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Summary

T cells mediate antigen-specific immune responses to disease through the specificity and diversity 

of their clonotypic T-cell receptors (TCRs). Determining the spatial distributions of T cell 

clonotypes in tissues is essential to understanding T cell behavior, but spatial sequencing 

methods remain unable to profile the TCR repertoire. Here, we developed Slide-TCR-seq, a 

10-μm-resolution method to sequence whole transcriptomes and TCRs within intact tissues. We 

confirmed the ability of Slide-TCR-seq to map the characteristic locations of T cells and their 

receptors in mouse spleen. In human lymphoid germinal centers, we identified spatially distinct 

TCR repertoires. Profiling T cells in renal cell carcinoma and melanoma specimens revealed 

heterogeneous immune responses: T cell states and infiltration differed intra- and inter-clonally, 

and adjacent tumor and immune cells exhibited distinct gene expression. Altogether, our method 

yields insights into the spatial relationships between clonality, neighboring cell types, and gene 

expression that drive T cell responses.

eTOC

T cells’ location, clonotype, and gene expression are critical to understanding immune responses. 

Liu, lorgulescu, Li, and colleagues develop Slide-TCR-seq to simultaneously study spatial and 

transcriptomic differences between T cell clones with 10-μm-resolution and apply it to human 

lymphoid organs and cancer contexts.
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Introduction

In many diseases, antigen-specific T cells function as the primary effector cells that 

mediate immune responses. The specificity of T cells is determined by their T-cell receptor 

(TCR) sequence – generated through recombination of genomic V(D)J segments, which, 

importantly, include the highly polymorphic complementarity-determining region 3 (CDR3) 

domains that drive recognition of cognate antigenic peptides presented in the context 

of major histocompatibility complex (MHC) molecules. Consequently, understanding 

the biological processes that underlie T cell development, immune responses, disease 

pathogenesis, and immunotherapy efficacy are goals that have motivated efforts to 

characterize TCR repertoires using bulk and single-cell approaches (Wu et al., 2020; Joshi et 

al., 2019; Yost et al., 2019; Thorne et al., 2014).

Although there have been remarkable advances in technologies that couple single-cell 

transcriptomics and TCR sequencing (Li et al., 2019; Tu et al., 2019) – which have enabled 
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the systematic characterization of T cell clonotype repertoires – conventional strategies 

rely on dissociating tissues into single-cell suspensions. Consequently, valuable information 

is lost regarding the spatial organization of cells, thereby limiting our ability to answer 

how T cell clonotypes distribute in organs, interact with other T cell clones and distinct 

cell types during immune responses, and organize under various pathologic conditions. 

Conversely, current methods for spatial characterization, which primarily apply antibodies 

(e.g., multiplexed immunofluorescence, imaging mass cytometry) or in situ hybridization 

probes for mapping cell phenotypes and TCR sequences, are highly targeted, restricted in 

their multiplexing capability, and limited in scalability (Gohil et al., 2021). Importantly, 

there are currently no approaches that spatially profile TCR sequences in their tissue 

contexts at near single-cell resolution. As a result, an evaluation of how T cell state, clonal 

identity, and tissue localization are related has not been possible. Here, we developed 

Slide-TCR-seq, a method for sequencing whole transcriptomes and TCRs within intact 

tissues. To illustrate the utility of Slide-TCR-seq in identifying spatially segregated T cell 

niches, we identified distinct TCR repertoires in germinal centers and tertiary lymphoid 

structures. In renal cell carcinoma and melanoma, we found that T cell clones vary both 

inter- and intra-clonally in their gene expression and their tumor infiltration and that tumor 

and immune cells exhibited differentially expressed genes depending on the adjacent T cell 

clone. Overall, our method enables studying the complex relationship between clonality, 

localization, and gene expression.

Results

Slide-TCR-seq integrates TCR clonotype sequencing and spatial transcriptomics

To add to existing tools for studying TCRs (Table S1) and enable spatial TCR 

sequencing, we reasoned that Slide-seqV2 (Stickels et al., 2020), a 10-qm-resolution spatial 

transcriptomic approach, could be modified to capture and sequence TCR sequences—

thereby allowing the integrated analysis of clonal, transcriptional, and spatial attributes of 

the T cell clonotype repertoire. Slide-seqV2 generates cDNA libraries from fresh-frozen 

tissue sections with 3’-end mRNA capture through spatially arrayed DNA-barcoded 10-qm 

beads: beads are affixed onto slides, in situ sequencing is performed to map the spatial 

bead barcode sequence to the bead’s x-y location, and then RNA can be captured onto 

the beads for downstream library preparation (Figure l A, Table S2). However, preparation 

for sequencing involves cDNA fragmentation, from which only the constant regions of 

TCRα and TCRβ can be detected. We recently reported rhTCRseq (Li et al., 2019) as 

a robust approach for targeted amplification of TCR transcripts. Hence, we hypothesized 

that rhTCRseq could be adapted to integrate with the Slide-seq workflow to determine 

the variable sequences of TCRs. rhTCRseq exploits the specificity of rhPCR (Dobosy et 

al., 2011), which uses 3’-b1ocked oligonucleotides with a single ribo residue cleaved by 

RNase H upon hybridization with DNA targets to generate functional primers extendable 

by Taq DNA polymerase, thereby enabling the specific multiplexed PCR needed to amplify 

TCR transcripts (Figure lA). We optimized rhTCRseq for Slide-seq to amplify segments 

that extend from the alpha or beta V region (upstream of CDR3) to the 3’ end of the 

TCR transcript containing the bead barcode (STAR Methods). We could then determine the 

variable sequences from the amplified cDNA library, which we divided into two fractions. 
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The first fraction underwent conventional fragmentation and sequencing to determine the 

bead barcodes and 3’-end transcriptome information. The second fraction was processed 

using the modified rhTCRseq workflow and then sequenced either via short-read sequencing 

on a MiSeq or long-read sequencing via Oxford Nanopore (Figure SlA–B). Sequences for 

CDR3 regions were determined computationally (STAR Methods), and the bead barcodes 

were used to map back to the spatial reference. Thus, Slide-TCR-seq can generate whole 

transcriptome and CDR3 information with spatial context from fresh-frozen tissues at 10-

μm-resolution.

Spatial reconstruction of the native architecture of the mouse spleen delineates CDR3 
sequences and locations

To confirm the ability of Slide-TCR-seq to spatially reconstruct and quantify TCR variable 

region sequencing in a well-controlled setting, we first applied Slide-TCR-seq to freshly 

frozen spleens from OT-I transgenic mice to take advantage of the predominant expression 

of a single well-characterized TCR in the distinctive lymphoid architecture of spleen (Figure 

IB). We resolved the spatial structure of the mouse spleen using the transcriptome fraction 

of Slide-TCR-seq and assigned cell types to beads using robust cell type decomposition 

(RCTD) (Cable et al., 2021) with a murine spleen scRNA-seq reference (Figures 1C and 

S1C–D) (Kimmel et al., 2019). Overall cell type arrangement and marker genes for the 

marginal zone (Marco), red blood cells (Gypa), and CD8+ T cells (Cd8a) aligned well with 

the expected splenic architecture from histology and immunofluorescence staining (Figures 

1B and 1D).

To determine the spatial recovery efficiency of the CDR3 variable sequences, we measured 

the proportion of beads in which we both sequenced CDR3 variable regions and detected 

a TCR constant sequence. To extract the variable TCR repertoire from the rhTCR-seq 

fraction, we used MiXCR (STAR Methods) (Bolotin et al., 2015). To correct for chimeric 

molecules, we implemented a conservative, adaptive computational filter on the variable 

sequences to only consider variable sequences that had at least two reads (STAR Methods). 

We found that beads with constant sequences contained a variable sequence 41.7% of 

the time (Figure S IE). When a bead captured a single Trbc2 constant unique molecular 

identifier (UMI), at least one TCRβ CDR3 was sequenced on that same bead 25.8% of the 

time; for TCRo, the sequencing efficiency was higher, at 64.6% (Figure IE). These recovery 

values were comparable to that reported in recent single-cell methods for TCR sequencing 

(Tu et al., 2019). We also found that the targeted amplification of TCRs improved our 

overall T-cell detection, as 28.7% of beads containing a variable TCR were not identified in 

the transcriptome fraction (Figure S1E). After applying the computational filter to remove 

low-confidence reads, over 99% of the TCRɑ sequences matched the OT-I TCRɑ sequence, 

100% of the TCRβ sequences matched the OT-I TCRβ sequence, and over 99% of the beads 

where both TCRɑ and TCRβ were sequenced matched the OT-I clonotype, consistent with 

previous tetramer studies (Table S3) (Strbo et al., 2003).

To confirm that the general architecture of the tissue was maintained in the spatial 

assignments of the variable CDR3 sequences, we compared their positioning with that 

of the constant TCR sequences and found high spatial correlation between the variable 
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and constant sequence localizations (Pearson’s r=0.86, Figures S2F–G). Contour maps 

highlighting regions of high T-cell density further confirmed the spatial reconstruction of 

the splenic architecture (Figures IF and 1G) and revealed higher capture of Trbc2 than Trac, 
which reflects the higher expression of Trbc2 in T cells (Oakes et al., 2017). Slide-TCR-seq 

thus faithfully recovered both CDR3 sequences and their spatial locations.

Slide-TCR-seq reveals spatially distinct T cell repertoires in secondarv lymphoid tissues

To study the native TCR repertoire organization in human secondary lymphoid tissues, we 

applied Slide-TCR-seq to human lymph node and tonsil samples (Figure 2). We found 

that, on average, 98.5% of beads with CDR3 sequences contained a single CDR3, and 

2.8% contained two CDR3s (Figures 2B, S2A, S2B). This finding was consistent with our 

expectation that only a small fraction of beads contained multiple T cells. Germinal centers 

(GCs) in lymph nodes are critical locations for T follicular helper cells (Tfh) to shape B 

cell affinity maturation (Ansel et al., 1999; Johnston et al., 2009; Yu et al., 2009). RCTD 

cell type assignments showed the expected B cell-rich GCs, marked by CXCRS and BCL6 
expression (Figures 2A and 2C and S2C). Since Tfh cells have been shown to travel between 

GCs (Shulman et al., 2013; Suan et al., 2015), we investigated whether TCR repertoires 

within GCs were locally distinct or shared with other tissue compartments. After assigning 

each bead with a TCRβ sequence to either GCs or non-GC areas, we evaluated clonotypes 

that were captured by at least two beads and observed a large number of clonotypes that 

localize in both compartments but noted that the observed clonotype overlap was lower 

than expected (p<0.0001, comparison to random shuffling, Figures 2D–E and S2D, STAR 

Methods). This observation also held in the analysis of one other reactive human lymph 

node and one reactive human tonsil sample (combined p<4.1×>10−10, by Fisher’s method, 

Figure S2E). This finding supports the notion that the distribution of T cells in the lymph 

node between GC and non-GC regions is non-random, suggestive of spatial segregation. The 

diversity of TCR clonotypes (by Shannon entropy) was higher in non-GC regions across all 

samples (Figure 2F) and T cells in GCs had more expanded clonotype groups (Figure 2G), 

further suggestive of localized TCR repertoire clonal expansion, presumably antigen-driven, 

in GCs (Merkenschlager et al., 2021).

While the GC repertoire was distinct from the non-GC repertoire, we queried whether 

distinct GCs had unique TCR repertoire niches for B cell maturation. We used random 

shuffling to estimate the expected overlap in clonotypes between two GCs that we identified 

in the same lymph node array. While the two GCs indeed contained many shared clonotypes, 

the observed clonotype overlap was lower than expected by random sampling (p<0.0001, 

Figures 2H–I), a result also detected upon analysis of another section from this lymph 

node sample (p<0.0001, Figures S2F–G) Thus, while Tfh cells can migrate between GCs, 

these data suggest that GCs in this lymph node sample retained locally distinct TCR 

environments. Furthermore, these compartmental differences extended beyond the CDR3 

identity to include differences in TRBV and TRBJ distributions between compartments 

(p<0.0001, Figure 2I). These results reinforce the notion that in lymph nodes without 

ongoing antigen stimulation, TCR clonotypes are spatially segregated.
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Slide-TCR-seq identifies spatial heterogeneity between clonotypes in renal cell carcinoma

Beyond examining the architecture of normal tissue, analysis of the spatial organization 

of individual T cell clones within the tumor microenvironment may yield insight into 

therapeutic response and resistance. In particular, the spatial organization of the clonal 

context of T cells in relation to the T cells’ tumor-infiltration patterns may contribute to 

response and resistance following anti-tumor immunotherapies (Lu et al., 2019). We thus 

applied Slide-TCR-seq to longitudinally-collected specimens from a patient with clear cell 

renal cell carcinoma (RCC) who developed resistance following PD-1 immune checkpoint 

blockade (ICB) treatment. These samples consisted of a baseline primary kidney tumor 

and a post-treatment therapy-refractory lung metastasis, in which cell types were assigned 

using RCTD with scRNA-seq data (Braun et al., 2021) from an RCC cohort that included 

this patient (Figures 3, S3A–C). We show that Slide-TCR-seq can facilitate the spatial 

dissection of transposable elements and endogenous retroviruses expression (Figures S4H–

K). Confirming the recovery, we found high correlation between the clonotype fractions 

in Slide-TCR-seq and bulk TCR sequencing (Pearson’s r=0.79, p=9×10−15, Figure S3H). 

Moreover, the clonotype fractions based on variable region sequences on Slide-TCR-seq 

arrays obtained from consecutive serial sections were likewise correlated, confirming our 

expectation of relative stability in the clonal fraction of predominant clones between serial 

sections (Pearson’s r=0.42–0.45, all p<1×10−5; Figure S3I).

Given the diversity of clonotypes and the presence of a tumor-lung interface, we focused 

on how clonotype distributions were related to their localization in the post-ICB metastasis 

(Figure S3J, Table S3). We used unsupervised clustering, cell markers, and the expression 

of CXCL9 – a chemokine facilitating T cells’ tumor infiltration (Chow et al., 2019) – to 

designate three compartments consisting of tumor, lung, and intervening boundary (Figures 

3B, S4, STAR Methods). We examined the T cell clonality within our samples by evaluating 

the TCRβ CDR3 sequences and observed 1,223 unique TCRβ T cell clonotypes across 

the three consecutive arrays obtained from the post-ICB specimen – several with distinct 

spatial distributions spanning the three tissue compartments (Figures 3C and S4E, Table 

S3). To examine the spatial enrichment of different TCR clonotypes more deeply across 

tissue compartments, we focused on the most prevalent TCRβ clonotypes, each with at least 

ten counts per array. We tested the spatial distribution for each (based on their individual 

cells’ distances from the tumor edge) against the aggregated spatial distribution of all other 

clonotypes (across n=3 arrays, STAR Methods). We found that 17 (21.8%) had spatial 

distributions that differed from all other clonotypes – 12 clonotypes were tumor-enriched, 

while 5 were tumor-depleted (p < 0.05, Figures 3F and S4F, Table S3). Of these, TCR-4, 

TCR-5, and TCR-18 were the most enriched in their spatial distributions (p=0.002, p=0.001, 

p=0.0007, STAR Methods) and had higher tumor enrichment, a property not observed with 

the predominant clonotype (TCR-1) in the post-treatment specimen.

When we examined the overlap in TCR repertoire between the pre- and post-ICB RCC 

samples, only 10 (0.8%) of the 1,223 TCRβ clonotypes in the post-treatment arrays were 

also present in the pre-treatment arrays, supporting the notion that most clonotypes may 

be recent immigrants to the metastasis (Figures S3K–L, Table S3). Although pre-existing 

T cells have been reported to have limited reinvigoration capacity (Yost et al., 2019; Wu 
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et al., 2020), we found no difference in tumor enrichment between clonotypes that were 

exclusive to the post-treatment specimen and clonotypes that were shared with the pre-

treatment specimen (Figure 3G). Additionally, we noted the lack of correlation between the 

extent of clonotype tumor enrichment by Slide-TCR-seq and clonotype frequency by bulk 

tissue TCR-seq (Figure 3H), emphasizing the ability of Slide-TCR-seq to probe whether 

preexisting T cell clones exhibit distinct spatial patterning from recently infiltrated clones.

Since we observed spatial tumor enrichment differences between TCRβ clonotypes in 

the RCC metastasis, we asked whether we could investigate the underlying relationships 

between gene expression, depth of tumor infiltration, and clonotype sequence (Figure 3I, 

S3D–G). To evaluate how gene expression differences were associated with the depth of 

the tumor-infiltrating T cells (TILs) in the context of ICB resistance, we focused on the 

differential expression of a previously curated T cell gene set associated with poor response 

to ICB treatment (PRI) (Sade-Feldman et al., 2018) (Table S2). Although this geneset 

was originally devised from a melanoma context rather than in RCC, we found that it 

encompassed many known exhaustion markers (e.g., CD38, HAVCR2, CTLA4) and thus 

could still be useful in characterizing T cells in RCC. By comparing the PRI expression 

of T cells within each clonotype that were either closer to or farther from the tumor edge, 

we identified three clonotypes (TCR-2, TCR-4, TCR-7) for which clonotype-specific T cells 

more deeply infiltrated into the tumor had lower PRI expression than those closer to the 

tumor edge (p=0.017,0.013, and 0.017, respectively, two-tailed K-S test, Figure 3K). These 

data indicate that the T cells’ PRI expression was not only associated with the extent of 

their infiltration into the RCC metastasis but also that the effect was clonotype-specific, as 

different clonotypes exhibited distinct patterns of PRI expression by the depth of infiltration.

Tertiary lymphoid structures and tumor regions exhibit different degrees of clonal 
expansion and T cell states

We next asked if we could study niche-level differences in T cell state and expansion 

across other tumor types. We focused on melanoma because of the well-characterized 

roles played by TCR repertoire expansion and T cell phenotype in the melanoma 

immune microenvironment (Sade-Feldman et al., 2018; Oliveira et al., 2021, 2022). We 

applied Slide-TCR-seq to multiple regions of an immunotherapy-naive axillary lymph 

node metastasis of malignant melanoma, which displayed T cell infiltration, a distinct 

multilobular spatial architecture, and interface with neighboring non-neoplastic tissue. We 

identified the presence of tertiary lymphoid structures (TLSs) in both the aforementioned 

post-treatment RCC sample and this melanoma sample (Figures 4A–B, S5). TLSs have been 

found in tissues with antigen persistence, including cancer, and have been hypothesized to 

play a role in adaptive anti-tumoral immune responses, as well as potentially associated 

with improved patient outcomes (Sautès-Fridman et al., 2019; Meylan et al., 2022). We 

observed that T cells located within the tumor regions were more clonally expanded than 

those in the TLSs (Figures 4C–D, S5), including across multiple arrays sampled from 

different regions of both the RCC and melanoma samples (Figures 4E–F, S5 n=4 arrays 

across two regions, n=5 arrays across three regions respectively). Furthermore, T cells in 

TLSs tended to be CD4+ T cells, while those infiltrating into tumor tended to be CD8+ T 

cells with an exhausted phenotype (p<0.05 by t-test, FDR-corrected; Figures 4C–D, 4G–H, 
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S5). Our observations that the distinct T cell phenotype of T cell clonotypes in TLSs, that 

were neither actively expanding nor infiltrating into tumors, support separate roles for their 

presence, such as potentially facilitating B cell differentiation (Meylan et al., 2022).

Unique interactions are detectable between a T cell clone and adjacent cells in the 
melanoma microenvironment

Through Slide-TCR-seq analyses of the metastatic melanoma sample, we observed that one 

T cell clone, with CDR3 sequence CASRASNEQFF, was preferentially enriched in one of 

the tumor lobes – a lobular compartment of the melanoma separated from the adjacent tumor 

lobes by a fibrous septum (Figures 5A–C, S5C, p = 1 10−102). Upon examining whether this 

T cell clone displayed cell-autonomous differences in gene expression compared to other 

TIL clones, we found that GZMB (associated with cytotoxic T cell function) and STAT3 
(associated with enhanced survival of activated T cells (Yu et al. 2013)) were the most 

upregulated transcripts (Figure 5D, p = 1×10−8, p = 7×10−7, Table S4, STAR Methods).

We next investigated the cell non-autonomous mechanisms unique to the CASRASNEQFF 

clone by comparing the transcriptional profiles of the cells adjacent to the CASRASNEQFF 

T cells against those of the cells neighboring all other TIL clonotypes (STAR Methods). In 

particular, we found that the monocytes neighboring CASRASNEQFF T cells exhibited 

elevated expression of the chemokine CCCL10 (p = 5×10−21, Figure 5Ei, Table S4), 

which has been shown to recruit tumor-reactive effector T cells (Spranger et al., 2017). 

Notably, monocytic expression of CXCL10 was higher in the same lobe enriched with 

CASRASNEQFF T cells (Figure 5F), implicating a preferential interaction between 

CASRASNEQFF T cells and tumor-infiltrating monocytes. Of note, we also found that 

the tumor cells neighboring the CASRASNEQFF T cells displayed several differentially 

expressed genes, including lower expression of MGST1 (p=3×10−15, Figure 5Eii, 5G, Table 

S4), a tumor-associated gene that has been shown to repress ferroptosis (Kuang et al., 

2021; Wang et al., 2019). The spatial differences highlighted by this clone and the gene 

expression differences between cell types in distinct regions of melanoma emphasize the 

need for further study into the spatial-transcriptomic heterogeneity of T cells and the tumor 

microenvironment.

Discussion

Slide-TCR-seq is a straightforward methodology that can be applied to existing, routine 

frozen tissue samples without the need for specialized processing and produces data 

outputs that can be processed with commonly used single-cell and spatial analytical 

software packages. As a result, our approach can be readily used to answer a broad 

spectrum of important questions in immunology, including investigations of T cell biology 

and TCR repertoires in primary and secondary lymphoid organ development, infectious 

disease, autoimmunity, cancer immunology, and the effects of immunomodulatory and 

immunotherapeutic agents. For example, by employing untargeted poly(A) capture, Slide-

TCR-seq could also enable the detection of polyadenylated viral transcripts, which could 

enable the study of how antiviral T cell clonotypes are spatially and transcriptionally 

related to virus-infected cells across multiple viral settings (e.g., HIV, HPV, SARS-CoV-2) 
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(Golumbeanu et al., 2018; Steuerman et al., 2018; Bost et al., 2020). Likewise, Slide-

TCR-seq can facilitate the spatial dissection of transposable elements and endogenous 

retroviruses expression and how they relate to immune responses. Furthermore, because our 

method relies on the capture and sequencing of nucleotide sequences, it is also potentially 

compatible with oligonucleotide-barcoded antibody reagents for protein staining (Stoeckius 

et al., 2017) – enabling the simultaneous interrogation of T cell clonotypes’ transcriptional 

and protein expression. Finally, because Slide-TCR-seq’s modified rhPCR utilizes readily 

available primer sets (Li et al., 2019), we envision that our method can be extended 

to the spatial mapping of additional targets in immunology where longer sequence read 

information is needed, such as B-cell receptors in B lymphocytes and mutation-derived 

neoantigens in tumor cells.

In summary, we have reported Slide-TCR-seq, a method that enables sequencing 

transcriptomes and TCRs at 10-μm spatial resolution. Slide-TCR-seq facilitates the study 

of the complex spatial relationships between T cell clonotypes and other cell types 

within tissues across healthy and diseased settings – as illustrated by our analyses of a 

transgenic TCR mouse model’s native splenic architecture, compartmentalization of TCRs 

in human lymph nodes, spatially-defined transcriptional differences between TILs of the 

same clonotype, and distinct clonotypic repertoires in TILs vs. tumor-associated TLSs. 

Altogether, our findings highlight Slide-TCR-seq’s ability to integrate T cell transcriptional 

profiles, localization, and clonotypic identity, thereby enabling users to dissect inter- and 

intra-clonotype spatial transcriptional heterogeneity. We anticipate that Slide-TCR-seq will 

be a valuable technology for studying the complex spatial relationships between T cell 

clonotypes, neighboring cell types, and gene expression among diverse immunological and 

immunotherapeutic contexts, yielding insights into the spatially-organized mechanisms that 

underlie T cell responses.

Limitations of Study

Slide-TCR-seq is limited by the capture rates inherent in barcoded beads. As bead capture 

reagents and capabilities advance in molecular biology, we anticipate that analysis of paired 

TCR alpha-beta clonotypes will also improve. We also expect that future experimental 

work with amplification alternatives to PCR will enhance the fidelity of the amplification 

process and permit the use of less stringent computational filters. Additionally, although 

Slide-TCR-seq was initially developed for research use with fresh-frozen tissue, ongoing 

refinement of this technology will enable the analysis of formalin-fixed paraffin-embedded 

tissues.

STAR Methods

Lead Contact

Correspondence should be directed to the Lead Contact: Fei Chen 

(chenf@broadinstitute.org)
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Materials Availability

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Fei Chen (chenf@broadinstitute.org)

Data and Code Availability

All raw Slide-TCR-seq data are available at the Broad Institute Single Cell Portal 

at: https://sing1ecell.broadinstitute.org/single_cell/study/SCP1348/. Arrays with cell type 

prediction have also been uploaded to https://cel1xgene.cziscience.com/co1lections/

02b0l703-bflb-48de-b99a-23bef8cccc81 for visualization and browsing. Single-cell RNA 

sequencing data for RCC were used from dbGaP (dbGaP:phs002252.vl.p1 at https://

www.ncbi.nlm.nih.gov/gap/). Single-cell RNA sequencing data for mouse spleen were used 

from NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under 

accession number GSE132901. Single-cell RNA sequencing data for melanoma were used 

from European Genome-Phenome Archive (EGA), under the accession code EGAS0000l 

00511. The code used can be found at https://github.com/MacoskoLab/slideseq-tools and 

https://github.com/soph-liu/Slide-TCR-seq.

Sample information and processing

All procedures involving animals at the Broad Institute were conducted in accordance with 

the US National Institutes of Health Guide for the Care and Use of Laboratory Animals 

under protocol number 0211–06-18. Male C57BL/6-Tg OT-I mice (The Jackson Laboratory) 

were housed in a 12-h light-12-h dark cycle with ad libitum access to food and water. At 5–7 

weeks, they were anesthetized with 3% isofluorane in a gas chamber until a negative foot 

pinch response. They were then moved to nose-cone isofluorane and transcardially perfused 

with ice-cold lX pH 7.4 PBS to remove blood. Following a color change in the liver, 

spleens were harvested, embedded in optimal cutting temperature (OCT) compound, and 

flash-frozen for one minute in liquid nitrogen chilled isopentane and stored at −80°C. RCC 

specimens were acquired with informed consent from a patient who underwent nephrectomy 

for AJCC pT2b cM1 histologic grade 4 clear cell RCC (i.e., the pre-treatment specimen) 

and then received approximately 11 months of a PD-1 inhibitor and VEGF inhibitor 

until resection of progressing lung metastasis (i.e., the post-treatment specimen) (Braun 

et al., 2021). Melanoma specimens were acquired from a patient who underwent axillary 

lymphadenectomy for metastatic BRAF-mutant melanoma prior to starting PD-1 inhibitor. 

Human RCC, melanoma, lymph node, and tonsil specimens were embedded in OCT, snap-

frozen following surgery, and stored at −80°C. Institutional Review Board approval was 

obtained from Dana-Farber Cancer Institute, the Broad Institute, and Brigham and Women’s 

Hospital.

Histological processing

Serial 5–10 μm thickness sections from the frozen tissue samples were mounted on glass 

slides. For hematoxylin & eosin (H&E), sections were fixed in either 10% neutral-buffered 

formalin or methanol, processed through a graded ethanol series, stained with H&E, 

dehydrated, coverslipped, and imaged.
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Bulk TCR sequencing

Five 30 μM sections of each frozen sample were taken, and RNA was extracted using 

the RNeasy Micro kit (Qiagen) as per the manufacturer’s protocol. Alpha and beta TCR 

repertoire analysis in bulk RNA samples was performed using an adapted rhTCRseq 

protocol published previously (Li et al., 2019). Specifically, 10 ng bulk RNA was used 

in each RT reaction, and four replicates were done for each sample. Excess RT primers 

were eliminated by exonuclease digestion, and then rhPCR was done based on the published 

protocol (Li et al., 2019). After the sequencing library was made, it was sequenced using 

MiSeq 300 cycle Reagent Kit v2 on the Illumina sequencing system according to the 

manufacturer’s protocol with 248-nt read 1, 48-nt read 2, 8-nt index 1, and 8-nt index 2. 

The sequencing data analysis was done based on the method published previously (Li et al., 

2019).

In situ transcriptome processing via Slide-seq

Slide-seq arrays were prepared and spatial bead barcodes sequenced following Slide-seqV2 

(Stickels et al., 2020) protocol using arrays created with custom synthesized barcoded beads 

(5’-

TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJ

JJTCTTCAGCGTTCCCGAGAJJJJJJNNNNNNNVVT30-3’) with a photocleavable linker 

(PC), a bead barcode sequence (J, 14 bp), a UMI sequence (NNNNNNNVV, 9 bp), and a 

poly dT tail.

OCT-embedded frozen tissue samples were warmed to −20°C in a cryostat (Leica 

CM3050S) and serially sectioned at a 10 μm thickness (2–3 Slide-seq array replicates 

per sample), with consecutive sections used for hematoxylin and eosin staining and 

immunofluorescence staining. Each tissue section was affixed to an array and moved into 

a 1.5 mL Eppendorf tube for downstream processing. The sample library was prepared as 

previously described (Stickels et al., 2020) except with the following modifications. Library 

amplification before tagmentation for the human samples included an additional two cycles, 

for a PCR program of 1 cycle of 98°C for 2 min, 4 cycles of 98°C for 20 s, 65°C for 45 s, 

72°C for 3 min, 11 cycles of 98°C for 20 s, 67°C for 20 s, 72°C for 3 min, and 1 cycle of 

72°C for 5 min. The PCR was performed in a final volume of 200 μL of PCR mix, divided 

into 4 PCR tubes.

Libraries were sequenced using the following read structure on a NovaSeq (S2; 

Illumina): Readl: 42 bp; Read2: 41 bp; Index1: 8 bp, and sequences were processed as 

previously described (Stickels et al., 2020) using the pipeline available at https://github.com/

MacoskoLab/slideseq-tools.

TCR clonotype enrichment via rhTCRseq

As previously described (Li et al., 2019), several solutions were prepared for the first rhPCR 

reaction. 20× rhPCR buffer was made (final concentration: 300 mM Tris-HCl, pH 8.4; 500 

Mm KCl; 80 mM MgCl2). RNase H2 was diluted to 20 mU/μL using RNase H2 Dilution 

Buffer (IDT). For the human TCRs, 69 rhPCR primers specific for the V segments of 

human alpha and beta TCR genes, Rd2.AV.xl/Rd2.BV.xl (Table S2) were combined at a 

Liu et al. Page 11

Immunity. Author manuscript; available in PMC 2023 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/MacoskoLab/slideseq-tools
https://github.com/MacoskoLab/slideseq-tools


concentration of 5 μM each was made by mixing 5 μL of each primer at 500 μM with 155 

μL of TE buffer. For the mouse TCRs, 56 rhPCR primers specific for the V segments of 

mouse alpha and beta TCR genes were used (Table S2).

The reaction was prepared as follows: 6 μL of Slide-seq cDNA library (0.5ng/μL); 8μL of 

6μM each of P5.IDTxxx.Rd1x.x1 and P7.IDTxxx.Rd2x.x1 primers, same as in the earlier 

publication (Li et al., 2019), except that we added eight additional new P5x.IDTxxx.Rd1x.x2 

primers (Table S2). 10 μL of rhPCR master mix (final concentration: 1× rhPCR Buffer, 

400 μM dNTPs, 50 nM of Rd2.AV.x1 and Rd2.BV.xl primers, 0.5 mU/μL RNase H2, 

0.2 units/μL One Taq hot-start DNA polymerase [New England BioLabs M0481L]). The 

following program was used on the thermal cycler: 1 cycle of 95°C for 5 min, 18 cycles of 

96°C for 20 s, 60°C for 4 min, and 72°C for 2 min, and then hold at 4°C. Then 19.2 μL 

of ProNex beads (0.8× clean-up; Promega NG2003) were added for clean-up following the 

manufacturer’s instructions and eluted into 20 μL of ProNex Elution Buffer.

From this, 5 μL was taken for a subsequent PCR with P5 and P7 primers. This was added to 

45 μL of reaction mix (final concentration: l× Q5 Ultra II PCR Master Mix [New England 

BioLabs M0544L], 500 nM P5 primer, 500 nM P7 primer). The following program was used 

on the thermal cycler: 1 cycle of 98°C for 30 s, 12 cycles of 98°C for 10 s, 62°C for 1 min, 

75°C for 1 min, 1 cycle of 75°C for 2 min, and hold at 4°C. Then, 40 μL of ProNex beads 

(0.8× clean-up; Promega NG2003) were added following the manufacturer’s instructions 

and eluted into 20 μL of ProNex Elution Buffer. 1 μL of each library was used to confirm 

the fragment size distribution and yield using an Agilent High Sensitivity DNA Kit (Agilent 

Technologies) on an Agilent 2100 bioanalyzer. Libraries were loaded at 4 pM and sequenced 

using the following read structure on a MiSeq 300 cycle kit (V2; Illumina): Read1: 48 nt, 

Read2: 248 nt, Index1: 8 nt, Index2: 8 nt.

To see whether a long-read sequencing platform can increase the quality of the TCRseq data, 

we adapted the Oxford Nanopore system. Specifically, after TCRseq libraries were prepared, 

we added the nanopore adaptors using the Nanopore ligation kit (Nanopore, SQL-LSKl 12) 

and purified and eluted them. The final sequencing libraries were loaded onto R10 flow cells 

(FLO-MINl12) in the Nanopore MinION MklC system with 10 fmol library input.

Processing TCR sequencing data

We identified variable TCR sequences using MiXCR (v3.0.13) (Bolotin et al., 2015) to 

align to the human or mouse genomes. For Miseq data to account for sequencing errors-

introduced diversity, we corrected the CDR3 amino acid sequences with a Hamming 

distance of 1 and collapsed to the most predominant sequence. We then identified the bead 

barcode and UMI sequence, removing all reads that did not have a match within a Hamming 

distance of 1 to an in situ sequenced bead barcode. For sequencing data generated by Oxford 

Nanopore, raw signals were base called using the super-accurate model in guppy 6.1.2. 

Reads were aligned to constant alpha and beta sequences of either human or OT-1 mouse 

using minimap2 (Li, 2018).

Alignments were filtered to cover at least 95% of the constant region as a pre-filtering step 

to reduce chimeras. 150 bases from the 5’ soft-clipped part of the alignments were extracted 
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to assign clonotypes with MiXCR. 300 bases from the 3’ soft-clipped part of the alignments 

were searched for the linker sequence in slide-seq barcodes within one edit distance. The 

candidate barcodes were then corrected against in situ barcodes within one edit distance. 

The clonotypes were collapsed to 95% identity at the nucleotide level of the CDR3 region 

by increasing mutational probability in MiXCR to 5%. For each bead, a clonotype was 

assigned only if 95% or more of the remaining reads came from one clonotype. Otherwise, 

the bead was removed from further analysis. For both MiSeq and Oxford Nanopore data, we 

generated a knee plot, ranking the beads based on number of reads aligning to a TCR CDR3, 

and identified the inflection point (which highlights the point at which it becomes difficult 

to distinguish genuine TCRs from sequencing or amplification-introduced chimeras, and 

is a built-in control for sequencing depth) and set that as the cutoff to only consider high-

confidence reads with a low-likelihood for sequence chimerism for subsequent analyses; 

a minimum cutoff was at least 2 UMIs per bead or 2 reads per UMI. For samples at the 

minimum cutoff, we then added back any variable TCR reads that had a bead barcode and 

UMI sequence that matched exactly with a barcode-UMI mapping to Trac, TRAC, Trbc2 or 

TRBC2 sequenced in Slide-seq.

Cell type and compartment identification

Robust cell type decomposition (RCTD; v1.1.0) (Cable et al., 2021) was performed on 

spleen, lymph node, tonsil, and RCC samples, using published scRNA-seq datasets as cell 

type references. For the spleen sample, we added two classes of immune cell identity: CD4 

T cell, CD8 T cell, and memory T cells, all mapping to T cells, and CD8 macrophage and 

CD4 macrophage mapping to macrophage, as annotated from a published spleen scRNA-seq 

dataset (Kimmel et al., 2019). RCTD initially tries to make cell type assignments using 

the broad cell type (e.g., T cell, macrophage) and then reports the most likely subtype 

(e.g., CD4, CD8, or memory for T cell). Broad cell types were annotated for the lymph 

node sample from a published thymus scRNA-seq dataset (Park et al., 2020). For the RCC 

specimens, broad cell types of tumor, myeloid, NK, T cell, and B cell populations were 

annotated from a published RCC scRNA-seq dataset that included this patient (Braun et al., 

2021).

To identify cellular compartments, unsupervised clustering using Seurat v3 (v3.2.3) (Stuart 

et al. 2019) was performed on the RCC specimens. For each specimen, replicate arrays 

were merged into a single object, transformed using sctransform (v0.3.2) (Hafemeister and 

Satija, 2019), and a Uniform Manifold Approximation and Projection (UMAP) (McInnes, 

Healy and Melville, 2018) plot was generated using the first 30 principal components. In the 

post-therapy RCC specimen, we performed unsupervised clustering and identified a tumor 

cell cluster, a non-neoplastic lung cluster, and a tumor-lung ‘boundary’ cluster by differential 

expression of marker genes (Figure S4), which aligned with the tissue compartments 

identified in the corresponding H&E. The intervening boundary cluster was marked by high 

expression of the CXCL9 chemokine gene and closely corresponded spatially with the band 

of myeloid cells identified in RCTD analysis. Cell type clusters were used to delineate tissue 

compartments in each array by first plotting the location of beads from the tumor, lung, 

and boundary clusters and then assigning all other beads to one of those three clusters by 

using a k-nearest neighbors classifier (KNeighborsClassifier, from Scikit-learn (Pedregosa et 
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al., 2011)). In the pre-treatment RCC specimen, no non-neoplastic tissue compartment was 

identified by either unsupervised clustering or histological examination.

For the melanoma samples, a publicly available scRNA-seq dataset (Wu et al., 2021) was 

re-clustered, and subtypes of T-cells were annotated into five groups, consisting of naive/

memory CD4+ T cells, T follicular helper cells, T regulatory cells, exhausted CD8+ T cells, 

memory/cytotoxic CD8+ T cells. These subtypes were then mapped to the Slide-TCR-seq 

data using cell2location (Kleshchevnikov et al., 2022) using the scRNA-seq dataset as a 

reference.

TCR variable sequence recoverv and spatial concordance with TCR constant sequences

For each bead barcode on the spleen array, we determined the number of UMIs for each Trac 
or Trbc2 constant sequence using the Slide-seq data. For the bead barcodes with n UMIs for 

Trac or Trbc2, we then ascertained whether a variable CDR3 sequence was also detected and 

calculated F, the fraction of all bead barcodes at n counts of constant UMIs that had at least 

one variable sequence for Figure IE.

In Figure 1E, the height of each bar is the weighted average fraction, Fc, of beads with 

c constant TCR UMIs that also have variable TCR UMIs. For each replicate, i, we went 

through c, each number of constant TCR UMIs, and calculated Fi, the fraction of beads with 

variable TCRs measured from each replicate. We then weighed Fi by ni, the number of beads 

for each replicate, and averaged the weighted values. A weighted average better controls for 

variation in sequencing depth between replicates.

Fc =
∑i

3niFi
3

Similarly, the weighted standard deviation was calculated by the following using the 

DescrStatsW() function from statsmodels (Seabold et al., 2010).

To determine spatial concordance for the constant and variable sequences in Figure S1, 

we generated two heatmaps of the spleen array with bin sizes of 50 pixels (i.e., 32.5 μm). 

The first heatmap displayed beads with Tcra or Trbc2 constant sequences, and the second 

heatmap showed beads with TCRɑ or TCRβ variable sequences. We then determined the 

Pearson’s correlation between the number of beads in each bin between the two heatmaps.

Benchmarking Slide-TCR-seq against bulk TCR sequencing

For Figure S3H, we filtered for clonotypes that had at least ten beads across all post-

treatment RCC arrays in Slide-TCR-seq and at least ten counts in the post-treatment bulk 

TCR sequencing to determine the Pearson’s correlation. Clonotype fractional values for 

Slide-TCR-seq were determined by dividing the total number of beads for each clonotype 

across all three arrays by the total number of beads with TCR CDR3 sequences.
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Clonotype spatial enrichment analysis

In the post-treatment RCC specimen, after identifying the tumor, lung, and boundary 

compartments in each array, we then filtered for clonotypes composed of at least ten 

beads to be able to analyze their spatial distributions robustly. Clonotype enrichment in 

each compartment was calculated as follows, where Ec = clonotype enrichment for the 

compartment c; Cc = number of beads for a clonotype in the compartment c; Call = total 

number of beads for a clonotype (across all compartments); Ac = number of beads for 

all other clonotypes in the compartment c; and Aall = total number of beads for all other 

clonotypes (across all compartments):

Ec =
Cc

Call
∗

Aall
Ac

− 1

We determined the tumor edge by identifying beads in the KNN-assigned tumor 

compartment with less than 90% of neighboring beads (within a 50 pixel [i.e., 32.5 μm] 

distance) mapping to the tumor compartment. The spatial distribution for each clonotype 

was evaluated by measuring the distance from each bead with that clonotype to the nearest 

point on the tumor edge. The aggregate distribution for each clonotype was generated by 

measuring the distances from all other beads to their closest point on the tumor edge. 

Each clonotype had two one-sided K-S tests performed between the clonotype’s spatial 

distribution and the aggregate spatial distribution. Plots in Figures 3F and S4F show the 

results of the “greater” K-S test (where the alternative hypothesis was that the spatial 

distribution of the aggregate was less than the clonotype distribution) for all clonotypes that 

had positive tumor enrichments and the results of the “lesser” K-S test (where the alternative 

hypothesis was that the spatial distribution of the aggregate was greater than the clonotype 

distribution) for all clonotypes that had negative tumor enrichment, with p values combined 

across all three post-treatment arrays using Fisher’s method (Fisher, 1992).

Clonotype gene set analysis

In the post-treatment RCC specimen, for each bead in the tumor compartment, the UMIs for 

all the genes in the PRI gene set were summed and normalized by total counts to determine 

the gene set expression. The gene set expression distribution for all beads containing 

variable TCR reads was created and plotted as histograms with a kernel density estimation 

(bandwidth=0.3) in Figure 3I. All beads containing TCR variable sequences in the tumor 

region were then dichotomized into high expression and low PRI expression groups based 

on the median gene expression, and spatial distributions were generated from the distance of 

each bead in the tumor compartment to the closest point on the tumor edge. Depth of tumor 

infiltration distances was plotted as kernel density estimations (bandwidth=0.5) separately 

for high and low PRI expression beads in Figure 3J. Two-sided K-S tests were performed 

to assess if the distributions of tumor infiltration distance differed between high and low 

expression beads, with correction of p values using the Benjamini-Hochberg method.

In Figure 3K, the analysis applied for all clonotypes that had at least 20 counts overall, 

or at least ten counts in each of the two groups dichotomized by the depth of infiltration 

into the tumor. Two-sided K-S tests were performed comparing these groups’ different PRI 
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gene set expression. The number of individuals for each clonotype (displayed as n>median : 

n<median) were: TCR-1 26:26, TCR-2 20:20, TCR-3 23:23, TCR-4 22:21, TCR-5 16:15, 

TCR-6 17:16, TCR-7 18:17, and TCR-9 11:10.

The correlation cluster map in Figure S3G between T cell clonotypes was then generated by 

l) using a heatmap of the effect size (Cohen’s d) of the PRI gene set – comparing expression 

for each clonotype with at least ten beads compared against the aggregate gene expression 

of all other clonotypes 2) showing the Pearson’s correlation between each clonotype and 3) 

clustering by hierarchical clustering.

T-cell clonotype clustering

For the correlation map in Figure S3G, genes from several published T-cell gene sets (Tirosh 

et al., 2016; Pace et al., 2018; Sade-Feldman et al., 2018; Zemmour et al., 2018; Miller et al., 

2019; Hwang et al., 2020) were combined to generate a list of common T-cell genes (Table 

S2). Non-negative matrix factorization (NMF from Scikit-learn (Pedregosa et al., 2011)) was 

applied to a matrix containing the bead-normalized expression of these genes across all TCR 

clonotypes with variable TCR sequence on at least ten beads across three arrays to identify 

ten different factors. Then, the effect size of the cell loadings of the beads for each clonotype 

vs. all other clonotypes was calculated by computing the Cohen’s d. This process resulted in 

a matrix with the dimensions of clonotypes by factors containing values for the effect size 

of each factor’s cell loading on a clonotype. This matrix was then clustered via hierarchical 

clustering.

Endogenous Retrovirus (ERV) expression identification

ERV expression in RCC Slide-seq arrays was estimated using Telescope (vl.0.3.1) (Bendall 

et al., 2019). Genome-aligned BAM files from each RCC Slide-seq array were used as 

inputs to Telescope, accompanied by the corresponding GTF annotation file containing 60 

ERV families across 14,896 loci to quantify the expression of ERVs. The default settings 

were used except for reassign_mode, where ‘unique’ was selected to include only uniquely 

aligned reads. The updated BAM files were subsequently used to extract the reads for each 

ERV feature (using tag ZF) along with the corresponding bead barcodes and UMIs. A count 

matrix was constructed to facilitate the downstream analysis.

Analysis of spatial cell interactions between TCR clonotypes and tumor features

To assess the degree of colocalization of each clonotype to a feature in the tumor, including 

subtypes of cancer cells and other cells present within the tumor region, we calculated the 

proportion of each clonotype’s beads that had at least one bead with the feature within 

a 13 μm radius. This radius was selected for spatial interaction analyses based on the 

observation that, in the array’s expression data, adjacent beads were predominantly located 

within 20 pixels (i.e., 13 μm) of each other. One-tailed Fisher’s exact test was used to 

test whether the colocalization of the TCR clonotype with the feature was significantly 

higher than the colocalization displayed by other clonotypes by constructing the contingency 

table with the following elements: number of colocalized beads of the TCR, number of 

non-colocalized beads of the TCR, number of colocalized beads of the other TCRs, number 

of non-colocalized beads of the different TCRs. For the identification of RCC subtypes 
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in Figure 3D, we used the scRNA-seq dataset from Bi et al. as a reference for RCTD 

(Bi et al., 2021). To improve the non-tumor non-T cell type assignments specific for the 

microenvironment neighborhood analysis, we incorporated two additional published RCC 

scRNA-seq datasets (Young et al., 2018; Bi et al., 2021; Krishna et al., 2021) and a lung 

scRNA-seq dataset (Travaglini et al., 2020) as references for RCTD – all with a less 

stringent doublet search parameter delta of 5. We then used a voting scheme across the 

five different RCTD references to arrive at consensus cell type assignments for each bead: 

first, the bead was assigned as tumor cell if predicted to be tumor type by >1 reference; 

among the remaining non-tumor cell beads, the bead was assigned as lung epithelial cell 

if predicted to be either lung or non-neoplastic epithelial types by any reference; finally, 

microenvironmental cell types (i.e., macrophage, dendritic cell, endothelial cell, B cell, T 

cell, fibroblast) were assigned to beads if predicted to be the corresponding cell type for 

that bead by ˃l reference; with multiple cell type assignments to a single bead permitted to 

account for the physical overlap of multiple cells over the same bead.

Analysis of differential expression in spatial transcriptomic data

To study the differential expression between the CASRASNEQFF clonotype and all other 

TCR clones in the melanoma samples, we used the Slide-TCR-seq CDR3 data to build an 

explanatory variable with l = CASRASNEQFF and 0 = all other TCR clones. We processed 

all data with RCTD (Cable et al., 2021) using a single-cell melanoma reference (Wu et al., 

2021) and applied C-SIDE (Cable et al., 2022) in batch mode on all replicates to perform 

population-level statistical inference. DE outputs report the differentially expressed genes in 

RCTD-defined T cells over the CDR3-defined explanatory variable.

To study differences in gene expression between cells that were adjacent to 

CASRASNEQFF clones vs. other T cell clones, we built an explanatory variable that 

reported 1 for any bead that was within a 30-pixel distance of a CASRASNEQFF T cell and 

a 0 for any bead that was within a 30-pixel distance of all other TCR clones, excluding any 

beads that were within a 30-pixel distance of both. We then used C-SIDE (Cable et al., 2022) 

in batch mode to identify the differentially expressed genes in monocytes and tumor cells 

over the explanatory variable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Slide-TCR-seq measures the location, clonotype, and gene expression of T 

cells

• Germinal centers in human lymph nodes and tonsil have spatially segregated 

T clones

• Cancers can show spatial and transcriptomic inter- & intra-clonotype 

heterogeneity

• Expression profiles differ between T clones in neighboring monocytes and 

tumor cells
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Figure 1. Slide-TCR-seq spatially localizes T cell receptors and transcriptome information.
A) Schematic of Slide-TCR-seq. First, 10 μm beads containing many DNA oligos are affixed 

onto a slide. The spatial bead barcode is then in situ sequenced to create a map of the bead 

barcodes to the spatial locations. Samples can then be placed onto the slides, and RNA 

captured via the poly-dT sequence on the oligos. cDNA libraries prepared with Slide-seqV2 

are split before fragmentation with one portion used for targeted amplification via rhTCRseq 

optimized for use with Slide-seq libraries and the other portion used for whole transcriptome 
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amplification. Slide-TCR-seq thereby provides gene expression, cell type, and clonotype 

information in space.

(B) Serial sections of the OT-I mouse spleen with hematoxylin and eosin stain showing 

characteristic architecture of red pulp and white pulp separation.

(C) Spatial reconstruction of a representative Slide-TCR-seq array from three replicates for 

a corresponding section of OT-I mouse spleen, with RCTD cell type assignment. Cell types 

are plotted individually in Figure S1C. NK = natural killer.

(D) Gene expression (in UMI counts) gaussian-filtered heatmap of a representative Slide-

TCR-seq array from three replicates for visualizing the spatial distribution of gene markers 

for marginal zone (Marco), red blood cells (RBCs; Gypa), and CD8 T cells (Cd8a).
(E) The fraction of beads that capture CDR3 variable sequences (y-axis) when constant 

UMIs, UMIs corresponding to the TCR constant reads from the whole transcriptome 

sequencing of Slide-seq, are captured (x-axis) for TCRα (left, light blue) and TCRβ (right, 

dark blue), with the number of corresponding beads along the top axis (weighted average 

across n=3 replicates, error bars are weighted standard deviation).

(F-G) Comparing the spatial distribution of constant (left) and variable (right) sequences 

of a representative Slide-TCR-seq array of 3 replicates for TCRα (F) and TCRβ (G) with 

superimposed density plot.

UMI: unique molecular identifier. All scale bars: 500 μm. See also Figure S1.
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Figure 2. T cell receptor repertoire differences between spatial compartments in human lymph 
node and tonsil.
(A) Spatial reconstruction of a representative Slide-TCR-seq array from two technical 

replicates a 10 μm section of human reactive lymph node, LNl, with RCTD cell type 

assignment. Cell types are plotted individually in Figure S2C.

(B) Characterization of the number of unique TCRs on beads that contain TCRs across 

lymph node and tonsil samples (n=l0, bar plots indicate means, and error bars indicate 

standard deviation of replicates.)
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(C) Gene expression gaussian-filtered heatmap of a representative Slide-TCR-seq array from 

two technical replicates for visualizing the spatial distribution of gene markers for T cells 

(TRBC2) and germinal centers (GCs; CXCRS, BCL6).
(D) Bead designation of a representative Slide-TCR-seq array from two technical replicates 

into either GC regions (blue) or non-GC (orange) regions based on unsupervised clustering 

and GC markers on LN1. Beads with TCRβ CDR3 sequences detected are shown by black 

dots, but only for CDR3 sequences detected on >1 bead.

(E) For LNl, Left: For clonotypes found on >1 bead, a Venn diagram showing the clonotype 

overlap between GC (blue) and non-GC (orange) regions. Right: the significance of the 

observed number of shared clonotypes compared to the expected number from randomly 

shuffled assignments.

(F) Shannon entropy (i.e., a measure of diversity) of the TCR repertoire in GC vs. non-GC 

regions for six arrays across three human secondary lymphoid organs.

(G) Clonotypes grouped by clonotype fraction, normalized by the total number of TCRs in 

each compartment, in GC and non-GC regions in lymph node and tonsil, with the number of 

corresponding beads along the top axis.

(H) K-means clustering distinguishing two GCs in a human reactive lymph node.

(I) Left: For clonotypes detected on >l bead, a Venn diagram showing clonotype overlap 

between GC1 (purple) and GC2 (red) regions. Right: The significance of the observed 

number of shared clonotypes between GCs compared to the expected number from 

randomly shuffled assignments.

(J) Differential enrichment of TRBV and TRBJ sequences in GC (red) vs non-GC (blue) 

regions (top) and GC1 (red) vs GC2 (blue) regions (bottom). All scale bars: 500 μm. LN = 

lymph node. TON = tonsil. See also Figure S2.
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Figure 3. Slide-TCR-seq identifies spatial differences between T cell clonotypes in renal cell 
carcinoma.
(A) H&E stain of an RCC metastasis to the lung following treatment with a PD-1 inhibitor.

(B) Compartment assignment of the lung (green), boundary (orange), and tumor (blue) of a 

representative Slide-TCR-seq array from three replicates by applying K-nearest neighbors to 

cell types determined by unsupervised clustering.

(C) Spatial localization of T cell clonotypes (n=549 clonotypes, colored by clonotype) of a 

representative Slide-TCR-seq array from three replicates.

(D) Within-tumor spatial localization of 3 distinct RCC cell subtypes (STAR Methods) of a 

representative Slide-TCR-seq array from three replicates.
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(E) Within-tumor spatial localization of a representative Slide-TCR-seq array from three 

replicates of the five most abundant non-tumor non-T cell types as determined by RCTD and 

using the combination of five scRNA-seq datasets as reference. DC = dendritic cell.

(F) Top: Significance of clonotype spatial distributions compared against all other 

clonotypes with at least ten beads per array from the post-treatment specimen plotted against 

tumor enrichment (n=3 serial arrays, two one-tailed K-S tests) with Bottom: Visualization of 

selected significant clonotypes, ordered by tumor enrichment, in tissue compartments for a 

single array (T cells within the tumor compartment are displayed as opaque, T cells within 

other compartments are shown as translucent).

(G) Comparison of the tumor enrichment of clonotypes that are exclusive to the post-

treatment sample (n=48 clonotypes) versus clonotypes that are shared with the pre-treatment 

sample (n=5 clonotypes) across all serial arrays.

(H) Lack of correlation between the mean tumor enrichment of clonotypes in Slide-TCR-seq 

and their fraction in bulk TCR-seq from the same post-treatment specimen, by Spearman’s 

correlation.

(I) Left: The three axes – spatial localization, gene expression, and T cell clonotype – 

that Slide-TCR-seq can relate. Center: distribution of poor response to immune checkpoint 

inhibitor treatment (‘PRI’) gene set expression across all clonotypes in the tumor region for 

the post-PD-1 inhibitor RCC lung metastasis in a single array with kernel density estimation. 

Yellow = clonotypes with lower than median PRI expression; purple = clonotypes with PRI 

expression greater than or equal to the median value. Right: localization of low (yellow) and 

high (purple) PRI gene set expression clonotypes within the tumor region (light blue) from 

the Slide-TCR-seq array shows their distinct spatial separation (light blue = tumor region, 

orange = boundary region, green = lung region).

(J) Smoothed histograms comparing the distance infiltrated into the tumor by two-tailed K-S 

test comparing low (yellow) and high (purple) expression clonotypes, as dichotomized by 

median expression of PRI.

(K) Expression of PRI gene set across clonotypes with at least 20 beads (n=7 clonotypes), 

dichotomized based on each clonotype’s median distance infiltrated into the tumor from the 

tumor edge (red = less infiltrated, blue = more infiltrated; the median distances in μm are 

displayed along the top). TCR-4 exhibited higher PRI expression when localized closer to 

the tumor edge than farther from the edge (by two-tailed K-S test). See STAR Methods for n 

of each distribution. All scale bars: 500 μm. NS = nonsignificant. See also Figures S3–5.
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Figure 4. Clonal expansion and T cell state between tertiary lymphoid structures and tumor 
regions in renal cell carcinoma and melanoma
(A-B) Aligned H&E of a serial section (left), representative Slide-TCR-seq array (center) 

with beads colored by RCTD cell type assignments, and zoomed-in Slide-TCR-seq of 

tertiary lymphoid structure (TLS) (right) in RCC (A) and melanoma (B).

(C-D) Region mask of a representative Slide-TCR-seq array delineating tumor, TLS, 

and adjacent non-neoplastic regions (top left); beads containing both CDR3 and T cell 

state colored by RCTD assignment (top center); Gaussian-filtered heatmap visualizing 

TCRs weighted by the extent of clonal expansion (top right); Gaussian-filtered heatmap 
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normalized to maximum values in TLSs and tumor regions, visualizing the location of B 

cell, CD4+ T cell, and CD8+ Exhausted (Exh) T cell types (bottom); in RCC (C) and 

melanoma (D).

(E-F) Grouped barplot visualizing the fraction of T cells in each compartment (TLS, tumor, 

and adjacent non-neoplastic) grouped by the extent of clonal expansion of the T cells in 

RCC (E; n=4 arrays across two regions) and melanoma (F; n=5 arrays across three regions).

(G-H) Grouped barplot visualizing the fraction of T cells in each compartment (TLS, tumor, 

adjacent non-neoplastic) grouped by their T cell states in RCC (G; n=4 arrays across two 

regions) and melanoma (H; n=5 arrays across three regions).

Barplots indicate means and error bars indicate standard deviation of replicates. All scale 

bars: 500 μm. All statistical tests are by t-test and corrected for false discovery rate, * p 

= 0.05, ** p = 0.005, *** p = 0.0005, **** p = 0.00005. Treg = regulatory T cell; Tfh = 

follicular T helper cell; NonExh = non-exhausted; Exh = exhausted. See also Figure S5.
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Figure 5. Interactions between a spatially unique T cell clone and tumor cells in melanoma
(A) H&E of melanoma tumor sample (top) and schematic illustrating the delineation of two 

distinct lobes (orange and blue) of the tumor across the corresponding H&E, Slide-TCR-seq 

arrays, and constructed region masks (bottom). ROI = region of interest.

(B) Spatial enrichment of TCRs between the two lobes, tested by chi-square test (n=7 arrays 

across three regions).

(C) Visualization of all TCRs (left) and the CASRASNEQFF TCR clonotype (right) across 

one array from each of the three regions. These visualizations are representative of the 

findings across the seven arrays, shown in Figure S5.

(D) Differentially expressed genes between T cells with the CASRASNEQFF clonotype 

(right) and all other TCRs (left) (STAR Methods), with blue dots representing statistically 

significant differentially-expressed genes with absolute log fold change > 0.4 (n=7 arrays 

across three regions).
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(E) i. Differentially expressed genes between monocytes (M) within 20 μm of T cells with 

CASRASNEQFF (right; T*) and monocytes within 20 μm of all other TCRs (left; T), 

excluding any monocytes that are within 20 μm of both T cells with CASRASNEQFF and 

other TCRs. ii. Differentially expressed genes between tumor cells (Turn) within 20 μm of T 

cells with CASRASNEQFF (right; T*) and tumor cells within 20 μm of all other TCRs (left; 

T), excluding any tumor cells that are within 20 μm of both T cells with CASRASNEQFF 

and other TCRs (STAR Methods). Blue dots represent statistically significant differentially-

expressed genes with absolute log fold change > 0.4 (n=7 arrays across three regions).

(F) Beads colored by CXCL10 expression (purple, counts ≥2) in one representative array of 

seven. arrays

(G) Beads colored by MGST1 expression (green, counts ≥1) in one representative array of 

seven arrays. Scale bars: 500 μm See also figure S5.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper https://singlecell.broadinstitute.org/single_cell/study/
SCP1348/
https://cellxgene.cziscience.com/collections/
02b01703-bf1b-48de-b99a-23bef8cccc81

Single-cell RNA sequencing data for RCC dbGaP dbGaP:phs002252.v1.p1 at https://
www.ncbi.nlm.nih.gov/gap/

Single-cell RNA sequencing data for mouse 
spleen

NCBI Gene Expression Omnibus GEO:GSE132901

Single-cell RNA sequencing data for 
melanoma

European Genome-Phenome Archive EGAS0000100511

Software and algorithms

Slide-seq-tools for processing spatial arrays

Robust decomposition of cell type mixtures Cable et al., 2021 doi: 10.1038/s41587-021-00830-w.

MiXCR: software for comprehensive 
adaptive immunity profiling

Bolotin et al., 2015 doi: 10.1038/nmeth.3364

Minimap2: pairwise alignment for nucleotide 
sequences

Li et al., 2018 doi: 10.1093/bioinformatics/bty191

Seurat v3 Stuart et al., 2019 doi: 10.1016/j.cell.2019.05.031

sctransform Hafemeister et al. 2019 doi: 10.1186/s13059-019-1874-1

UMAP McInnes et al. 2018 doi: 10.48550/arXiv.1802.03426

Cell2location Kleshchevnikov et al., 2022 doi: 10.1038/s41587-021-01139-4

C-SIDE Cable et al., 2020 doi: 10.1101/2021.12.26.474183.

Other

Code and analyses This paper https://github.com/soph-liu/Slide-TCR-seq
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