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Abstract  Bone and joint infections are a rare but 
serious problem worldwide. Lactoferrin’s antimicro-
bial and antibiofilm activity coupled with its bone-
regenerating effects may make it suitable for improv-
ing bone and joint infection treatment. However, free 
lactoferrin (LF) has highly variable oral bioavail-
ability in humans due to potential for degradation in 
the stomach and small intestine. It also has a short 
half-life in blood plasma. Therefore, encapsulating 
LF in nanocarriers may slow degradation in the gas-
trointestinal tract and enhance LF absorption, stabil-
ity, permeability and oral bioavailability. This review 
will summarize the literature on the encapsulation of 
LF into liposomes, solid lipid nanoparticles, nano-
structured lipid carriers, polymeric micro and nano-
particles and hydroxyapatite nanocrystals. The fab-
rication, characterization, advantages, disadvantages 
and applications of each system will be discussed and 
compared.

Keywords  Lactoferrin · Bone · Nanoparticles · 
Microparticles · Hydroxyapatite

Introduction

Bone and joint infections are difficult to treat, require 
high healthcare costs and are highly debilitating con-
ditions (Pereira Rosa et al. 2015). Reports of osteomy-
elitis are as high as 1 in 675 hospital admissions in the 
United States annually (Momodu and Savaliya 2022). 
Around 6–12 weeks of antibiotics are needed to treat 
osteomyelitis (Baldwin et al. 2018), including spend-
ing about 2  weeks in hospital to receive intravenous 
antibiotics (Webb et al. 2022). Osteomyelitis can lead 
to severe complications including sinus tract forma-
tion, contiguous soft tissue infection, abscess, septic 
arthritis, systemic infection, bony deformity and frac-
ture (Lalani and Schmitt 2022).

Lactoferrin (LF) is a single-chain globular gly-
coprotein of the transferrin family with ~ 700 amino 
acids with a molecular weight of ~ 80 kDa (González-
Chávez et al. 2009). Its molecular weight varies with 
the amount of glycosylation (Avery et al. 2021). It has 
an isoelectric point (pI) around 8–9 (Roohinejad et al. 
2018). This means that LF is positively charged at the 
physiological pH of 7.4 and at a pH below its isoelec-
tric point (Abad et al. 2021). The melting temperature 
is 60–85  °C (Roohinejad et  al. 2018). The protein 
is folded into two globular lobes called the N and C 
lobes, which each bind one Fe3+ ion (Ammons and 
Copié 2013). Each iron binding requires synergistic 
binding of one bicarbonate (Prieels et  al. 1978) or 
carbonate anion (Adlerova et al. 2008). LF is present 
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in mammalian secretions and has a high homology 
between mammalian species (Icriverzi et al. 2019).

Several mechanisms for LF’s direct antimicrobial 
and antibiofilm activity have been found. LF chelates 
iron, an essential nutrient for many bacteria includ-
ing S. aureus (Hammer and Skaar 2011). S. aureus 
is a common causative pathogen of osteomyelitis and 
prosthetic joint infection (Brady et al. 2007; Berbari 
et al. 2021; Krogstad 2021). Iron chelation also helps 
prevent biofilm formation (Vogel 2012). Furthermore, 
the N lobe of LF can interact with bacterial mem-
branes resulting in membrane permeabilization (van 
Veen et al. 2002), opsonization (Jenssen and Hancock 
2009) and release of bacterial lipopolysaccharide 
from the cell wall leading to lysis of bacteria (Wang 
et al. 2017).

In vitro and in vivo studies have shown that bovine 
and human LF have bacteriostatic effects against 
gram positive and gram negative bacteria (Bhimani 
et al. 1999; González-Chávez et al. 2009; Wang et al. 
2017; Avery et  al. 2021). Clinical trials have shown 
mixed reports that bovine LF-fortified formula given 
to neonates and infants reduces the incidence of diar-
rhoeal illness and respiratory disease (King et  al. 
2007; Chen et  al. 2016). To explain these findings, 
it is proposed that orally delivered bovine LF (bLF) 
alters the gut microbiota and gut mucosal immune 
system, modulating the immunity of other mucous 
membranes such as the respiratory tract (Chen et al. 
2016; Kowalczyk et al. 2022).

Bone-regenerating properties of LF have also 
been documented. Subcutaneous injections of bLF 
into rat calvariae increases bone growth compared 
to control (Cornish et  al. 2004; Görmez et  al. 2015; 
Gul Koca et al. 2022). In vitro, bLF produces a dose-
related increase in the proliferation of rat osteoblast-
like cells (Cornish et  al. 2004). Many mechanisms 
for this osteoblast mitogenesis have been described: 
bLF increases COX2 and NFATc1 activity (Cornish 
and Naot 2010; Naot et al. 2011); bLF also binds to 
LRP1, a protein found on the osteoblast cell mem-
brane, activating p42/44 MAPK signalling (Naot 
et  al. 2004); other mechanisms include activation of 
PI3 kinase, Akt and upregulation of IGF-R1 (Cornish 
and Naot 2010; Icriverzi et al. 2019).

In considering its antimicrobial and bone-regener-
ating effects, LF could be delivered intravenously or 
intraosseously, however, the most convenient mode is 
oral delivery. Analysis of the literature shows that the 

bioavailability of orally delivered LF depends on mul-
tiple factors. Longer gastric emptying times as well as 
low pH of 1.5–2—the optimum for pepsin digestion—
leads to greater gastric digestion of LF (Wang et  al. 
2017). Under fasting conditions, the intragastric pH of 
adults is ~ 5–6 and it takes up to 100 min to generate 
enough gastric acid to reach the optimum pH (Wang 
et  al. 2017). These findings correlate well with one 
clinical trial, in which bovine LF (bLF) administered 
before meals, in contrast to during meals, was found 
to survive gastric degradation and improve the blood 
profile of pregnant women with hereditary thrombo-
philia and anaemia of inflammation (Rosa et al. 2020). 
Meanwhile, gastric pH higher than 4 and gastric emp-
tying rate of 30 min have shown to be partially inef-
fective at digesting bLF (Troost et al. 2001).

Intact bLF that survives gastric degradation can 
then be degraded by the intestinal enzymes trypsin 
and chymotrypsin, based on in  vitro studies (Yao 
et  al. 2013, 2014a). However, bLF can also be 
absorbed in intact form by intestinal epithelial cells 
by binding to surface receptors and undergoing tran-
scytosis; then, according to findings from rat studies, 
bLF enters the lymphatic system, travels through the 
thoracic duct lymph and enters the systemic circula-
tion (Takeuchi et al. 2004; Nojima et al. 2008; Kilic 
et  al. 2017). Here, free LF has a short half life of 
12–60  min in blood plasma (van Snick et  al. 1974; 
Beauchamp et  al. 1983; Nojima et  al. 2009; Shiga 
et al. 2015), due to rapid removal by the reticuloen-
dothelial system, the liver and spleen (van Snick et al. 
1974; Beauchamp et al. 1983; Onishi 2011).

Given its short half-life, it is not surprising that 
oral formulations of LF tend to produce low levels 
of LF in human serum, regardless of the formulation 
(Dix and Wright 2018). Prof. Harada could detect 
bLF in human blood after oral delivery of 900 mg of 
enteric-coated bLF to a 60 kg adult (Shimizu 2004). 
The concentration of bLF was only ~ 150  ng/ml 4  h 
after administration (Shimizu 2004). It should also 
be noted that the endogenous LF concentration in 
blood of healthy humans is 0.02 to 2 μg/ml rising to 
200  μg/ml during inflammation and infection (Sien-
kiewicz et  al. 2021). Why then, do some oral for-
mulations of lactoferrin seem to produce therapeutic 
effects? Two models have been proposed. The first is 
that LF and its degradation products could exert distal 
effects even if it remains in the wall of the gut (Kow-
alczyk et  al. 2022). This could occur by interaction 
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of LF with gut associated lymphoid tissue (Kilic et al. 
2017). The second is that LF is absorbed, as previ-
ously described, and accumulates in target organs 
exerting direct effects (Shimizu 2004). Little informa-
tion exists on the oral bioavailability of bLF and the 
relationship between bLF’s effects and its concentra-
tion in the blood (Nojima et al. 2009). Future studies 
could address this issue by using fluorescent-labelled 
LF and calculating the concentration of absorbed LF 
based on fluorescence intensity (Kilic et al. 2017).

LF has immunomodulatory effects. An immune 
response normally begins with the deposition of 
pathogens in host tissue. In osteomyelitis, bacte-
ria can colonize the bone marrow, soft tissue sur-
rounding bone or the osteocyte-lacuno canalicular 
network (Masters et  al. 2019). Microbial surface 
components recognizing adhesive matrix molecules 
(MSCRAMMs) allow bacteria to adhere to host poly-
saccharides like fibronectin, fibrinogen and collagen 
(Schmitt 2017). LF can prevent adherence of bacteria 
to epithelial cells (Ammons and Copié 2013). Neu-
trophils can recognize bacterial lipopolysaccharide 
(LPS). LF can bind LPS, reducing the activation of 
pro-inflammatory pathways (Fischer et  al. 2006; 
Siqueiros-Cendón et al. 2014). Bacterial LPS can also 
stimulate osteoclastogenesis (Yamano et  al. 2010; 
Janani et al. 2021). The extent of immune stimulation 
during sepsis, which can be a sequela or precursor to 
osteomyelitis, is also reduced by LF due to LF attenu-
ating the LPS/CD14/TLR-4 pathway (Vogel 2012; 
Siqueiros-Cendón et al. 2014).

LF may have a role in osteoimmunology. Impor-
tantly, receptor activator of NF-κB ligand (RANKL) 
is expressed on osteoblasts and activated T cells, 
while RANK is expressed on osteoclasts and den-
dritic cells (Fan et  al. 2018). RANKL-RANK bind-
ing results in bone resorption by osteoclasts. bLF 
orally administered to an osteoporosis mouse model 
decreased serum RANKL and increased serum 
OPG—these effects favour bone preservation (Fan 
et al. 2018). bLF was found to increase serum IFN-γ, 
IL-5 and IL-10. IFN-γ is known to inhibit RANKL/
RANK signalling; IL-5 and IL-10 are known to 
increase OPG expression (Fan et al. 2018). RANKL 
and tumour necrosis factor (TNF) play an important 
role in bone destruction in rheumatoid arthritis (RA) 
(Firestein and Guma 2022). Oral liposomal bLF 
reduces osteoclastic bone destruction in a RA mouse 
model (Yanagisawa et al. 2022). This effect could be 

due to bLF-induced increase in Treg cells relative to 
Th17 cells and bLF-induced suppression of TNF-α 
production (Antoshin et  al. 2021; Yanagisawa et  al. 
2022).

LF may have a role in coronavirus disease 2019 
(COVID-19) treatment. LF’s antiviral activities are 
well known. It can bind to intelectin-1 receptor on 
host cells triggering the intracellular production of 
interferon which inhibits viral replication (Sienkie-
wicz et al. 2021). LF also down-regulates IL-6 which 
helps prevent intracellular iron overload, a situa-
tion which favours viral replication (Campione et al. 
2021a). In particular for the SARS-CoV-2 virus that 
causes COVID-19, moieties of LF can attach to hep-
aran sulfate proteoglycans, limiting the binding of the 
virus to ACE2, a protein expressed on the surface of 
multiple human epithelial cells that facilitates viral 
fusion with host epithelial cells (Sienkiewicz et  al. 
2021). In vivo studies have demonstrated that oral or 
intranasal liposomal bLF enables faster SARS-CoV-2 
RNA negativization for patients with asymptomatic 
or mild-to-moderate infection compared to standard 
of care-treated or untreated patients (Rosa et al. 2021; 
Campione et  al. 2021b). Negativization refers to the 
negative conversion of naso-oropharyngeal swab 
results for COVID-19 patients.

Considering its antimicrobial role in infections 
such as osteomyelitis, endogenous LF is secreted in 
high concentrations at the infection site. It binds to 
neutrophil extracellular traps (NETs) that help contain 
bacterial pathogens. These NETs help expose bacteria 
to high local concentrations of LF and other antimi-
crobial peptides (Vogel 2012). If exogenous LF is to 
be used as part of local therapy for osteomyelitis and 
other infections, it would need to be delivered to bac-
teria at high concentrations for a prolonged period in 
order to effectively eliminate the pathogen. High con-
centrations of LF would also help regenerate injured 
bone tissue. Therefore, a review of drug delivery 
carriers of LF would be useful to introduce effective 
formulation approaches that can enhance LF stability 
for parenteral use. The review will also discuss oral 
formulations of LF, to explore its possible role as an 
adjuvant for systemic infection (Vincent et  al. 2015; 
Sherman et  al. 2016). Oral formulations of LF may 
be able to enhance oral bioavailability and increase 
the permeability of LF through mucosal tissue and 
uptake by target cells. Therefore, we will discuss the 
applications of liposomes, solid lipid nanoparticles, 
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nanostructured lipid carriers, polymeric micro and 
nanoparticles and hydroxyapatite nanocrystals and 
microspheres as potential methods of delivering LF 
orally and/or parenterally.

Liposomes

Liposomes are vesicles made of bilayer(s) of phos-
pholipid enclosing an aqueous environment. They 
can be fabricated by four methods—thin film hydra-
tion, microfluidization also known as high pressure 
homogenization, reverse phase evaporation and ether 
injection (Guan et  al. 2012). Liposomal LF (L-LF) 
has been administered intra-articularly, topically or 
orally (Table 1, Fig. 1).

Liposomes can be characterized by: particle size; 
particle size distribution which is also known as poly-
dispersity index (PDI); zeta potential; entrapment 
efficiency (EE); in vitro drug release; morphology by 
scanning electron microscopy (SEM); fourier trans-
form infrared spectroscopy (FTIR) and differential 
scanning calorimetry (DSC).

Particle size and PDI can be measured by laser 
light scattering (Liu 2019). Zeta potential indicates 
the amount of surface charge of the liposome. The 
greater the surface charge, the greater the electrostatic 
repulsion between two liposomes. Small particle size 
and high zeta potential—particularly above 30 mV in 
modulus (Chen et al. 2019; Anali Bazán Henostroza 
et  al. 2022)—increase the stability of liposomes. A 
positive zeta potential can be achieved by adding cati-
onic compounds to liposomes, such as dioleoylphos-
phatidylethanolamine (DOPE) (Ding et  al. 2009) 
and 1,2-dioleoyl-3-trimethylammonium propane 
(DOTAP) (Tonguc-Altin et al. 2015). A negative zeta 
potential can be achieved by adding 1,2-dioleoyl-
sn-glycero-3-phospho-l-serine (DOPS) (Smith et  al. 
2017). Entrapment efficiency (EE) refers to the pro-
portion of the drug trapped within the liposome. Sev-
eral studies show that the EE for liposomal LF can 
range from 42 to 90% (Table 1).

In vitro drug release can be measured by dialysis 
tubing or Franz diffusion cell analysis. Both methods 
involve the release of the drug from the liposome fol-
lowed by the permeation of free drug through a dial-
ysis membrane. Samples are taken at specified time 
intervals and the amount of released drug is often 
measured (Chen et  al., 2019) by high performance 

liquid chromatography (HPLC). FTIR and DSC can 
detect whether LF is loaded within the aqueous com-
partment or within the bilayer of the liposome.

Liposomes have many advantages as drug deliv-
ery vehicles. They are able to contain hydrophilic 
and hydrophobic drugs (Icriverzi et al. 2019); as their 
components are found endogenously (Anabousi et al. 
2006), they are biocompatible (Icriverzi et al. 2019), 
biodegradable (dos Santos Ramos et  al. 2020) and 
have low toxicity (Icriverzi et  al. 2019; dos Santos 
Ramos et  al. 2020); they have low immunogenicity 
(Icriverzi et  al. 2019), their surface can be modified 
to target delivery of the drug (Icriverzi et al., 2019). 
They are able to prolong the release of drugs (Al‐
amin et al. 2020).

Liposomes have several challenges to their wide-
spread use. The main issue is poor stability com-
pared to other drug carriers (Roohinejad et al. 2018; 
Thorn et al. 2021). Traditional liposomes greater than 
100  nm are rapidly cleared from blood circulation 
by circulating macrophages or dendritic cells as part 
of the reticuloendothelial system (Buya et  al. 2021; 
Anali Bazán Henostroza et  al. 2022). Hydrophilic 
polymers such as polyethylene glycol, pectin or chi-
tosan can protectively coat the surface of liposomes, 
increasing their residence time in the blood circula-
tion (Anabousi et al. 2006; Icriverzi et al. 2019; Buya 
et  al. 2021). It has also been shown that liposomes 
prepared from milk derived phospholipids or rape-
seed oil can slow the digestion of LF in simulated 
gastric and intestinal conditions (Liu et al. 2013; Ver-
gara et al. 2020).

Liposomes are difficult and costly to make on an 
industrial scale (Al‐amin et al. 2020). Microfluidiza-
tion may achieve scalability with low batch-to-batch 
differences, however, this high energy process may 
damage proteins (Al‐amin et  al. 2020). Supercriti-
cal carbon dioxide technique is a recently developed 
technique used to prepare liposomes and niosomes 
(Hallan et al. 2022). It is an inexpensive, inert, harm-
less, fire-resistant and environmentally friendly 
approach that avoids the use of organic solvent. The 
method involves atomized water droplets used to coat 
phospholipid vesicles under high diffusion of carbon 
dioxide. Several studies have demonstrated encapsu-
lation efficiencies above 66% for various drugs using 
this method (Hallan et al. 2022).

Locally delivered L-LF can greatly prolong LF 
residence time at the administration site. Human LF 
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(hLF) entrapped in positively charged liposomes 
delivered intra-articularly to mice with collagen-
induced arthritis was retained longer in the injected 
joint compared to free protein or neutral or anionic 
liposome formulations (Trif et  al. 2001; Icriverzi 
et  al. 2019). However, negatively charged liposomes 
containing hLF had enhanced accumulation in human 
synovial fibroblasts from rheumatoid arthritis patients 
(Trif et  al. 2001). Additionally coating liposomes 
with hyaluronic acid has increased the residence 
time of LF on the corneal surface (Table 1) (López-
Machado et al. 2021b).

Liposomes, especially when coated with hydro-
philic polymers such as chitosan, can increase the oral 
bioavailability of LF by protecting it from gastroin-
testinal degradation and delaying its removal from the 
systemic circulation by the reticuloendothelial sys-
tem (Yao et  al. 2015; Gorantla et  al. 2021; Moham-
madi et al. 2023). Two studies have found that orally 
administered L-LF inhibits bacterial LPS-induced 
bone resorption of alveolar bone in a rat periodontitis 
model (Table 1) (Yamano et al. 2010; Kawazoe et al. 
2013). Yamano et  al. (2010) administered L-bLF 
to rats for 7  days, then stimulated periodontitis by 
administering LPS. Therefore, it was concluded that 
L-LF can reduce alveolar bone destruction in peri-
odontitis patients. This effect is probably due partly to 
the gastrointestinal ingestion and absorption of L-LF 
because of the pre-administration of bLF before stim-
ulating periodontitis.

Vergara Shene (2019); Vergara et  al. (2020) used 
combinations of rapeseed phospholipid, stigmas-
terol and hydrogenated phosphatidylcholine to make 

L-bLF with an entrapment efficiency of ~ 90%. A 
high entrapment efficiency is beneficial as it means 
relatively less amount of excipient can encapsulate a 
large amount of drug, increasing the cost-effective-
ness and safety of the formulation. The liposomes 
of Vergara Shene (2019); Vergara et  al. (2020) also 
had improved stability, delaying hydrolysis in gastric 
and intestinal environments. Further study needs to 
be done to investigate the therapeutic effects of this 
oral formulation of bLF. Another study by Yao et al. 
(2014b) reported that liposomes and solid lipid nano-
particles modified with chitosan or pectin increased 
the oral bioavailability of bLf 1.95–2.69 times in vivo 
compared to free bLF.

Solid lipid nanoparticles (SLNs)

SLNs are made of a core of biodegradable lipids that 
are solid at room and body temperature (Buya et al. 
2021) surrounded by a layer of surfactant. The term 
“lipids” is used broadly here, and includes long chain 
triglycerides, partial triglycerides, fatty acids, phos-
pholipids, waxes, cetyl palmitate and alkanoic acids 
(Pignatello et al. 2018; Buya et al. 2021). These are 
highly biocompatible. The surfactants used may have 
a concentration ranging between 1 and 5% (w/v) 
and can include polysorbate 80, poloxamer 188 and/
or lecithin (Buya et al. 2021). Bioactive compounds, 
both hydrophilic and lipophilic (Moutinho et  al. 
2012), are encapsulated into the solid lipid matrix and 
released in a controlled manner (Buya et  al. 2021). 
SLNs are generally spherical, with particle sizes of 
10–1000 nm (Buya et al. 2021) (Fig. 2).

Fig. 1   Liposome in cross-section (Buya et  al. 2021). Created 
with BioRender.com

Fig. 2   Solid lipid nanoparticle (Roohinejad et al. 2018; Buya 
et al. 2021). Created with BioRender.com
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Only one group investigated the encapsulation of 
LF into solid lipid nanoparticles and compared this 
with liposomal-LF. SLN-LF showed higher heat 
resistance and greater electrolyte tolerance than L-LF 
(Yao et  al. 2015). Furthermore, SLN-LF was physi-
cally more stable, demonstrated by pH and thermal 
treatment, ionic strength and storage at room and 
body temperature. This suggests that SLN-LF is, 
in general, more resistant to degradation in the gas-
trointestinal tract than L-LF. The rank order of oral 
bioavailability was chitosan-modified SLNs > pectin-
modified liposomes > pectin-modified SLNs > chi-
tosan-modified liposomes, with chitosan-modified 
SLNs showing 2.69-fold increase in oral bioavailabil-
ity compared with free bLF (Yao et al. 2014b).

SLNs have the potential to be implanted into bone 
defects via embedding in hydrogels. One study inves-
tigated resveratrol loaded SLNs (Res-SLNs) embed-
ded in a gelatin methacrylate (GelMA) hydrogel 
scaffold (Wei et  al. 2021). Resveratrol is known to 
promote osteogenic differentiation and bone forma-
tion. Res-SLNs-GelMA was implanted into rat cal-
varial critical-size defects. Micro-CT results showed 
that the Res-SLNs-GelMA group showed the high-
est bone regeneration rate compared to GelMA only 
or SLNs-GelMA without Res. The study also found 
that SLNs significantly prolonged the release of Res 
from GelMA: 14% of the total drug was released at 
0.5 days and 75% was released at 28 days. One limita-
tion of this study is that the micro-CT results of Res-
GelMA without SLNs weren’t obtained. This would 
shed more light on the synergistic effect of SLNs and 
GelMA hydrogel on bone regeneration.

SLNs can be characterized similarly to liposomes, 
namely particle size, zeta potential and entrapment 
efficiency (Wei et  al. 2021). Their surface morphol-
ogy can be determined by transmission electron 
microscopy (Wei et  al. 2021). SLNs can be freeze-
dried and their crystalline structure determined using 
an X-ray diffractometer (Wei et al. 2021), in order to 
ascertain whether LF has been successfully incorpo-
rated into the SLN.

Similar to liposomes, SLNs demonstrate sustained 
drug delivery, low toxicity, increased bioavailability 
compared to free drug and biodegradability (Naseri 
et al. 2015; Sayed 2017). However, unlike liposomes, 
SLNs and nanostructured lipid carriers (NLCs) have 
improved shelf-life stability (Thorn et al. 2021). SLNs 
can protect the drug from degradation (from light 

or oxygen) (Patel and San Martin-Gonzalez 2012; 
Pignatello et  al. 2018; Thorn et  al. 2021). Storage 
stability can be further increased by lyophilization 
and spray-drying (Hallan et  al. 2022). Interestingly, 
SLNs can be designed to have prolonged circulation 
in the blood and may be able to accumulate in the 
bone marrow. This study (Göppert and Müller 2003) 
showed that poloxamer-188-stabilized SLNs (P188-
SLNs) had prolonged circulation time, possibly due 
to the adsorption of albumin, a dysopsonic protein, 
on the P188-SLNs. The P188-SLNs also adsorbed 
apolipoprotein C-II and C-III in sufficient amounts 
that the researchers postulated that P188-SLNs could 
accumulate in the bone marrow, similar to poloxamer 
407 polystyrene particles (Göppert and Müller 2003). 
Compared to liposomes and polymeric nanocarriers, 
SLNs are also easier and cheaper to mass-produce 
(Naseri et  al. 2015; Sayed 2017; Hallan et  al. 2022) 
and sterilize (Pignatello et al. 2018).

The main disadvantage of SLNs is that loading 
highly polar compounds often results in very low 
encapsulation (Furneri et  al. 2017). However, there 
are ways to circumvent this, including: loading a non-
polar basic form of the drug, coating the drug with a 
surfactant capsule before loading into SLN, utilizing 
lipophilic prodrugs or using hydrophobic ion-pairing 
(Thorn et al. 2021).

Nanostructured lipid carriers (NLCs)

NLCs are similar to SLNs but have a less structured 
lipid matrix composed of a mix of solid and liq-
uid lipids (Buya et  al. 2021). This allows NLCs to 
increase the encapsulation of active drug compared 
to SLNs, demonstrate higher loading capacity, reduce 
expulsion of drug during storage and prolong stability 
of the drug (Ali 2015; Roohinejad et al. 2018; Buya 
et  al. 2021). NLCs have a greater capacity to store 
hydrophilic and lipophilic drugs compared to SLNs 
(Buya et  al. 2021) and are more able to penetrate 
cell membranes (Buya et  al. 2021). NLCs are also 
biodegradable, exhibit low toxicity and are easy and 
cost-effective to mass-manufacture (Roohinejad et al. 
2018) (Fig. 3).

The main methods for fabricating NLCs are hot 
homogenization, cold homogenization and solvent 
emulsification-evaporation (Roohinejad et  al. 2018). 
Solvent emulsification-evaporation is typically 
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employed to encapsulate hydrophilic drugs like the 
protein LF (Varela-Fernández et al. 2022).

NLCs can be characterized by particle size, mor-
phology, entrapment efficiency, zeta potential and 
in  vitro release behavior. Moreover, the crystallinity 
and melting behavior of the lipid are important to 
determine as these affect the release rate, drug load-
ing, and EE (Roohinejad et al. 2018). X-ray spectros-
copy and DSC are used to investigate lipid status.

Only one study investigated LF-loaded NLCs 
(Varela-Fernández et  al. 2022). The context of the 
research was ocular drug delivery for keratoconus 
treatment. Entrapment efficiency and loading capacity 
was ~ 75% for 1 mg/ml LF. The in vitro release study 
demonstrated an initial burst release of 20% of total 
LF in the first hour followed by a controlled release 
where a cumulative ~ 50% of total LF was released 
after 24  h. The NLC-LF were stable, non-toxic and 
showed mucoadhesive properties. The study demon-
strated the potential of topical ophthalmic delivery of 
NLC-LF.

Polymeric micro‑ and nanoparticles

Polymeric micro- and nanoparticles form a diverse 
group of compounds. Only 6 studies were found for 
lactoferrin delivery by polymeric particles. LF and 
gellan gum was combined through electrostatic com-
plexation to enhance the antimicrobial properties of 
LF (Duarte et al. 2022). Fabrication of LF-gellan gum 

complexes was done by mixing vacuum-filtered stock 
solutions of LF and gellan gum at pH 4—the pH at 
which the greatest net charge difference between the 
biopolymers was observed. The LF-gellan gum com-
plexes were characterized by zeta potential, isother-
mal titration calorimetry, FTIR, atomic force micros-
copy and minimum inhibitory concentration (MIC) 
assays to assess antimicrobial activity against S. 
aureus and E. coli. Duarte et al. (2022) found that LF-
gellan gum complexes reduced the MIC for S. aureus 
compared to free LF, however the effect was reduced 
in tryptic soy broth, which contained higher concen-
trations of divalent cations—Fe2+, Mn2+, Zn2+, Cu2+ 
that competed with LF for anionic sites on the micro-
bial membranes (Duarte et al. 2022). The study also 
reported that complexation to gellan gum reduced the 
flexibility of LF, which may limit its interaction with 
bacterial membranes. This may help explain why the 
MIC for E.  coli was unaffected by LF-gellan gum. 
The findings from Duarte et  al. (2022) suggest that 
LF-gellan gum complexes could be effective against 
S. aureus infections in vitro, however, further studies 
need to be done to investigate its effects in vivo.

López-Machado et  al. (2021a, b) fabricated bLF-
loaded polymeric nanoparticles (bLF-NPs) composed 
of poloxamer 188 (P188) and poly (lactic-co-glycolic 
acid) (PLGA). The bLF-NPs were fabricated by 
double emulsion and characterized by particle size, 
particle size distribution, zeta potential and EE. The 
optimum formulation achieved an EE of 56%. The 
bLF-NPs exhibited prolonged release of bLF with a 
cumulative 83.6% of bLF released after 48  h. P188 
and PLGA were chosen as they could demonstrate 
improved permeability across corneal tissue, enhanc-
ing the anti-inflammatory effect of bLF. These poly-
mers were also biocompatible and biodegradable 
and relatively large amounts of bLF could be loaded 
into these nanoparticles: concentrations of bLF of 
8–11 mg/ml reached 50–60% encapsulation for P188 
and at 19 mg/ml bLF, the maximum loading capacity 
was reached for PLGA particles. Moreover, the bLF-
NPs could be sterilized with γ-irradiation with little 
effect on their physicochemical properties. The effect 
of these nanoparticles on bone tissue, bacteria or bio-
films was not studied. However, these nanoparticles 
decreased the expression of inflammatory cytokines 
in the tear film to levels similar to free bLF, indicating 
that bLF encapsulated in these NPs retained its effect.

Fig. 3   Nanostructured lipid carrier (NLC). The cores of NLCs 
are composed of liquid and solid lipids resulting in the forma-
tion of imperfect crystals. This allows more space to incorpo-
rate bioactive compounds (Roohinejad et al. 2018; Buya et al. 
2021). Created with BioRender.com



720	 Biometals (2023) 36:709–727

1 3
Vol:. (1234567890)

Two studies investigated the combination of bLF 
with beta-glucan (bG) (Kumar 2010; Kumar et  al. 
2013; Yang et al. 2020). Yang et al. mixed bLF and 
oat bG solutions at different proportions at 25 °C and 
at pH 5. Mixing of the two solutions was also carried 
out at 90 °C. The bLF-oat bG complexes were char-
acterized by isothermal titration calorimetry (ITC), 
particle size, zeta potential, SEM, fluorescence spec-
troscopy, far-UV circular dichroism measurements, 
raman spectra collection and flow behaviour measure-
ments. ITC showed that bLF and oat bG can bind to 
each other and suggests that the interaction is at least 
partly electrostatic. bLF is positively charged at pH 5, 
and oat bG is neutral or slightly negatively charged 
due to the presence of phosphate residues. Impor-
tantly, fluorescence spectroscopy showed that oat bG 
can change the structure of bLF. Turbidity and par-
ticle size was larger for complexes heated at 90  °C 
compared to 25 °C. This suggested the formation of 
larger biopolymer complexes at higher temperatures, 
involving aggregation and thermal denaturation of 
bLF in the presence of oat bG. Therefore, complexa-
tion of bLF with oat bG may result in the limitation 
of bLF’s properties, especially under elevated temper-
ature conditions above 25 °C.

Hemant Kumar loaded bLF into barley bG micro-
particles (bLF-barley bG) using a cryo-milling tech-
nique to investigate its effect on osteoblasts and bone 
mineral density (Kumar 2010; Kumar et  al. 2013). 
In vitro, bLF was released in a sustained manner from 
cryomilled barley bG. Initially, 25% burst bLF release 
was found and after 7  h, reached only 35%. Addi-
tion of Kollicoat increased the burst release to 57% 
and final bLF release after 7 h was 91%. In vivo, the 
study found that carriage of cryomilled bLF in barley 
bG increased the oral bioavailability of bLF in ova-
riectomized mice. However, bLF extracted from cry-
omilled bLF-barley bG complexes showed less activ-
ity on osteoblast proliferation compared to cryomilled 
free bLF. Importantly, complexation of bLF to barley 
bG did not increase bone mineral density to a greater 
extent compared to orally delivered free bLF. These 
results suggest that complexation of bLF to barley bG 
increases the oral bioavailability of bLF and preserves 
but does not enhance bLF’s bone-regenerating effects.

Kim et  al. (2014) prepared poly(lactide-co-gly-
colide) (PLGA) microspheres coated with LF in order 
to study their effect on the osteogenic differentiation 
of rabbit adipose-derived stem cells (Fig. 4).

PMs were fabricated using a fluidic device with 
discontinuous and continuous phases (Kim et  al. 
2014). The discontinuous phase was a water-in-oil 
polymer emulsion composed of PLGA, polyvinyl 
alcohol (PVA) and gelatin in dichloromethane solu-
tion. The continuous phase was PVA solution. The 
discontinuous and continuous phases were mixed 
together at different flow rates through the fluidic 
device. The PMs were modified with negatively-
charged heparin by immersion in Tris buffer. Then, 
LF was adsorbed on the surface of the PMs by 
combining Hep-PMs with LF in 2-(N-morpholino) 
ethanesulfonic acid (MES) buffer.

The PMs were characterized by SEM and X-ray 
photoelectron spectroscopy. In vitro release of LF into 
phosphate buffered saline was also measured. The 
release of LF was prolonged: ~ 47% of cumulative LF 
was released over 28  days. Furthermore, the study 
demonstrated that LF-impregnated PMs induced oste-
ogenic differentiation of rabbit adipose-derived stem 
cells (rADSCs) by increasing ALP activity, calcium 
deposition, osteocalcin and osteopontin expressions 
compared with rADSCs grown in PMs without LF. 
In  vivo studies will be needed to further determine 
the effects of LF-impregnated PMs.

Porous microspheres (PMs) offer two benefits for 
bone regeneration: they can be used as injectable 
scaffolds to repair irregularly-shaped bone defects 
during minimally invasive surgery; they can also 
contain and release many different drugs or pro-
teins. PLGA has been used in orthopaedic implants 
and may be suitable for bone regeneration as it takes 
months to degrade in the body, approximating the rate 
of bone healing (Scholz 2009).

Görmez et  al. (2015) prepared bLF-loaded gela-
tin microspheres (bLF-GM). The bLF-GM were 

Lactoferrin molecule

Porous microsphere (PM) 

Fig. 4   PM with adsorbed lactoferrin. Image used with permis-
sion from (Kim et al. 2014)
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fabricated by adding bLF in phosphate buffer to gela-
tin solution. Glutaraldehyde solution was added to 
harden the microspheres. bLF-GM was characterized 
by in  vitro release of bLF: approximately 3  mg of 
bLF was released over 24 days (Görmez et al. 2015). 
Increasing the cross-linking density of the micro-
spheres extended the duration of release. Görmez 
et al. (2015) found that 3 mg bLF-GM in combination 
with inorganic bovine bone promoted bone regenera-
tion in bone defects surgically created around tooth 
implants in pigs. Compared to inorganic bovine bone 
alone, adding bLF-GM increased the percentage of 
hard tissue and newly formed bone and decreased the 
percentage of residual graft tissue.

Hydroxyapatite nanocrystals and micro‑particles

Hydroxyapatite (HA) nanocrystals are a major inor-
ganic constituent of bone tissue and are widely used 
as a bone graft material due to high biocompatibility 
and osteoconductivity (Murugan et  al. 2010; Mon-
tesi et al. 2015a; Shi et al. 2017; Bastos et al. 2019). 
Synthetic biomimetic HA nanocrystals can be made 
to have a length of 100 nm, the width of 20–30 nm 
and a thickness of 3–6 nm, resembling the natural HA 
nanocrystals found in bone (Nocerino et al. 2014).

Nocerino et al. (2014) found that bLF-coated HA 
nanocrystals possessed concentration-dependent bac-
terial growth-inhibiting properties, including against 
S. aureus. bLF-HA was synthesized by precipitation 
of HA nanocrystals using (CH3COO)2Ca and H3PO4. 
bLF was then dissolved in HEPES buffer at pH 7.4 
and was found to be strongly attracted to HA form-
ing a monolayer protein coat around the nanocrystals. 
bLF-HA was characterized by FTIR and fourier trans-
form Raman spectroscopy, which determined that 
the conformation of adsorbed bLF was only slightly 
altered compared to unadsorbed bLF. A downside 
to the bLF-HA particles was the slight cytotoxicity 
to THP-1 cells at concentrations used to inhibit the 
growth of bacteria (Nocerino et al. 2014).

HA can also be shaped in nanorod and micro-
sphere forms, and LF can be adsorbed onto these 
particles (Shi et  al. 2017). HA nanorods and HA 
microsphere powders were combined with LF in 
phosphate buffer solution at pH 7.4 at 37  °C for 
24 h. The complex was washed twice with ultrapure 
water, recovered by centrifugation and freeze-dried. 

LF-HA nanorods and microspheres were character-
ized by N2 adsorption–desorption isotherms which 
determined that the particles were mesoporous (hav-
ing pores of diameter 2–50 nm). Thermogravimetric 
analysis was used to determine the amount of LF pro-
tein attached to the HA. FTIR demonstrated that LF 
and HA interacted stably and that LF did not affect 
the conformation of HA. The study found that micro-
spherical HA had higher biocompatibility compared 
to nanorod HA—this was attributed to the greater 
aggregation of the nanorods impairing nutrient and 
water absorption. The main study findings were that, 
compared to HA alone, HA-LF was more biocompat-
ible toward MC3T3-E1 cells and HA-LF nanorods 
and microspheres stimulated greater cell proliferation 
of MC3T3-E1 (Shi et  al. 2017). Importantly, micro-
sphere HA-LF increased cell viability of MC3T3-E1 
cells compared to free LF at 48 and 72 h (Shi et al. 
2017).

Montesi et  al. (2015a, b) fabricated HA-LF 
nanocrystals in a similar method as described by 
Nocerino et  al. (2014). No LF was released from 
the HA surface for up to 14 days, indicating a strong 
affinity of LF for HA. It was found that HA and LF 
acted synergistically in MC3T3-E1 osteoblasts to 
trigger osteoblast viability, differentiation and bone 
matrix deposition. In contrast, osteoclast formation 
and activity was inhibited. These findings suggest 
that LF-adsorption onto HA can be used as a bone 
graft substitute, increasing the local concentration of 
LF, prolonging its residence time in the target tissue 
(Montesi et al. 2015a, b).

It has been reported that LF-HA particles may 
aggregate together and precipitate in an aque-
ous environment such as plasma, resulting in rapid 
clearance by the liver or toxicity to cells (Kim et al. 
2016). Therefore, Kim et  al. (2016) fabricated hep-
arin-immobilized HA nanoparticles to deliver LF. 
Heparin’s negative charge was used to increase the 
electrostatic repulsion between HA particles and LF 
was conjugated to the heparin (Hep) coating the HA 
particles. Fabrication was a complex process involv-
ing the components HA, LF, dopamine, Hep, 1-ethyl-
3-(3-dimethylaminopropyl)-carbodiimide (EDAC), 
N-hydroxysuccinimide (NHS), and 2-(N-morpholino) 
ethanesulfonic acid (MES) buffer.

LF-Hep-HA was characterized by measuring its 
particle size; zeta potential to determine if Hep had 
linked LF to HA particles; transmission electron 
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microscopy for morphology; turbidity and precipita-
tion studies to determine if LF-Hep-HA particles had 
aggregated. The study found that Hep immobilization 
onto HA nanoparticles prevented their aggregation 
and prolonged the release of LF over 4  weeks. LF-
Hep-HA had low cytotoxicity and induced the osteo-
genic differentiation of rabbit adipose-derived stem 
cells. Further studies, perhaps using human adipose-
derived stem cells, will be needed to determine the 
applicability for humans. These findings suggest the 
potential for LF-Hep-HA to be used as an injectable 
system to stimulate bone tissue regeneration (Kim 
et al. 2016).

Discussion

Nanoparticular drug carriers are an expanding 
research area as they can enhance existing treat-
ments for diseases like infection and cancer. Nano-
particles, when targeted to specific tissues, provide 
a high local concentration of drug. This makes them 
highly suited to augmenting antimicrobial therapy. 
The human immune system is similarly able to create 
high local concentrations of antimicrobial peptides 
including LF around invading pathogens as part of 
the innate immune response (Vogel 2012). Nanopar-
ticular carriers also prolong the release of the drug. 
When loaded with the right active molecule, nanocar-
riers can reduce the spread of antimicrobial resistance 
(Kalelkar et al. 2021).

The small size of nanoparticles also helps in bio-
film penetration. Analysis of several studies has 
shown that large, highly positive or highly negatively 
charged lipid-based drug delivery systems penetrate 
biofilms poorly while a negative or near-neutral lipid 
nanoparticle facilitates greater biofilm penetration 
(Thorn et  al. 2021). Lipid-based drug delivery sys-
tems include liposomes, SLNs and NLCs.

This review has introduced several nano and 
micro-particular carriers for LF. Liposomes are gen-
erally less stable than SLNs or NLCs, although a 
larger body of research exists around liposomes. 
Unlike SLNs and NLCs, liposomes can fuse with 
bacterial membranes, delivering active drug (Thorn 
et al. 2021; Shadvar et al. 2022). They can be made 
with rapeseed or milk-derived phospholipid, stig-
masterol and hydrogenated phosphatidylcholine (Liu 
et  al. 2013; Vergara and Shene 2019; Vergara et  al. 

2020) to improve stability and delay hydrolysis in the 
gastrointestinal environment. Use of these compo-
nents is thought to improve stability as the fatty acid 
chains of the phospholipid are more saturated, hence 
the liposomal membrane is more rigid and less prone 
to leak drug (Roohinejad et al. 2018).

The cost of mass-producing liposomes is another 
barrier to their widespread use. Innovative tech-
niques such as supercritical carbon dioxide need to be 
explored further (Hallan et al. 2022) and the effect of 
these processes on the structure of the drug molecule 
needs to be studied.

SLNs and NLCs are promising nanocarriers par-
ticularly in oral drug delivery. The use of saturated 
fatty acids like stearic acid improves their stabil-
ity (Yao et  al. 2014a). Preliminary studies involving 
Caco-2 cells have shown that SLN-bLF are taken up 
by gastrointestinal epithelium by an energy-depend-
ent process (Yao et al. 2014a). Further research may 
involve oral delivery of SLN-LF to ovariectomized 
mice and comparing the skeletal composition with 
mice fed with a control diet. Ovariectomized mice are 
a model for post-menopausal osteoporosis. SLNs also 
have the potential to be implanted into bone defects 
via embedding in hydrogels (Wei et al. 2021).

Polymeric micro and nanoparticles represent a 
diverse group of compounds. Poloxamer and PLGA 
can preserve LF function and are able to load rela-
tively high concentrations of bLF (López-Machado 
et  al. 2021a). However, the biodegradation of these 
polymers requires careful consideration. PLGA takes 
months to degrade in the body. This may be an advan-
tage if it is placed within bone tissue that is under-
going healing as it approximates the duration of the 
healing process (Scholz 2009). However, systemic 
administration of such polymers may be unsuitable 
due to their large size which impacts renal clearance 
(Wyss et al. 2020). The degradability of PLGA can be 
determined by several measurements (Hussein et  al. 
2013): (1) water uptake of the polymer—the greater 
the water uptake, the greater the degradability; (2) 
loss of mass of polymer over time; (3) change in pH 
of the degradation environment—the breakdown 
products of PLGA are acidic; (4) quantification of the 
acidic breakdown products of PLGA. Similar meth-
ods to determine poloxamer’s degradability can be 
used (Erlandsson 2002).

Despite these concerns, polymeric particles are 
non-toxic, biocompatible and versatile. They can 
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be made to form porous microspheres (PMs) which 
prolong the release of drug. The study by Kim et al. 
(2014) showed that PMs containing LF could stimu-
late the osteogenic differentiation of rabbit adipose-
derived stem cells. In  vivo studies will be needed 
to confirm and quantify these bone-regenerating 
effects. It is envisioned that these PMs can be used 
in injectable scaffolds as part of minimally invasive 
surgery for bone diseases.

Certain polymers like beta glucan (bG) (Kumar 
2010; Kumar et al. 2013; Yang et al. 2020) and gel-
lan gum (Duarte et  al. 2022) limit the conforma-
tional flexibility of LF. This does not necessarily 
lead to a reduction of efficacy of LF: complexation 
with gellan gum enhanced the bacteriostatic effect 
of LF in glucose-yeast-peptone broth (Duarte et al. 
2022); complexation with barley bG increased the 
oral bioavailability and bone mineral density of an 
osteoporosis mouse model – however, the increase 
in bone mineral density was comparable to orally 
administered free bLF (Kumar 2010; Kumar et  al. 
2013).

Hydroxyapatite nanocrystals are biocompat-
ible and well-established as a bone graft substitute 
(Murugan et  al. 2010; Montesi et  al. 2015a; Shi 
et al. 2017; Bastos et al. 2019). However, they may 
aggregate together (Shi et al. 2017) causing toxicity, 
hence may be unsuitable for systemic use.

Conclusion

In summary, different nano and microparticular drug 
carriers seem particularly suited to different delivery 
modes of LF for different therapies. Liposomes are 
promising oral, topical and intra-articular delivery 
carriers. SLNs and NLCs are promising oral delivery 
carriers and, if embedded within hydrogels, could be 
implanted into bone defects. Polymeric particles like 
beta glucan and gellan gum could deliver LF orally 
or parenterally. Other polymers like PLGA, P188 and 
gelatin are being investigated as a carrier for intraos-
seous delivery. Hydroxyapatite nanocrystals seem 
better suited for intraosseous delivery to affected 
bone tissue.
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