning pipeline for segmentation and classification of spinal 
cord lesions using T2-weighted MR images was established to sup-
port an accurate radiologic diagnosis, and it sometimes outperformed 
experienced neuroradiologists.

Key Points
 n The model achieved Dice scores of 0.77, 0.80, 0.50, and 0.58 

for model segmentation of astrocytoma, ependymoma, multiple 
sclerosis (MS), and neuromyelitis optica spectrum disorders 
(NMOSD), respectively, against manual labeling.

 n The model achieved accuracies of 96%, 82%, and 79% for clas-
sification of tumor versus demyelinating lesion, astrocytoma versus 
ependymoma, and MS versus NMOSD, respectively.

 n For cases with disagreement in diagnoses by neuroradiologists, an 
accuracy of 79%–95% was still achieved by the classifier.

Keywords
Spinal Cord MRI, Astrocytoma, Ependymoma, Multiple Sclerosis, 
Neuromyelitis Optica Spectrum Disorder, Deep Learning
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Table 1: Patient Demographics, Clinical Information, and Conventional MRI Features

Parameter Astrocytoma Ependymoma* MS NMOSD P Value

Training cohort
 Female patients 35 (37) 48 (46) 59 (73)†‡ 94 (83)†‡ ,.001§

 Mean age (y) 32 6 16 43 6 13† 35 6 12‡ 39 6 15† ,.001#

 Lesion location
  Oblongata-cervical 0 (0) 0 (0) 6 (7)†‡ 0 (0)ǁ ,.001**
  Cervical 33 (35) 68 (65)† 61 (75)† 75 (66)† ,.001§

  Cervical-thoracic 15 (16) 1 (1)† 11 (14)‡ 19 (17)‡ ,.001§

  Thoracic 31 (33) 20 (19)† 3 (4)†‡ 17 (15)†ǁ ,.001§

  Thoracic-lumbar 14 (15) 0 (0)† 0 (0)† 2 (2)† ,.001§

  Lumbar 1 (1) 15 (14)† 0 (0)‡ 0 (0)‡ ,.001**
 Lesion count, median (IQR) 1 (1–1) 1 (1–1) 2 (1–3)†‡ 1 (1–2)†‡ǁ ,.001††

 Median lesion-associated extension (vertebra count) 4 (3–6) 3 (2–4)† 3 (2–5)† 4 (2.5–6)‡ǁ ,.001††

 Mean total lesion volume (mL) 12.64
6 10.77

15.08
6 11.71

1.32
6 1.64†‡

2.99
6 2.95†‡

,.001#

 Contrast-enhanced lesion (n/total [%]) 60/79
(76)

71/99
(72)

7/54
(13)†‡

10/61
(16)†‡

,.001§

Validation cohort
 Female patients 10 (42) 13 (50) 12 (60) 25 (89)†‡ǁ .004§

 Mean age (y) 33 6 14 43 6 13† 31 6 10‡ 45 6 13†ǁ ,.001#

 Lesion location
  Oblongata-cervical 0 (0) 0 (0) 2 (10) 0 (0) .04**
  Cervical 13 (54) 16 (62) 13 (65) 17 (61) .91§

  Cervical-thoracic 5 (21) 0 (0) 3 (15) 6 (21) .049**
  Thoracic 5 (21) 1 (4) 2 (10) 5 (18) .26**
  Thoracic-lumbar 1 (4) 0 (0) 0 (0) 0 (0) .99**
  Lumbar 0 (0) 9 (35)† 0 (0)‡ 0 (0)‡ .008**
 Lesion count, median (IQR) 1 (1–1) 1 (1–1) 2 (1–3.5)†‡ 1 (1–1)ǁ ,.001††

 Median lesion-associated extension (vertebra count) 4 (3–6) 2 (1.5–3)† 3 (2–5) 4 (2–7)‡ .003††

 Mean total lesion volume (mL) 11.61
6 11.66

10.55
6 7.65

8.04
6 0.63†‡

2.73
6 2.14†‡

,.001#

 Contrast-enhanced lesion (n/total [%]) 18/22
(82)

19/24
(79)

0/15
(0)†‡

4/16
(25)†‡

,.001§

(Table 1 continues)

DL Classification of Spinal Cord Tumors and Demyelinating 
Lesions
Based on model 1, accuracy of 96% (150 of 157), sensitivity 
of 97% (76 of 78), specificity of 94% (74 of 79), and AUC 
of 0.99 (95% CI: 0.97, 1.0) were achieved on the indepen-
dent test cohort for the classification of tumor versus demy-
elination (Table 2; Fig E1, Fig E2 [supplement]), which was 
comparable to neuroradiologist performance (accuracy, 97% 
[152 of 157]; Appendix E1, Table E2 [supplement]). For clas-
sification of difficult cases, the model achieved an accuracy of 
95% (38 of 40), sensitivity of 95% (21 of 22), and specificity 
of 94% (17 of 18).

Based on model 2, accuracy of 82% (65 of 79), sensitivity of 
76% (34 of 45), specificity of 91% (31 of 34), and AUC of 0.90 
(95% CI: 0.79, 0.97) were achieved on the independent test co-
hort for the classification of astrocytoma versus ependymoma, 

which was superior to neuroradiologist performance (accuracy, 
72% [57 of 79]). This performance was maintained for difficult 
cases, in which an accuracy of 83% (15 of 18), sensitivity of 86% 
(six of seven), and specificity of 82% (nine of 11) were achieved.

Based on model 3, accuracy of 79% (62 of 78), sensitivity 
of 80% (36 of 45), specificity of 79% (26 of 33), and AUC of 
0.85 (95% CI: 0.74, 0.96) were achieved on the independent 
test cohort for the classification of MS and NMOSD lesions, 
which was superior to neuroradiologist performance (accuracy, 
67%; 52 of 78). This performance was maintained for difficult 
cases, in which an accuracy of 82% (18 of 22), sensitivity of 87% 
(13 of 15), and specificity of 71% (five of seven) were achieved.

Sensitivity Analyses
The Grad-CAM showed that the main activation areas were 
the lesion and perilesional areas in patients with tumors or 
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Table 1 (continued): Patient Demographics, Clinical Information, and Conventional MRI Features

Parameter Astrocytoma Ependymoma* MS NMOSD P Value

Testing cohort
 Female patients 11 (32) 20 (44) 23 (70)†‡ 40 (89)†‡ǁ ,.001§

 Mean age (y) 32 6 14 42 6 15† 38 6 12 42 6 13† .003#

 Lesion location
  Oblongata-cervical 0 (0) 0 (0) 4 (12)†‡ 0 (0)ǁ .002**
  Cervical 10 (29) 29 (64)† 24 (73)† 29 (64)† .001§

  Cervical-thoracic 4 (12) 0 (0) 5 (15) 5 (11) .97**
  Thoracic 15 (44) 4 (9)† 0 (0)† 11 (24) †‡ǁ ,.001§

  Thoracic-lumbar 5 (15) 1 (2)† 0 (0)† 0 (0)† .004**
  Lumbar 0 (0) 11 (24)† 0 (0)‡ 0 (0)‡ ,.001**
 Lesion count, median (IQR) 1 (1–1) 1 (1–1) 2 (1–4)†‡ 1 (1–1)ǁ ,.001††

 Median lesion-associated extension (vertebra count) 4 (2–6) 2 (2–4)† 3 (2–5) 3 (2–5)‡ .008††

 Mean total lesion volume (mL) 15.05
6 12.26

15.30
6 10.05

0.99
6 1.18†‡

2.31
6 2.41†‡

,.001#

 Contrast-enhanced lesion (n/total [%]) 24/29
(83)

33/42
(79)

2/21
(10)†‡

6/30
(20)†‡

,.001§

Note.—In the training, validation, and testing cohorts, the distribution was as follows, respectively: patients with astrocytoma: 94, 24, and 
44; patients with ependymoma: 104, 26, and 45; patients with MS: 81, 20, and 33; and patients with NMOSD: 113, 28, and 45. Unless 
otherwise indicated, data are the number of patients with percentage in parentheses or means 6 SDs. Median data have IQRs in parenthe-
ses. The samples in the training cohort were appropriate for model development (eg, model overfitting was prevented), as indicated by the 
model performance evaluation with different training sample sizes (Fig E3 [supplement]). MS = multiple sclerosis, NMOSD = neuromyeli-
tis optica spectrum disorders.
* Percentages are not equal to 100 because of rounding.
† Statistically significant compared with astrocytoma.
‡ Statistically significant compared with ependymoma.
§ Pearson x2 test between groups.
ǁ Statistically significant compared with MS.
# Analysis of variance followed by post hoc multiple comparison with Bonferroni correction.
** Fisher exact test between groups.
†† Kruskal–Wallis test followed by post hoc multiple comparison with Bonferroni correction.

Figure 1: Flowcharts of patient selection for (left) training and validation and (right) testing. MS = multiple sclerosis, NMOSD = neuromyelitis optica spectrum disorders.

demyelinating lesions (Appendix E1, Table E4 [supplement]). 
Model performance degraded only in the pediatric and male 
subgroups, with lower sensitivity in the classification of astro-
cytoma versus ependymoma (Table E5 [supplement]). The 

contrast-enhanced T1-weighted images had no additional 
contribution to whole-lesion segmentation and improved 
only the classification accuracy of MS versus NMOSD (Table 
E6 [supplement]).

http://radiology-ai.rsna.org
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Figure 2: (A) Deep learning (DL) pipeline established for segmentation and classification of spinal cord lesions. First, the noncontrast T2-weighted (T2w) sagittal MR 
images (all sections; sections 1–11 herein) were used to segment the lesion, and manual verification was conducted to correct the poorly segmented lesions. Second, the 
sections (eg, sections 5–8) of the T2-weighted images involving lesions and lesion masks were used as the network input for classification tasks. (B) Representative cases of 
segmentation and classification for spinal cord tumors and demyelinating lesions in the test cohort. Diagnosis by DL and four raters (D.C. [rater 1], X.X. [rater 2], C.F. [rater 
3], X.H. [rater 4]) are shown. Red areas indicate the DL segmentation, green areas indicate manual segmentation, and yellow areas indicate overlap. MS = multiple sclero-
sis, NMOSD = neuromyelitis optica spectrum disorders.
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Discussion
In this study, a DL pipeline for spinal cord lesion segmenta-
tion and classification was developed using T2-weighted im-
ages, the most widely available type of MR images. In the test 
cohort, the model achieved Dice scores of 0.77, 0.80, 0.50, 
and 0.58 for segmentation of astrocytoma, ependymoma, MS, 
and NMOSD, respectively, against manual labeling. Accuracy 
of 96%, 82%, and 79% was achieved for the classifications of 
tumor versus demyelinating lesion, astrocytoma versus ependy-
moma, and MS versus NMOSD, respectively, which was com-
parable to or better than that achieved by neuroradiologists 
(accuracy of 97%, 72%, and 67%, respectively). In a subset 
of radiologically difficult cases, an accuracy of 79%–95% was 
achieved by the classifier. This DL pipeline could both benefit 
patients without available contrast-enhanced T1-weighted im-
ages and facilitate fast clinical translation with robust perfor-
mance across different subpopulations. For the differentiation 

of demyelinating lesions, contrast-enhanced T1-weighted im-
aging is recommended to achieve higher classification perfor-
mance (accuracy, 90%).

Few studies have focused on spinal cord lesion segmentation 
by using DL (8). Spinal cord tumor segmentation benefits from 
a relatively high tumor intensity compared with surrounding 
normal spinal cord tissue (13). Our DL model showed promis-
ing segmentation performance comparable to that of a previous 
study in which a Dice score of 0.77 was reported (8). For de-
myelinating lesions, DL segmentation achieved a slightly lower 
performance (even combining contrast-enhanced T1-weighted 
images) because of the smaller volume of disseminated lesions 
and lower contrast enhancement in the lesion and surrounding 
tissue (7); these factors also pose a challenge in manual delinea-
tion. Although the current automatic segmentation of demyelin-
ating lesions requires manual review and frequent modification, 
it may still aid efficient lesion segmentation.

Table 2: Differentiation of Spinal Cord Lesions by Deep Learning Models

Classification
Tumor vs Demyelinating Lesion 
(Model 1)

Astrocytoma vs Ependymoma 
(Model 2) MS vs NMOSD (Model 3)

Validation
 Accuracy 96 (94/98) 80 (40/50) 88 (42/48)
 Sensitivity 98 (47/48) 77 (20/26) 86 (24/28)
 Specificity 94 (47/50) 83 (20/24) 90 (18/20)
 PPV 94 (47/50) 83 (20/24) 92 (24/26)
 NPV 98 (47/48) 77 (20/26) 82 (18/22)
 Precision 94 (47/50) 83 (20/24) 92 (24/26)
 Recall 98 (47/48) 77 (20/26) 86 (24/28)
 AUC* 0.99 (0.98, 1.0) 0.85 (0.77, 0.94) 0.94 (0.82, 0.99)
Testing
 Accuracy 96 (150/157) 82 (65/79) 79 (62/78)
 Sensitivity 97 (76/78) 76 (34/45) 80 (36/45)
 Specificity 94 (74/79) 91 (31/34) 79 (26/33)
 PPV 94 (76/81) 92 (34/37) 84 (36/43)
 NPV 97 (74/76) 74 (31/42) 74 (26/35)
 Precision 94 (76/81) 92 (34/37) 84 (36/43)
 Recall 97 (76/78) 76 (34/45) 80 (36/45)
 AUC* 0.99 (0.97, 1.0) 0.90 (0.79, 0.97) 0.85 (0.74, 0.96)
Difficult cases
 Accuracy 95 (38/40) 83 (15/18) 82 (18/22)
 Sensitivity 95 (21/22) 86 (6/7) 87 (13/15)
 Specificity 94 (17/18) 82 (9/11) 71 (5/7)
 PPV 95 (21/22) 75 (6/8) 87 (13/15)
 NPV 94 (17/18) 90 (9/10) 71 (5/7)
 Precision 95 (21/22) 75 (6/8) 87 (13/15)
 Recall 95 (21/22) 86 (6/7) 87 (13/15)
 AUC* 0.97 (0.94, 1.0) 0.91 (0.80, 0.97) 0.78 (0.69, 0.93)

Note.—Unless otherwise indicated, data are percentages; data in parentheses are numerators/denominators. AUC 
= area under the receiver operating characteristic curve, MS = multiple sclerosis, NMOSD = neuromyelitis optica 
spectrum disorders, NPV = negative predictive value, PPV = positive predictive value.
* Data in parentheses are 95% CIs.

http://radiology-ai.rsna.org
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Our study classifies spinal cord tumors and demyelinates 
lesions and their subtypes, a clinically relevant and sometimes 
challenging task, using DL. Our model showed an excellent 
differentiation of spinal cord tumors versus demyelinating le-
sions using only T2-weighted images, acquired by using stan-
dard of care, without the need for advanced MRI sequences 
or other modalities, which benefits a fast and general clini-
cal application. The model performance was comparable to 
that of neuroradiologists. Our model may benefit from the 
different intensity contrast and morphologic characteristics 
(eg, orientation, shape, size, and count, as shown in Grad-
CAM) (14,15). In addition, cysts, necrosis, cavities, and 
hemorrhages, which are specific to tumors and typically are 
absent in demyelinating lesions, may also contribute to the 
final classification (1,14–16). Even though the differentiation 
of brain tumors has been widely reported in previous studies, 
with accuracies greater than 80% (5,17), studies on the dif-
ferentiation of spinal cord tumors are lacking. The differentia-
tion within spinal cord tumors using DL in the current study 
was superior to neuroradiologists’ diagnostic performance 
and was comparable to that reported in previous brain tumor 
studies (5,17). The accuracy of the differentiation of demy-
elinating lesions (MS vs NMOSD) using DL was higher than 
that of neuroradiologists, of which performance could be fur-
ther improved by combining contrast-enhanced T1-weighted 
images. The contribution of the entire demyelination lesion 
and/or lesion central area and perilesional areas along the le-
sion margin revealed by Grad-CAM indicated potential dis-
tinct underlying pathologic causes, which has potential value 
for radiologic diagnosis. Good to excellent performance was 
achieved using DL for clinically difficult cases (ie, conflicting 
diagnoses from neuroradiologists), which suggests that it may 
be useful in clinically difficult spinal cord cases.

Our study had some limitations. First, only spinal cord T2-
weighted images were used. Use of multimodal spinal cord 
MRI scans and available brain MRI scans, which would provide 
complementary profiles, could be considered in further studies. 
An additionally performed analysis comparing the performance 
of radiologist assessment of T2-weighted images only versus all 
available MRI sequences found no relevant difference in ac-
curacy (Table E2, Appendix E1 [supplement]). Second, lesion 
segmentation by DL may have been suboptimal, particularly 
for demyelinating lesions. Additionally, the whole lesion on the 
T2-weighted image was segmented, and different tumor compo-
nents (eg, cyst, edema, and hemorrhage) may improve the clas-
sification model performance. Third, a prospective study with 
more types of spinal cord lesions (eg, spinal cord infarction) and 
external testing is warranted to validate the established pipeline 
and extend the model to other spinal cord diseases.

In conclusion, we developed and validated a DL framework 
for the segmentation and classification of spinal cord lesions 
including tumors (astrocytoma and ependymoma) and de-
myelinating diseases (MS and NMOSD), the performance of 
which sometimes exceeded that of radiologists.
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