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ABSTRACT

Background: Gestational diabetes mellitus (GDM) is the most common metabolic 
complication of pregnancy. To define the altered pathway in GDM placenta, we investigated 
the transcriptomic profiles from human placenta between GDM and controls.
Methods: Clinical parameters and postpartum complications were reviewed in all participants. 
Differentially expressed canonical pathways were analyzed between the GDM and control 
groups based on transcriptomic analysis. CD4+ T, CD8+ T, and senescent T cell subsets were 
determined by flow cytometry based on staining for specific intracellular cytokines.
Results: Gene ontology analysis revealed that the placenta of GDM revealed upregulation 
of diverse mitochondria or DNA replication related pathways and downregulation of 
T-cell immunity related pathways. The maternal placenta of the GDM group had a higher 
proportion of CD4+ T and CD8+ T cells than the control group. Interestingly, senescent CD4+ 
T cells tended to increase and CD8+ T cells were significantly increased in GDM compared to 
controls, along with increased programmed cell death-1 (CD274+) expression. Programmed 
death-ligand 1 expression in syncytotrophoblasts was also significantly increased in patients 
with GDM.
Conclusion: This study demonstrated increased proinflammatory T cells, senescent T cells 
and immune-check point molecules in GDM placentas, suggesting that changes in senescent 
T cells and immune-escape signaling might be related to the pathophysiology of GDM.
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INTRODUCTION

The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide, and this may 
be related to older maternal age at pregnancy and obesity.1,2 GDM can cause various perinatal 
and fetal complications, such as preeclampsia, macrosomia, and fetal distress, and affects the 
short- or long-term risk of type 2 diabetes and cardiovascular disease of the mother even after 
delivery.2-5 In normal pregnancy conditions, insulin resistance increases according to fetal 
growth, and the beta cells of the pancreas promote cell proliferation and secrete more insulin 
in response to the insulin requirement. GDM is characterized by the inability of pancreatic 
beta cells to respond adequately to increased insulin resistance, resulting in hyperglycemia 
of various degrees.6 While treatments with lifestyle and pharmacological interventions have 
demonstrated short-term benefits, the long-term impact of an intervention, genetic and 
environmental mechanisms of GDM, and its complications remain unclear.7

Pregnancy is a process in which the mother suppresses various rejection reactions to 
maintain the semi-allogenic fetus in an immune-tolerant state, and the placenta is an 
essential organ for maintaining pregnancy.8 Since localized mechanisms may contribute to 
fetal evasion of maternal immune attack, the induction of maternal immunosuppression 
against maternal alloreactive reaction is an important process for maintaining maternal-fetal 
tolerance.9 Evidence that disrupted homeostasis of proinflammatory and anti-inflammatory 
T cells is associated with preeclampsia or recurrent miscarriage,10-13 supports the impact 
of innate immunity in pregnancy. Several alterations in the immune system have also been 
observed in patients with GDM. These include increased serum levels of pro-inflammatory 
cytokines, which can mediate monocyte and macrophage inflammation in the adipose 
tissue,14 and the patients with GDM presented reduced levels of regulatory T cells (Tregs) 
and elevated levels of serum interleukin 6 (IL-6) and tumor necrosis factor alpha.15 Increased 
total number of lymphocytes was observed in peripheral blood mononuclear cells (PBMCs) of 
patients with GDM,16 and a decrease in immune-escape molecule, cytotoxic T cell antigen-4 
(CTLA-4), and an increase in the activation CD4 markers and CD8 were observed.17 A recent 
study using single-cell RNA sequencing (scRNA-seq) confirmed the infiltration of immune 
cells in the GDM placenta and cell-to-cell interaction.18 However, they could not validate the 
precise characteristics of T cell subsets due to the lack of immune cell sorting processes.

Accumulating evidence suggested the critical role of immune checkpoint to sustain 
immunological hemostasis under pregnancy status.19 The inhibitory signals provided by 
ligation of (programmed cell death-1 (PD-1) with its ligands programmed death-ligand 
1 (PD-L1) and PD-L2 lead to maintenance of the necessary homeostasis between T-cell 
activation.20 Aberrant PD-1 signaling was involved in pregnancy associated complications, 
such as preeclampsia or miscarriage.21 Moreover, low PD-1 expression in patients with T1DM 
associated with increase T-cell proliferation and activation, leading to destruction of β cells.22 
However, the role of immunoescape signaling in GDM are not fully understood.

This study aimed to identify the changes and contribution of the placenta in the GDM based 
on RNA-seq. We found changes in various immune-related signaling pathways in GDM 
placentas, and investigated the characteristics of T cell subsets and immune checkpoint 
molecules by flow cytometry (fluorescence-activated cell sorting [FACS]) analysis in the 
placenta of patients with GDM compared to controls.
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METHODS

Human specimens
Twenty-seven patients with GDM and 27 normal pregnant women were recruited from 
Chungnam National University Hospital. All patients with GDM were diagnosed according 
to the American Diabetes Association guidelines.23 Additionally, we used the following 
enrolment criteria: singleton, age < 40, and not complicated by other diseases. Pregnant 
women with body mass index (BMI > 30 kg/m2) or those undergoing insulin treatment 
were excluded. There was no participant with gestational hypertension, preeclampsia, 
proteinuria, or history of polycystic ovary syndrome. Nine cases (six GDM and three controls) 
were used for RNA-seq, and other cases were used for validation experiments for FACS 
analysis of placental mononuclear cells (MNCs), immunohistochemical analysis, real-time 
polymerase chain reaction (PCR), and western blot analysis. Placenta tissue was collected 
from the subjects during cesarean delivery. Each of the four placenta quadrants was sampled 
approximately 1.5 cm away from the umbilical cord attachment from the fetal side of the 
placenta. Fetal membranes and visible large vessels were removed, and phosphate-buffered 
saline (PBS) was used to wash placenta samples before separating into maternal- and fetal-
side samples.

RNA extraction for sequencing and library preparation
First, the maternal placentas were collected en bloc as 1 × 1 cm pieces for transcriptomic 
analysis. Then, the tissue samples were homogenized using a mortar and pestle, and total 
RNA was extracted using the easy-spin Total RNA Extraction Kit (iNtRON, Seongnam, Korea) 
following the manufacturer’s protocol. All experiments were then conducted under clean 
conditions, and the equipment was pre-autoclaved. The quality of the extracted RNA was 
evaluated using an Agilent 2100 Bioanalyzer RNA Nano Chip (Agilent Technologies Inc., 
Santa Clara, CA, USA). The extracted RNA was used to construct RNA libraries using the 
TruSeq Stranded mRNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA), according to the 
manufacturer’s protocol. The quality was analyzed using an Agilent 2100 Bioanalyzer and an 
Agilent DNA 1000 kit. Finally, the samples were sequenced using an Illumina HiSeq2500, 
which yielded an average of 38 million paired-end 100 nucleotide reads.

Transcriptomics analysis
The reads were aligned to the UCSC Homo sapiens reference genome (GRCh37/hg19) 
using TopHat2 v2.1.5. The default TopHat parameter options were used. To analyze the 
differentially expressed gene (DEG) profiles between the compared groups (Control vs. 
GDM), the Tuxedo protocol was used.24 The aligned reads were processed using Cufflinks 
v2.2.1, which is based on the fragments per kilobase of exon model per million reads mapped 
(FPKM), and unbiased, normalized RNA-seq fragment counts were used to analyze the 
relative transcript levels. Gene transfer format (GTF) files were generated to quantitatively 
compare the transcript levels in each sample to those in a reference GTF file. Next, we used 
Cuffdiff to calculate the differences in the FPKMs between each group. Heat maps were 
generated using PermutMatrix Version 1.9.3 (LIRMM, Montpellier, France).

GEO dataset analysis
The GSE154377 dataset was analyzed using GEO RNA-seq Experiments Interactive Navigator 
(GREIN, http://www.ilincs.org/apps/grein/). The counts table was normalized to the gene 
level and downloaded to draw Supplementary Fig. 1. Differential expression analysis was 
performed using GREIN to compare gene expressions of GDM vs. control.
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Isolation of placental MNCs
First, the placentas were collected at the time of delivery and immediately washed with 
isotonic sodium chloride solution. The placental villi were scraped from the chorionic 
membrane using a scalpel. Single-cell suspensions were obtained by homogenizing placental 
samples in Dulbecco’s phosphate-buffered saline (DPBS) (Welgene, Daegu, Korea), and 
digested with 5 mL of RPMI digestion solution in a gentleMACS dissociator (Miltenyi Biotec, 
Bergisch Gladbach, Germany) according to the manufacturer’s protocol, and then filtered 
using a 70 μm nylon mesh (BD Falcon, Frankin Lakes, NJ, USA). Placental MNCs were 
isolated by centrifugation on a Ficoll-Paque density gradient (GE Healthcare Life Science, 
Buckinghamshire, UK) at room temperature. After centrifugation, the MNC layer was 
collected and washed with DPBS (Welgene). The isolated MNCs were resuspended in DPBS 
(Welgene) containing 0.5% BSA and 0.05% sodium azide. Trypan blue dye exclusion testing 
was used to determine the number of viable cells in the suspension, which was used for flow 
cytometry analysis.

FACS analysis of placental MNCs
As described previously,25 placental MNCs were incubated with fluorochrome-conjugated 
monoclonal antibodies for 40 minutes at 4°C. MNCs were pre-incubated with an anti-human 
BD Fc blocker (BD Pharmingen, San Diego, CA, USA), followed by staining with the live/
dead marker anti-FVD-APC-Cy7 (eBioscience, San Diego, CA, USA). The antibodies used 
in this study were anti-CD3-PerCP-Cy5.5, anti-CD3-PE-Cy7, anti-CD4-AF700, anti-CD8-PE, 
anti-CD8-APC, anti-CD28-APC, anti-CD45RA-FITC, anti-CD45RO-PE-Cy7, anti-CD57-FITC, 
and fixable viability dye-APC-Cy7 (all supplied by eBioscience). MNCs were stimulated with 
phorbol-myristate acetate/ionomycin/brefeldin A/monensin for 5 hours. Cells were fixed and 
permeabilized using a Fixation/Permeabilization Buffer kit (eBioscience). The permeabilized 
cells were washed and resuspended in 1% formaldehyde and further stained for intracellular 
cytokines with anti-interferon gamma (IFN-γ)-PE-Cy7 and anti-IL-17A-APC. Multicolor flow 
cytometry was performed using a BD LSRFortessa flow cytometer (BD Biosciences, San Jose, 
CA, USA), and data were analyzed using FlowJo software (FlowJo, LLC, Ashland, OR, USA).

Immunohistochemical staining analysis
PD-1 and PD-L1 immunohistochemical staining was performed on the placental tissues of 
68 patients, including control and patients with GDM. Whole tissue sections were cut from 
representative placental paraffin blocks using a microtome and mounted onto coated slides, 
which were then transferred to Ventana (Tucson, AZ, USA) and Dako (Glostrup, Denmark) 
automated immunostainers. Staining was performed according to the manufacturer’s 
protocol using anti-PD-L1 (Ready-to-Use, clone SP263; Ventana) and anti-PD-1 (NAT105, 
1:100; Cell Marque, Rocklin, CA, USA) antibodies. Tonsil tissues were used as the controls. 
The immunostaining pattern of PD-L1 in the placenta was diffusely expressed on the outer 
surface of syncytiotrophoblasts of the chorionic villi. The cytotrophoblastic cells and villous 
stroma were negative, and the intermediate trophoblastic cells were very weak. The pattern 
of PD-L1 expression was membranous, without cytoplasmic or nuclear expression. PD-L1 
was expressed diffusely on the syncytiotrophoblasts of the placenta, and only the intensity 
of the immunostaining was scored and categorized as weak, moderate, or marked. PD-1 
immunohistochemistry (IHC) in the same placentas was evaluated and expressed on immune 
cells. PD-1 positive immune cells were scattered at the implantation sites of the placenta. The 
number of positive cells was counted per 50 high-power fields. PD-1 scores were categorized 
as “Negative (positive cells/50 HPF < 1), Weak (positive cells low (1 ≤ positive cells/50 HPF < 5) 
and Moderate (5 ≤ positive cells/50 HPF).”
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Real time PCR
Real time PCR was performed as described previously.26

The primer sequences were: PDCD1-F: 5′-CGTGGCCTATCCACTCCTCA-3′, PDCD1-R: 
5′-ATCCCTTGTCCCAGCCACTC-3′; PD-L1-F: 5′-AAATGGAACCTGGCGAAAGC-3′, PD-L1-R: 
5′-GATGAGCCCCTCAGGCATTT-3′; PD-L2-F: 5′-GGACCCACAGAATTCCTTCA-3′, PD-L2-R: 
5′-GGCAACCCATCTGTTTCTGT-3′; CTLA-4-F: 5′-CAGGGAAGTTTTGTGGAGGA-3′, CTLA-
4-R: 5′-CCAAAGCACATGTCAACACC-3′; IFN-γ-F: 5′-AGCTCTGCATCGTTTTGGGT-3′, IFN-
γ-R: 5′-CGCTACATCTGAATGACCTGC-3′.

Western blot analysis
Cells were lysed in buffer containing 150 mM NaCl, 1.0% Nonidet-P 40, 0.5% sodium 
deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM Tris, pH 8.0, and a protease inhibitor 
cocktail (Roche Applied Science, Vienna, Austria). Electrophoresis was performed as 
described previously.27 The following primary antibodies were used for western blot 
analysis: anti-phospho-STAT1 (S727) (1:1,000; Cell Signaling Technology, Danvers, MA, 
USA), anti-total STAT1 (1:1,000; Cell Signaling Technology), anti-phospho-STAT3 (S727) 
(1:1,000; Cell Signaling Technology), anti-phospho-STAT3 (T705) (1:1,000; Cell Signaling 
Technology), anti-total STAT3 (1:1,000; Cell Signaling Technology), anti-phospho-PI3K-p85 
(1:1,000; Cell Signaling Technology), anti-PI3K-p85 (1:1,000; Cell Signaling Technology), 
and anti-β-actin (1:1,000; Cell Signaling Technology). Following incubation with the 
corresponding horseradish peroxidase-conjugated secondary antibodies (1:1,000; Santa Cruz 
Biotechnology, Dallas, TX, USA), immunoreactive bands were visualized using enhanced 
chemiluminescence detection. software (Bio-Rad, Hercules, CA, USA).

Statistical analysis
The results were expressed as mean ± standard deviation (SD). Chi-square and paired t-tests 
were used to compare clinicopathological data. P value (< 0.05) were used to select genes 
differentially expressed between the two groups. All in vitro experiments were repeated three 
times, and statistical significance was analyzed using the two-tailed Student’s t-test or one-way 
analysis of variance followed by Tukey’s post hoc test. Data are expressed as mean ± SD, and a 
value of P < 0.05 was deemed statistically significant (P < 0.05). SPSS statistical software for 
Windows, version 20 (SPSS, Chicago, IL, USA) was used for all statistical analyses.

Ethics statement
The study protocol was reviewed and approved by the Institutional Review Board of 
Chungnam National University Hospital (approval No. 2020-08-025). Written informed 
consent was obtained from all participants when they were enrolled.

RESULTS

The placenta of GDM group at the terminal pregnancy exhibit various 
inflammatory signaling using transcriptomics analysis
Transcriptomics analysis were performed in 6 GDM patients and 3 control participants. The 
clinical information of the participants enrolled in the study is described in Fig. 1A. Compared 
to the control group, we identified 758 significantly differentially expressed genes (DEGs) (P 
value < 0.05) between GDM placentas and controls (Supplementary Table 1). Volcano plot 
analysis revealed the significant DEGs with fold change ≥ 1.5 and P value < 0.05, such as SCN3A, 
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ACTC1, ASBS2, APOB, and CXCL9 (Fig. 1B). The heatmap analysis revealed the distinct gene 
expression patterns between two groups (Fig. 1C). Gene ontology analysis based on DEGs 
revealed the upregulation of diverse mitochondria related pathways, including oxidative 
phosphorylation, ATP synthesis, and oxygen transport (Fig. 1D). Interestingly, the placenta of 
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GDM exhibited down regulation of various immune related signaling pathways, including 
regulation of lymphocyte activation, immune effector process, T cell differentiation, and 
immune response signaling pathway. Collectively, these data suggest that altered T cell 
immunity related with GDM in pregnant women.

Population of memory CD4+ T cells and proinflammatory cytokine-producing 
CD4+ T cells increased in placenta of GDM compared with control
To identify the immunophenotype of T cells in the placenta of women with GDM, we first 
investigated the frequency and activation status of T cells from the pregnant women’s 
placenta with or without GDM. Six patients with GDM and eight controls were included in 
the FACS analysis. Various clinical parameters of participants are described in Table 1. The 
GDM group demonstrated higher pre-pregnancy BMI and BMI at delivery, compared to 
controls; however, there was no significant difference between two groups. Four patients 
among the GDM group (66.7%) revealed the post-partum complications, whereas, no such 
complication were encountered in the control group (Table 1). Of the four patients who 
experienced complications, one patient experienced both maternal and fetal complications, 
including preterm labor and premature fetus; two patients experienced maternal 
complications; and one patient experienced a fetal complication of congenital genitourinary 
tract anomaly (Table 1).

Placental MNCs from normal controls and patients with GDM were first gated single cells 
and lymphocytes, and the lymphocyte population was then further analyzed for uptake of 
a fixable viability dye. To investigate the phenotypic characterization of CD4+ T cells, we 
evaluated the frequency of CD45RA+CD45RO− and CD45RA−CD45RO+ among CD4+ T cells 
in the placental MNCs from normal controls and patients with GDM. The naïve CD4+ T cell 
population, CD45RA+CD45RO−, tended to decrease, along with an increased population of 
memory CD4+ T cells and CD45RA-CD45RO+ CD4+ T cells in patients with GDM (Fig. 2A). The 
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Table 1. Various clinical parameters of total patients in fluorescence-activated cell sorting analysis (N = 14)
Parameters GDM group (n = 6) Control group (n = 8) P value
Age, yr 35.3 ± 2.2 35.4 ± 3.7 0.981
Pre-pregnancy body mass index, kg/m2 26.4 ± 1.3 24.0 ± 2.6 0.055
Body mass index at delivery, kg/m2 28.1 ± 2.1 26.2 ± 1.7 0.080
Gestational weight gain, kg 6.4 ± 4.8 5.7 ± 6.2 0.799
Gestational age, wk 37.8 ± 1.0 38.4 ± 0.9 0.309
Body weight of infants, g 3,241 ± 452 3,091 ± 324 0.481
Weight of placenta, g 421.7 ± 134.8 448.2 ± 57.4 0.516
Mode of delivery

Cesarean section 6 8
Fasted plasma/Serum parameters at 3rd trimester

Glucose, mg/dL 85 (5.4) 80 (2.3) 0.104
AST, U/L 16 (2.8) 18 (5.0) 0.414
ALT, U/L 11.8 (3.3) 11.3 (4.2) 0.783
Creatine, mg/dL 0.5 (0.1) 0.5 (0.2) 0.293
Hemoglobin, g/d 11.5 (1.8) 10.7 (1.1) 0.290
Hemoglobin A1c, g/dL 6.1 (0.4) NA

Postpartum complications 3 0 0.024*

Premature rupture of membrane 1 0
Placenta previa 2 0
Congenital anomalies 1 0

Data are given as mean ± standard deviation and values in brackets are percentages (%). The χ2 test and 
Independents-Samples t-test were used to evaluate the significance between two groups.
GDM = gestational diabetes mellitus, AST = aspartate aminotransferase, ALT = alanine aminotransferase, NA = 
not available.
*P  < 0.05 compared with the corresponding controls.
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population of IFN-γ+CD4+ T cells was also significantly higher in patients with GDM (Fig. 2B). 
We also analyzed the population of Th17 T cells using IL-17A+CD4+ T cells between the GDM 
and control groups. There was a significant increase in the population of IL-17A+CD4+ T cells in 
the placental MNCs of patients with GDM (Fig. 2C). These data suggest that patients with GDM 
have a larger population of memory CD4+ T cells and proinflammatory cytokine-producing 
CD4+ T cells in the maternal placenta.

The population of memory CD8+ T cells and proinflammatory cytokine-
producing CD8+ T cells increased in the placenta of patients with GDM than 
the control group
Next, we analyzed the phenotypic characteristics of CD8+ T cells. The frequency of 
CD45RA+CD45RO− and CD45RA−CD45RO+ among CD8+ T cells and the IFN-γ+ expression 
in CD8+ T cells in the placental MNCs from normal controls and patients with GDM were 
investigated. Comparison of the phenotype CD4+ T cells in the placenta between GDM and 
controls showed that the naïve CD8 T cell population, CD45RA+CD45RO−, tended to be 
decreased, along with the increased population of memory CD8+ T and CD45RA−CD45RO+ 
CD8+ T cells in patients with GDM (Fig. 3A). The expression of IFN-γ in CD8+ T cells was 
significantly higher in pregnant women with GDM than in controls. These findings indicate 
a larger quantity of memory CD8+ T cells and proinflammatory cytokine-producing CD8+ T 
cells in the placenta (Fig. 3B).

https://doi.org/10.3346/jkms.2022.37.e338

Dysregulated T Cell Immunity in GDM

CD45RO

CD
45

RA

Normal GDM

CD3+CD4+ T cells

69.3% 50.7%

20.8% 42.6%

A B

0.32%

FSC

IL
-1

7A

Normal GDM

0.77%

CD3+CD4+ T cellsC

6.83%

FSC

IF
N

-γ

Normal GDM

13.8%

CD3+CD4+ T cells

0

5

10

15

IF
N

-γ
+  C

D4
 T

 c
el

ls
, % *

Control GDM

IL
-1

7A
+  C

D4
 T

 c
el

ls
, %

0

0.2

0.4

0.6

0.8

1.0 *

Control GDM
0

20

40

60

80

N
aï

ve
 C

D4
 T

 c
el

ls
, %

M
em

or
y 

CD
4 

T 
ce

lls
, %

0

10

20

30

40

*
*

Control GDMControl GDM

Fig. 2. Immunophenotype of CD4+ T cells of the maternal placenta in pregnant women with and without GDM. (A) Representative flow cytometry plots are 
presented for CD45RA and CD45RO expression by CD4+ T cells in patients with GDM (n = 6) and normal controls (n = 8). Statistical analysis of the population 
of CD45RA+CD45RO− (naïve) or CD45RA−CD45RO+ (memory) T cells in CD4+ T cells in the two groups. (B, C) The frequency of IFN-γ- and IL-17A-secreting cells 
in the population of CD4+ T cells was compared between the two groups. Data are expressed as mean ± standard error of the mean. Flow cytometry plots are 
representative of all independent experiments. 
GDM = gestational diabetes mellitus, IFN = interferon, IL = interleukin, FSC = forward scatter. 
*P < 0.05 compared with the corresponding controls.
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Senescent CD8+ T cells are more numerous and CD279 (PD-1) dominantly 
expressed in placenta of GDM
A previous study reported that senescent T cells have the ability to secrete abundant 
proinflammatory cytokines in diverse metabolic diseases.28 Moreover, our transcriptomic 
analysis revealed upregulation of T cell exhaustion signaling in GDM. For these reasons, we 
investigated the functional phenotypic changes in senescent CD4+ and CD8+ T cells from the 
placenta of patients with GDM and controls. Among CD4+ T cells, the CD28−CD57+ senescent 
population tended to be larger in patients with GDM, but this difference was not statistically 
significant (Fig. 4A). The population of CD28−CD57+CD8+ T cells and senescent CD8+ T cells 
were significantly increased in the placenta of the GDM group (Fig. 4B). We also analyzed the 
population of CD279 (PD-1)-positive senescent T cells, since PD-1 is precise molecules related 
immune-escape signaling. Although the CD279+CD28-CD57+ population tended to be larger 
in the GDM group without statistical significance (Fig. 4C), CD279 (PD-1) was predominantly 
expressed in the placenta of patients with GDM in senescent CD8+ T cells (Fig. 4D), indicating 
that there are more immunosenescent CD8+ T cells, which predominantly express CD279 
(PD-1) in the GDM placenta group than in the control group. To validate these results in 
RNAseq, we analyzed the expression of PD-1, PD-L1, and PD-L2 in patients with GDM and 
controls; however, there was no expression value for PD-1 and no significant difference 
between PD-L1 and PD-L2 (Supplementary Fig. 1A). Notably, in GSE154377, a study focusing 
on the role of the placenta in GDM, PD-L1 expression decreased significantly in the first 
trimester of pregnancy and tended to increase in the third trimester (Supplementary Fig. 1B). 
These results suggest that immune-escape signaling has different effects on the placenta in 
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early and late pregnancy and also provides a potential explanation for the increase in PD-1 in 
senescent T cells in this study.

PD-L1 immunoreactivity was more intense and mRNA expression of immune-
check point molecules were increased in the placenta of patients with GDM
Accumulating evidence suggests the significance of immunological tolerance in the placenta 
in GDM pathophysiology29; however, the precise role of PD-1/PD-L1 signaling has not been 
clearly demonstrated. Since we first identified the upregulated PD-1 expression in senescent 
T cells in the maternal placenta of patients with GDM, we validated the expression of PD-1/
PD-L1 in maternal placentas using immunohistochemical analysis. A total of 61 participants 
were enrolled in the IHC analysis (Table 2). The GDM group demonstrated significantly more 
increased gestational weight gain and decreased gestational age, compared to the control 
group (Table 2). As results of the FACS analysis, postpartum complications were significantly 
increased in patients with GDM, compared to the control group. PD-L1 immunoreactivity 
was significantly detected in the syncytiotrophoblasts (Fig. 5A). PD-L1 immunoreactivity 
was significantly more intense in the syncytiotrophoblasts of chorionic villi in the placenta 
of patients with GDM (Fig. 5A, Supplementary Fig. 2A). PD-1 expression was detected in 
some decidua lymphocytes (Fig. 5B, Supplementary Fig. 2B). We defined the absence of PD-1 
positive cells as negative, the presence of 1 to 4 cells as weak, and the presence of 5 or more 
cells as moderate in the 50 high-power field. PD-1 expression showed a tendency to increase 
in GDM group compared to in the control group (Fig. 5B). These findings indicate that the 
higher intensity of PD-L1 expression is consistent with increased PD-1+ senescent CD8+ T cells 
in the maternal placenta of patients with GDM. Moreover, the mRNA expression of PD-1, PD-
L1, and CTLA-4 was significantly increased in placentas of patients with GDM (Fig. 5C). Since 
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we hypothesized that the PD-1/PD-L1 signaling in the placenta is dysregulated in GDM based 
on our transcriptomics and FACS data, we investigated STAT signaling, a known regulator of 
PD-L1 expression in other tissues. There were more patients with increased phosphorylation 
of STAT1, phosphorylation of STAT3, and phosphorylation of PI3K in placentas from patients 
with GDM, even though the expression patterns of PD-1-PD-L1-STAT-PI3K were not consistent 
and there were differences between individuals (Fig. 5D, Supplementary Fig. 2C). These data 
suggest that immuno-escape signaling is dysregulated in the placenta of patients with GDM, 
although the interrelationship and mechanism could not be elucidated.

DISCUSSION

In order to identify the changes and contribution of the placenta in GDM, we evaluated T-cell 
subsets and immune checkpoints in the placenta of patients with GDM through RNA-seq and 
FACS. We demonstrated changes in various immune-related signaling pathways and altered 
pro-inflammatory T cells, senescent T cells, and dysregulated immune-escape signaling in 
the placentas of patients with GDM. The placenta expresses diverse receptors and secretes 
a wide variety of cytokines, chemokines, and adipokines, and plays an important role in 
maintaining pregnancy and the interaction of maternal and fetal units. Thus, studying the 
role and changes in the placenta is needed to identify the mechanism of GDM. A previous 
study based on microarray data in the placenta identified an increase in apoptosis-related 
genes and inflammatory signaling in GDM.30 In addition, single-cell transcriptomics analysis 
in the GDM placenta revealed the presence of diverse immune cell infiltration and altered NK 
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Table 2. Various clinical parameters of total patients in immunohistochemistry analysis (N = 54)
Parameters GDM group (n = 27) Control group (n = 27) P value
Age, yr 33.8 ± 4.3 33.9 ± 4.1 0.896
Pre-pregnancy body mass index, kg/m2 24.2 ± 4.1 24.1 ± 2.8 0.954
Body mass index at delivery, kg/m2 27.1 ± 4.7 26.9 ± 3.2 0.329
Gestational weight gain, kg 8.2 ± 5.5 5.0 ± 8.9 0.119
Gestational age, wk 37.7 ± 1.1 38.7 ± 1.1 0.002*

Body weight of infants, g 3,177 ± 459 3,166 ± 348 0.666
Weight of placenta, g 458.0 ± 122.3 441.3 ± 93.5 0.575
Mode of delivery

Spontaneous/Cesarean section 5/22 10/17 0.224
Fasted plasma/Serum parameters at 3rd trimester

Glucose, mg/dL 82 (7.4) 78 (6.0) 0.143
AST, U/L 17.3 (4.9) 17.6 (6.8) 0.873
ALT, U/L 12.7 (7.9) 10.6 (3.4) 0.216
Creatine, mg/dL 0.5 (0.1) 0.5 (0.1) 0.203
Hemoglobin, g/dL 11.1 (1.3) 10.9 (1.5) 0.366
Hemoglobin A1c, g/dL 6.2 (0.6) NA

Postpartum complications 13 0 < 0.001*

Placenta percreta 1 0
Placenta previa 2 0
Respiratory distress 4 0
Hypoglycemia 2 0
Hypocalcemia 1 0
Congenital anomalies 2 0
Neonatal stroke 1 0

Data are given as mean ± standard deviation and values in brackets are percentages (%). The χ2 test and 
Independents-Samples t-test were used to evaluate the significance between two groups.
GDM = gestational diabetes mellitus, AST = aspartate aminotransferase, ALT = alanine aminotransferase, NA = 
not available.
*P  < 0.05 compared with the corresponding controls.
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cell status18; however, the role of T cell homeostasis in the placenta remains unclear. In our 
data, various immune related signaling, particularly T-cell immunity related pathways, such 
as regulation of lymphocyte activation, T cell receptor signaling, T cell differentiation, and 
positive regulation of immune response, were downregulated in placenta of GDM.

Whereas previous studies using the GDM placenta predicted signaling by measuring the 
genetic expression or concentration of cytokines representing the T cell subset, we sorted 
the placenta into the T cell subset using FACS analysis to demonstrate the T-cell immunity 
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in placenta of GDM patients. From our results based on T cell subset, pro-inflammatory 
cytokines, especially IFN-γ and Th17, were increased in CD4+ T cells of the GDM placenta. 
While most of the studies about the inflammatory cytokine in GDM were observational 
studies related to increases in serum or amniotic fluid of inflammatory cytokines,2,31 our 
results suggested the possibility that the placenta is a source of inflammatory cytokines 
and the impact of inflammatory T cell subset associated with GDM. Moreover, the increase 
in memory CD4+, memory CD8+ T cells, pro-inflammatory T cells, IFN-γ+CD4+ T cells, INF 
gamma+CD8+ T cells, and IL-17A+CD4+ T cells observed in our study was consistent with a 
previous study that focused on the increase in the immune profile of Th2 and Th17 cells. 
Previous study revealed an increase in the pro-inflammatory T cell subset, the ratio of Th17/
Treg, and association with postprandial glucose levels,29 supporting the link between 
dysregulation of adaptive immunity and hyperglycemia.

CD28-T cells are known to have shortened telomerase, reduced diversity, and cytotoxic 
capacity of T cell receptors, and CD57+ T cells are known to be senescent T cells with poor 
proliferation response to antigen-specific stimulation.32,33 Increasing evidence suggests the 
failure of T cells is mainly due to the dysfunction of T cells and inducing T cell senescence 
is a key strategy in maintain immunoescape signaling.31 Senescent T cells, with defects in 
proliferation and effector functions, are known to be accumulated in aging, chronic viral 
infections, and autoimmune disorders where antigen stimulation persists.34 Previously, 
we identified the increased senescent T cells in type 2 diabetes patients and suggested the 
role of senescent T cells in metabolic dysregulation status.25 In the present study, we firstly 
identified an increase in the number of senescent T cells, CD28-CD57+CD4+ T cells, and CD28−

CD57+CD8+ T cells using FACS in GDM placenta, the consistent findings with the RNA-seq. 
Collectively, our results suggested the contributions of T cell senescence in placenta related 
with GDM, although functional studies are needed to determine whether this is a cause or 
consequence of hyperglycemia or insulin resistance.

Maternal-fetal immunotolerance represents a real immunological challenge for the immune 
system of the mother. It is well known that immune checkpoints play a role in maintaining 
pregnancy and complications.35 The expression of PD-1, PD-L1, PD-L2, and CTLA-4 at the 
feto-maternal interface is detected in the decidua and placenta, and miscarriage occurs 
when monoclonal blocking antibodies of PD-L1 or PD-L2 are administered.36 Disrupted 
homeostasis PD-1/PD-L1 signaling has also been observed in pregnancy-related perinatal 
complications, implantation failure, recurrent spontaneous abortions, and preeclampsia.37,38 
Diverse reported evidence, consistent increased serum soluble PD-L1 along with increasing 
gestational age,39 PD-L1 expression in syncytotrophoblasts, extravillous cytotrophoblasts,40 
and the exosome of placenta,41 supporting the role of PD-L1 in the maintenance of pregnancy. 
The importance of PD-1+ in Tregs was observed, such as a study showing a significant 
decrease in CD279+(PD-1+) CD4+CD25+ in PBMCs and decidua compared to controls in 
recurrent miscarriage mothers.42 A PBMC study reported that PD-1 expression on T cell 
subsets increased during normal pregnancy, but this increase was not observed at the time 
of diagnosis as GDM, and PD-1 expression was restored to normal levels with good glucose 
control.43 In another study, the assessment of immune checkpoint expression in the peripheral 
blood T subpopulation showed lower frequencies of CD3+CD4+CTLA-4+ and higher frequency 
of CD4+PD-1+ T cells in patients with GDM compared to healthy pregnant women, indicating 
dysregulated maternal-fetal tolerance associated with GDM.17 To investigate the role of T-cell 
immunity in the placenta, we investigated the characteristics of T-cell subsets, exhausted 
T cells and PD-1 expression in GDM placentas using FACS. We also examined PD-1/PD-L1 
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expression and related signaling through IHC and western blot analyses. Notably, based on 
the GSE results, this pattern was different from that of early pregnancy. Therefore, our results 
suggest that the increase in the expression of the immune checkpoint molecule, PD-1 or PD-
L1, at the end of pregnancy may be a compensatory reaction to various inflammations rather 
than a proper immunosuppressive role in the maternal-placental interaction.

In GDM, the placenta serves as a target organ for increased insulin-like growth factor 1 
(IGF-1) and hyperinsulinemia, and it is known to transport various amino acids and glucose 
to the fetus.44 Additionally, upregulation of IGF-1 signaling and diverse growth factors are 
associated with the development of macrosomia in patients with GDM.45 GDM placenta 
has been reported to have more increased glycogen deposits, increased volume including 
villous edema, increased angiogenesis, and deposition of lipid droplets compared to normal 
individuals.46 The best-known mechanism of these changes is persistent hyperglycemia and 
upregulation of insulin signaling caused by hyperinsulinemia due to insulin resistance.47 
We observed increased STAT1, STAT3, and PI3K signaling, known as ones of insulin- or T 
cell fate-related signaling, as in the previous literature on GDM placenta by western blot 
analysis. Additionally, we also observed the upregulation of cell ATP synthesis or oxidative 
phosphorylation in GDM compared to in controls, although the further study is necessary to 
identify the precise mechanism.

This study has several limitations. First, the mechanisms or interactions could not be 
elucidated by transcriptomic analysis and expression measurement using whole tissue 
because the placenta is composed of diverse and heterogeneous cells. Second, the sample 
size was small, and validation of protein expression and related signaling was not enough. 
It remains unclear whether the change in the placenta may be caused by GDM or contribute 
to GDM or complications. Further molecular mechanistic studies should be performed for a 
more comprehensive understanding of exhausted T cells and PD-1/PD-L1 signaling in GDM. 
However, this is the first study that evaluated senescent T cells and immune-escape signaling 
in the placenta of patients with GDM using FACS analysis.

In conclusion, this study demonstrated that altered pro-inflammatory T cells, senescent T 
cells, and immune checkpoint molecules are present in GDM placentas. Our data suggest 
that dysregulation of immune-escape signaling and senescent T cells in the maternal placenta 
could be related to the pathophysiology of GDM.
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758 significantly different genes (DEGs) (P < 0.05) between GDM placentas and controls
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Supplementary Fig. 1
(A) Differential expression of PD-L1 and PD-L2 between GDM and control in our cohort. (B) 
Differential expression of PD-L1 and PD-L2 between GDM and control in GSD154377.

Click here to view

Supplementary Fig. 2
(A) Representative image of H&E statin and immunohistochemical analysis for PD-L1 in 
control and GDM. (B) Representative image of H&E statin and immunohistochemical 
analysis for PD-1 in control and GDM. (C) Comparison of densitometric analysis of blots 
image for p-STAT1/STAT1, p-STAT3(S272)/STAT3, p-STAT3(T705)/STAT3, and p-PI3K/PI3K 
between control and GDM.

Click here to view
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